首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nematode assemblages were investigated (in terms of size spectra, sex ratio, Shannon diversity, trophic structure and diversity, rarefaction statistics, maturity index, taxonomic diversity and taxonomic distinctness) at bathyal and hadal depths (from 1050 to 7800 m) in the deepest trench of the South Pacific Ocean: the Trench of Atacama. This area, characterised by very high concentrations of nutritionally-rich organic matter also at 7800-m depth, displayed characteristics typical of eutrophic systems and revealed high nematode densities (>6000 ind. 10 cm−2). Nematode assemblages from the Atacama Trench displayed a different composition than at bathyal depths. At bathyal depths 95 genera and 119 species were found (Comesomatidae, Cyatholaimidae, Microlaimidae, Desmodoridae and Xyalidae being dominant), whereas in the Atacama Trench only 29 genera and 37 species were encountered (dominated by Monhysteridae, Chromadoridae, Microlaimidae, Oxystominidae and Xyalidae). The genus Monhystera (24.4%) strongly dominated at hadal depths and Neochromadora, and Trileptium were observed only in the Atacama Trench, but not at bathyal depths. A reduction of the mean nematode size (by ca. 67%) was observed between bathyal and hadal depths. Since food availability was not a limiting factor in the Atacama Trench sediments, other causes are likely to be responsible for the reduction of nematode species richness and body size. The presence of a restricted number of families and genera in the Atacama Trench might indicate that hadal sediments limited nematode colonisation. Most of the genera reaching very high densities in Trench sediments (e.g., Monhystera) are opportunistic and were responsible for the significant decrease of the maturity index. The dominance of opportunists, which are known to be characterised by small sizes, might have contributed to the reduced nematode size at hadal depths. Shannon diversity and species richness decreased in hadal water depth and this pattern was more evident at genus than at species level. Epistrate feeders dominated and increased their relevance, determining a reduction of the index of trophic diversity at hadal depths. According to trophic diversity, taxonomic diversity and distinctness also decreased with depth. All diversity indices from the Atacama Slope and Trench were lower than in other equally deep areas world wide (e.g. Puerto Rico Trench). We suggest that such reduction was related to the high nutrient loading observed in this system (up to two orders of magnitude higher than in typical oligotrophic deep-sea sediments).  相似文献   

2.
K. Soetaert    M. Vincx  C. Heip 《Marine Ecology》1995,16(3):189-206
Abstract. Nematode assemblages along a Mediterranean depth transect (160–1220 m) and vertically in the sediment were investigated. The station at the edge of the continental shelf (160 m) was distinctly different from those situated on the continental slope (280–1220 m). On the slope, nematode communities in the upper centimetre differed significantly from communities in the deeper sediment layers, which were dominated by fewer and larger species. Vertical segregation could be a factor explaining the coexistence of several species belonging to the genus Sabatieria , with larger species penetrating deeper into the sediment. Clear differences in buccal morphology suggest food resource partitioning as the dominant factor promoting coexistence of several species belonging to the other dominant genus, Acantholaimus .  相似文献   

3.
Different estimates were used to assess the diversity of the total macrofauna and its major taxonomic groups separately from a broad bathymetric range at a site in the NE Atlantic. In the Goban Spur region, a transect was sampled from the shelf to the abyssal plain over a depth range from 200 to 4500 m and in the Porcupine Sea Bight two stations were sampled (at 3670 m and 4115 m). Species diversity (the number of species per number of individuals) increased with increasing water depth, both when expressed as Hurlbert's E(Sn) and as Shannon's H′log e. The expected number of species in a 100-individual sample E(S100) of total macrofauna increased from 30 on the shelf to 68 on the abyssal plain. Evenness (the proportional abundance of species), estimated with Shannon's J′, also increased with water depth from 0.66 to 0.91, whereas dominance (Simpson's D) decreased from 0.09 to 0.01. Species richness (the number of species per unit of area), however, showed a parabolic pattern with a peak at the upper slope. The largest number of species was found at the slope station at 1425 m (232 species within 0.66 m2). It is argued that species richness is not a synonym of species diversity, but that species richness depends both on species density (which decreases with increasing water depth) and on species diversity. Across the whole bathymetric range (200 to 4500 m) a total of 696 species within 8327 specimens in a total sampled area of 4.12 m2 were counted, yielding mean values of 12 individuals per species and 169 species per m2. Different communities were found to exist on the shelf, slope and abyss. It is suggested that this could have been caused by different selection processes. Differences in life-history strategies and organic-matter supply could (at least partly) explain the different community structures and diversity patterns found along the depth gradient.  相似文献   

