首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
A new high-resolution velocity model of the southern Kyushu-Palau Ridge(KPR) was derived from an activesource wide-angle seismic reflection/refraction profile. The result shows that the KPR crust can be divided into the upper crust with the P-wave velocity less than 6.1 m/s, and lower crust with P-wave velocity between 6.1 km/s and 7.2 km/s. The crustal thickness of the KPR reaches 12.0 km in the center, which gradually decreases to 5.0–6.0 km at sides. The velocity structure of the KPR is simil...  相似文献   

2.
The ultraslow-spreading Southwest Indian Ridge(SWIR) to the east of the Melville fracture zone is characterized by very low melt supply and intensive tectonic activity. Due to its weak thermal budget and extremely slow spreading rate, the easternmost SWIR was considered to be devoid of hydrothermal activity until the discovery of the inactive Mt. Jourdanne hydrothermal field(27°51′S, 63°56′E) in 1998. During the COMRA DY115-20 cruise in2009, two additional hydrothermal fields(i.e., the Tiancheng(27