4.
Marine sediments in continental shelf ecosystems harbor a rich biodiversity of benthic communities. In this study, the spatial and temporal diversity and community assemblages of free‐living marine nematodes were studied by sampling at six depths and over 3 years from the southwest continental shelf off Bay of Bengal, one of the least explored tropical shelf ecosystems. The dominant marine nematode species were related with abiotic variables as part of this study. The effects of sediment granulometry generally decreased with increasing depth and the highest nematode density and species diversity were recorded on coarse sand (shallower depths). Multivariate analysis of the nematode community data showed that community structure differed significantly among depths as well as among years. Statistical analyses showed significant correlations between the nematode community and abiotic variables. Sediment texture, organic matter, water pressure and depth profile were crucial factors for determining diversity, vertical profile and feeding types of the nematode community. Other environmental factors, including anthropogenic pressure, did not have an effect on nematode diversity except for the presence of some tolerant species (Metachromadora spp., Sabatieria spp. and Siplophorella sp.). This study represents a baseline of knowledge of free‐living marine nematode communities that can be used in the future to compare nematode assemblages from temperate shelf ecosystems.  相似文献   

5.
Large nematodes form an important component of deep‐sea macrofaunal assemblages, but are often considered to be part of the meiobenthos and are rarely studied. We analysed the standing stocks, diversity, and functional group and genus‐level composition of macrofaunal nematodes at lower bathyal depths (3,500 m water depth) in the Whittard Canyon system (NE Atlantic) and on the adjacent continental slope. Five replicate sample sets were obtained using a Megacorer, at four locations (three canyon branches, one slope). Sediment samples were processed on a 500‐μm mesh to provide both nematode and polychaete data from the same samples. The dominant nematode genera included Paramesacanthion, Metacylicolaimus, Cylicolaimus and Phanodermopsis. Nematode standing stocks (density and biomass) increased significantly from slope to canyon locations. Similarly, nematode dominance increased substantially (and diversity decreased) from slope to canyon locations. Nematode feeding groups and tail shape groups also appeared to exhibit common trends across study locations. Nematode genus‐level faunal composition varied significantly between slope and canyon locations. We describe and discuss the broadly similar trends detected in the matching polychaete data, noting some differences in the polychaete density and diversity responses. We suggest that the similar trends in macrofaunal nematode and polychaete ecology across our four study locations reflect responses to both changing sedimentology and food availability.  相似文献   

6.
The community structure of megacrustaceans (orders Lophogastrida, Isopoda, and Decapoda) collected in trawls on the continental margin, upper slope and abyssal plain of the southern Gulf of Mexico was studied to determine to what extent broad-scale variation in community composition and diversity was influenced by geographic regions environmental variability and depth. Trawls were collected in the Mexican Ridges, the Campeche Bank, and the Sigsbee abyssal plain. There was variability in species composition, density and diversity among geographic regions and along the depth gradient. A total of 106 species were identified and grouped in three orders; five infraorders, 40 families, and 70 genera. This study extends the known geographic ranges of the species Homolodromia monstrosa and Ephyrina benedicti. The largest number of species was recorded in the Mexican Ridges and on the upper continental shelf; lower values were found on the continental margin and in the abyssal plain. The largest densities were recorded on the continental margin in the Mexican Ridges. Megacrustaceans show in general low frequencies and low abundances in trawls, characterizing them as rare components of benthic assemblages. Contrary to an accepted paradigm about deep-sea biodiversity, the highest H′ diversity values were recorded in the Sigsbee abyssal plain, followed by values from the upper continental slope; diversity values were correlated with evenness. Canonical Redundancy analysis results showed a significant affinity to regions for 18 crustacean species; 33 species showed a significant affinity to both regions and depth zones within regions.  相似文献   

7.
Meiofaunal standing stock and nematode community structure were investigated in the western continental shelf of India by collecting samples from every degree square of the shelf during two cruises of the FORV (Fishery and Oceanographic Research Vessel) Sagar Sampada, conducted in 1998 and 2001. Samples were collected from 30, 50, 100 and 200 m depths using a Smith Mc Intyre grab. Meiofaunal density ranged from 8 Ind. 10 cm−2 to 1208 Ind. 10 cm−2 and biomass from 0.07 mg 10 cm−2 to 6.11 mg 10 cm−2. Nematodes were the dominant meiofaunal group, contributing 88% of the density and 44% of the biomass. Harpacticoid copepods were the second important taxa, contributing 8% of both biomass and density. Altogether, 154 species of nematodes belonging to 28 families were recorded from the study area. Numerically, Desmodora spp., Dorylaimopsis sp., Tricoma spp., Theristus spp. and Halalaimus spp. were the dominant species. In general, there was a decrease in biomass and density of meiofauna and species diversity of nematodes with increase in depth. There was a 67% drop in species number from 51 to 100 m (106 species) to the shelf edge (35 species). Species richness and diversity indices showed consistent decrease with depth. The species dominance index was higher below 150 m depth. ANOSIM (from PRIMER) showed a significant difference between the nematodes of the near shore and shelf edge. Latitudinal variation was observed only in the number of nematode species. Biomass and abundance of nematodes were found to increase from coarse to fine sediment, while copepods showed an opposite trend. Multivariate analyses of nematode communities did not reveal any latitudinal or substratum differences. Variables such as depth, latitude, organic matter (OM) and amount of clay were the most relevant parameters influencing the biomass and density of meiofauna, while depth and temperature were the important parameters explaining the distribution of the nematode communities along the western Indian shelf.  相似文献   

8.
A. I. Kafanov 《Oceanology》2008,48(2):233-238
Among the components of biological diversity such as taxonomic richness and ecological diversity (distribution of species with respect to their abundance), one should also distinguish the taxonomic diversity as a function of taxonomic richness and evenness of the distributions of taxa of lower ranks over those of higher rank. In the direction from the high latitudes to the tropics, the taxonomic richness and Shannon’s index of taxonomic diversity regularly increase, while the taxonomic evenness, on the contrary, decreases. Toward the north, a relatively small number of mass species become better manifested; they are approximately even over a few genera and families. In warm waters, more common is the existence of a relatively large number of families, which strongly differ in the number of species; each of the latter features low abundance parameters. The meridional asymmetry in the distribution of the taxonomic richness and diversity reveals itself in the higher values of these parameters in the northeast of the Pacific Ocean as compared to their values at the same latitudes in the northwest; in the former case, the trend of latitudinal variations in the taxonomic diversity is poorer expressed.  相似文献   

9.
Assessing the relative contribution of local diversity to regional biodiversity may be the key to understanding large-scale and even global patterns in species diversity. Here, the contribution of habitat heterogeneity of cold seeps at three spatial scales [micro-scale (ms), macro-scale (10 to 100s of ms), and mega-scale (10 to 100s of km)] to the total nematode biodiversity (genus level) along the Norwegian continental margin is evaluated. Due to the development of higher resolution bathymetry and increased bottom sampling in recent years, continental margins, once regarded as monotonous landscapes, are now acknowledged to have a high degree of habitat complexity and diversity. By calculating the additive partitioning of gamma diversity in alpha and beta fractions, we examined to what extent habitat diversity of seep sites significantly increases the nematode genus composition and diversity at different spatial scales. Siboglinidae patches and control sediments yielded comparably high levels of nematode genus richness. They exhibited low turnover rates within and across the different seep sites. In contrast, the bacterial mats at Håkon Mosby Mud Volcano (HMMV) and the reduced sediments at the Nyegga pockmarks harboured genus-poor nematode communities with an equally high dominance of one or two species, which were different for each seep. Different habitats, in particular at the HMMV, contributed significantly to the seep nematode richness. This study demonstrates that the presence of distinct habitat types within multiple seep sites contributes to the high diversity of nematode communities inhabiting the seeps in the Norwegian deep sea.  相似文献   

10.
The analysis of 79 hauls performed by commercial bottom trawlers from 50 to 800 m depth in the Balearic Sea (north-western Mediterranean) from June 1995 to September 1996 yielded a total of 30 cephalopod species belonging to 12 families. Cluster analysis of these data gave as a result two main groups 50–200 m and 200–800 m each subdivided into two other groups (50–100 vs. 100–200 m and 200–600 vs. 600–800 m). These results suggested the existence of two assemblages that could be associated to the continental shelf (50–100 m) and the upper slope (600–800 m) separated by a wide transitional zone (100–600 m) representing a region of overlapping shelf and slope faunas (ecotone). The faunistic bathymetric gradient showed a continuous substitution of species with depth rather than discrete assemblages separated by distinct boundaries. The more coastal species such as Eledone moschata, Loligo vulgarisSepia officinalis and Octopus vulgaris were found on the continental shelf; on the transitional zone, apart from species characteristic of this zone (Illex coindetii, Sepietta oweniana, Rossia macrosoma, Scaeurgus unicirrhus and Pteroctopus tetracirrhus), we also observed species from both the continental shelf and slope. The upper slope was characterized by typical species of deeper waters, such asBathypolypus sponsalis , Histioteuthis reversa, H. bonnellii, Ancistroteuthis lichtensteinii andOnychoteuthis banksii . The octopod O. vulgaris was the dominant species on the continental shelf and upper transitional zone, being substituted by T. sagittatus on the lower transitional zone and upper slope. Mean biomass decreased abruptly from the continental shelf to the transitional zone and from there to the upper slope. Mean species richness and species diversity were higher in the transitional zone than in the continental shelf and upper slope. Finally, some biological aspects of the more abundant deep-sea cephalopod species are studied: Bathypolypus sponsalis, Octopus salutii,Pteroctopus tetracirrhus , Histioteuthis reversa and H. bonnellii.  相似文献   

11.
浙江南部近海鱼类分类多样性研究   总被引:4,自引:2,他引:2  
根据2015年11月至2016年8月浙江南部近海鱼类调查资料,采用纳尔逊分类系统整理鱼类物种组成,通过计算分类阶元包含指数(TINCLi)、分类多样性指数(平均分类差异指数△+和分类差异变异指数∧+)分析浙南近海鱼类的分类多样性。调查结果共记录鱼类182种,分属18目78科130属。TINCLi分析结果显示,浙南近海鱼类种类组成中,其目、科、属所包含的(科、属、种)、(属、种)和(种)的平均数目分别为(4.33、7.22、10.11)、(1.67、2.33)和(1.40)。浙江南部近海鱼类△+值和∧+值分别为62.9和77.0。浙江南部近海鱼类△+值小于高纬度的黄、渤海(66.4)和山东近海(66.1),大于低纬度的南沙群岛(56.6)、西沙群岛(60.2)和东沙群岛(55.2),呈现随着纬度降低鱼类△+值随之降低的规律。通过分析浙江南部近海鱼类的分类多样性,可以为浙江南部近海鱼类资源的可持续开发利用及保护提供重要的参考依据。  相似文献   

12.
渤海自由生活海洋线虫多样性的研究   总被引:5,自引:0,他引:5       下载免费PDF全文
首先介绍Warwick和Clarke(1995)提出的等级生物多样性指数以及在自由生活海洋线虫中的应用,重点以1998年9~10月和1999年4~5月两个航次的沉积物样品,用物种数目(S)、Margalef物种丰富度指数(d)、优势度Simpson指数(λ)、多样性Shannon-Wiener指数(H')、Pielou的均匀度指数(J)、Hill多样性系列指数(N1,N2和N+∞)、分类多样性指数(△)、分类差异指数(△*)、等级多样性指数(△+)对渤海自由生活海洋线虫的多样性进行了研究。结果表明,黄河输入的泥沙对渤海自由生活海洋线虫多样性的变化有一定的作用,距离黄河口越近的站位,群落具有的物种多样性和均匀性越低,优势度越高;距离黄河口越远的站位,群落具有的物种多样性和均匀性越高,优势度越低。  相似文献   

13.
The present study examines traditional paradigms regarding the differences between faunas in estuaries vs coastal waters. The ecological characteristics of the free-living nematode faunas of nearshore, subtidal sediments in downstream and upstream areas of the large, microtidal Swan River Estuary are compared with those similarly recorded seasonally in subtidal sediments along an adjacent part of the coast of temperate south-western Australia. Overall, the nematode species richness recorded in the upstream (38) and downstream estuarine areas (58) and from throughout the estuary (61) were substantially less than in marine waters (75). In addition, the value for Simpson’s diversity index was marginally less in the estuary and the dominance of the most abundant species greater. In contrast, the mean nematode species richness and diversity in individual cores followed the reverse trend, reflecting a combination of less variability among the species compositions and far greater densities in the cores from estuarine sediments. Furthermore, the mean density (numbers 10 cm−2) was far higher in both upstream (341) and downstream (903) areas of the estuary than in marine waters (87). Although the compositions of the assemblages in upstream and downstream estuarine areas differed markedly from each other at the species, genus and family levels, these differences were less pronounced than those between either of these areas and marine waters. The trophic compositions at the moderately sheltered and fully exposed marine sites differed from that in both areas of the estuary, whereas that at the most sheltered marine site was similar to that in the downstream estuarine area, with both containing substantial proportions of epistrate-grazing species. The variations among the species richness, diversity, densities and taxonomic and trophic compositions of nematode assemblages in the sediments of the two estuarine areas and nearby marine waters appear to reflect differences in 1) salinity regimes, 2) extents of exposure to wave action and its related effects and 3) amounts and types of food available to nematodes.  相似文献   

14.
The Håkon Mosby Mud Volcano (HMMV) is a methane seep that is densely populated by the bacteria Beggiatoa spp. as well as by tubeworms of the Family Siboglinidae. Analyses of samples from seven stations located in five different habitats (bare sediments, bacterial mats, siboglinid fields, sediments with small patches of siboglinids and areas of ‘normal’ sea floor) revealed differences in the density and species‐level diversity of nematode communities. Total densities increased from stations inside the mud volcano and on its rim towards the ‘normal’ areas outside the volcano. Nematode species diversity was similar in samples from the siboglinid fields and the bare HMMV sediments. However, the sediment with patches of siboglinids collected outside the volcano was characterised by a diverse nematode community comprising 47 species, whereas the control sediments without siboglinids yielded only 27 species. The nematode assemblage at the bacterial mat site included only two identified species, Halomonhystera disjuncta and Sabatieria ornata, with H. disjuncta being strongly dominant. Terschellingia distlamphida, S. ornata and Aponema ninae dominated nematode communities at the siboglinid fields and in bare HMMV sediments. Species dominating at stations inside the caldera were found in comparable low densities in the sediment with siboglinid patches collected outside the volcano, but were missing in the background samples, where species of Endeolophos, Acantholaimus and Desmoscolex were dominant. Species diversity generally decreased with sediment depth. A subsurface‐dwelling nematode community was observed in the siboglinid fields and the bare sediments. Background sediments showed a sharp decline with 18–20 species at 0–2 cm versus three species at 3–5 cm sediment depth. The trophic composition of the nematode fauna at the HMMV showed a prevalence of deposit feeders at almost all stations, whereas background sediments exhibited a uniform distribution of non‐selective and selective deposit feeders and epistrate feeders. The high percentage of deposit feeders inside the mud volcano could be related to the grain‐size distribution and the significantly higher bacterial biomass compared to the control sediments.  相似文献   

15.
Demersal fish communities were studied on the lower continental shelf and the upper continental slope along the Pacific coast of northeastern Japan. Species composition, number and weight of each species were examined based on otter trawl samples at 45 stations. Mean density and biomass of demersal fishes were 131 ha–1 and 21 kg ha–1, respectively. The ten most abundant species comprised of about 95% of total number and weight of overall catch indicating simple species composition. Gadiform fishesTheragra chalcogramma, Gadus macrocephalus andPhysiculus maximowiczi were the most important species by number, weight and frequency of occurrences, and three main community types represented by the three key species were recognized.Theragra-dominant community showed higher density and biomass, and lower diversity thanPhysiculus-dominant community did. Species diversity of demersal fish community was negatively correlated to density and biomass. Density and biomass of demersal fish community were high on the uppermost slope, and the high abundance resulted from low-diversity communities dominated byT. chalcogramma andG. macrocephalus.  相似文献   

16.
Although continental shelf and slope environments typically exhibit high epifaunal biomass and have been subjected to increasing fishing pressure, ecological information on assemblages of non‐commercial invertebrate species from subtidal and bathyal areas remains limited. Sea stars (Echinodermata: Asteroidea), which are known to influence communities through their feeding habits, have received less attention than structural taxa such as corals and sponges. To better understand the ecological roles of asteroids on continental shelves, we investigated ~30 species and assessed their distributions and co‐occurrence with other benthic invertebrates on the shelf and slope of Eastern Canada. Using fisheries data and in situ video footage, we compiled a large dataset covering ~600,000 km2 that included over 350,000 individual asteroid records (37–2243 m depth). Multivariate analyses revealed geographically distinct asteroid assemblages, with a maximal overall density at 400–500 m and the highest diversity at 500–700 m. The most abundant and densely occurring species was Ctenodiscus crispatus. We found that asteroids associate with corals, sponges, bivalves, and other echinoderms, and that depth and substrate influence these assemblages. We identified species likely to affect coexisting organisms by their burrowing behavior that can disrupt epi‐ and infauna (C. crispatus) and through predation on ecologically important corals (Hippasteria phrygiana). In addition to providing baseline distribution and ecological information for many bathyal asteroid species in the Northwest Atlantic, this work highlights the abundance and diversified roles of asteroids within continental shelf and slope ecosystems.  相似文献   

17.
Variation partitioning is an important tool to investigate the importance of spatial structure to species distribution in communities, but its use is lacking in marine ecosystems. The influence of rare species and the level of taxonomic resolution are important features to be considered when planning sampling designs and efforts for community studies. We tested the significance of spatial and environmental components to species distribution of a polychaete community, considering how the results varied among models with increasingly rare species (and contrasting metrics), and among models with distinct taxonomic levels. For all models evaluated, both spatial and environmental components significantly explained the structure of species distribution. However, spatial processes explained a higher percentage of variance than environmental ones in almost all models. The inclusion of rare species did not influence the outcome in most models, with the exception of a Chi‐square distance model with all species included. Family taxonomic level was sufficient to detect the relative contribution of both components, but the number of environmental variables included in the model was higher for the genus level. The influence of rare species was related to the metric applied to the analysis. If weight to rare species is not desirable, the use of a few dominant species coupled with the Hellinger function can provide a good surrogate to the whole sampled community in variation partition analysis. The genus level is suggested as an appropriate taxonomic level with which to evaluate the relevance of spatial and environmental components in polychaete community studies.  相似文献   

18.
Geomorphological features (derived from 16,000 lkm of echo‐sounding and bathymetric data) and deep‐seated tectonic structures of the continental margin off NW India are presented. The shelf break over the entire region occurs between 80 to 154 m water depth, and adjacent to Saurashtra and Bombay High the depth and orientation of the shelf edge show marked variations. The boundary of the slope is shallower in the northern portion (about 1450 m in the vicinity of the Indus) than in the southern region (2900 m off Bombay).

The steep slope off the Gulf of Kachchh has relatively smooth physiography due to higher input of fluvial sediment and burial of structures. The gentler slope off Saurashtra and the Bombay High area has numerous complex features, the most prominent among them being benches at depths of 180–230 m (width 2–10 km) and 650–780 m and a series of bathymetric highs and lows. Slope breaks are also observed between 400 and 600 m off Bombay and between 560 and 960 m off Saurashtra. These features are surface manifestations of the anticlinal features extending along the shelf in this region. Unevenness (order of 100–300 m) due to slumping is also observed at the base of the slope.

Based on the correlation between tectonic structures of this area and these subphysiographic features, extension of the Saurashtra Anticline onto the slope, a new strike slip fault (the southern boundary fault of Narmada graben) and an along‐shelf anticlinal structure off Saurashtra are delineated.  相似文献   

19.
Studying the diversity‐ecosystem function relationship in the deep sea is of primary importance in the face of biodiversity loss and for our understanding of how the deep sea functions. Results from the first study of diversity‐ecosystem function relationships in the deep sea (Danovaro et al. 2008; Current Biology, 18, 1–8) are unexpected and show an exponential relationship between deep‐sea nematode diversity and ecosystem function and efficiency, although this relationship appears largely restricted to relatively low diversities [ES(51) <25]. Here, we investigate the relationship between nematode diversity and several independent measures/proxies of ecosystem function (sediment community oxygen consumption, bacterial biomass, bacterial extracellular enzyme activity) and efficiency (ratio of bacterial/nematode carbon to organic C content of the sediment) on the New Zealand continental slope. Nematode diversity at our study sites was relatively high [ES(51) = 30–42], and there was no relationship between species/functional diversity and ecosystem function/efficiency after accounting for the effects of water depth and food availability. Our results are consistent with a breakdown of the exponential diversity‐function relationship at high levels of diversity, which may be due to increased competition or greater functional redundancy. Future studies need to take into account as many environmental factors and as wide a range of diversities as possible to provide further insights into the diversity‐ecosystem function relationship in the largest ecosystem on Earth.  相似文献   

20.
The deep‐sea floor is increasingly subject to anthropogenic impacts. Consequently, there are increasing efforts to develop appropriate management strategies. Species‐level indicators and assessments are hampered in the deep sea by the high proportion of unknown species routinely encountered. If environmental management is to keep pace with exploitation, alternative approaches including higher taxon surrogacy (taxonomic sufficiency) must be considered. Here we compare genus‐ and species‐level studies of the diversity and ecology of deep‐sea macrobenthos on the West Shetland Slope (NE Atlantic). This is an environmentally complex region that encompasses a biogeographic transition from temperate North Atlantic to Arctic conditions, and so may be particularly challenging for any general relationship between species‐ and genus‐level analyses. We ask two questions: (i) does genus diversity reflect species diversity and (ii) does genus‐level ecology reflect species‐level ecology? We conclude that among the West Shetland Slope macrobenthos: (i) genus‐level α‐ and β‐diversity measures are highly correlated with and good predictors of their species‐level equivalents and (ii) that their ecology is very well described by genus‐level data. We further note that, given the complexity of the West Shetland Slope environment, it may be reasonable to expect these conclusions to hold in other deep‐sea environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号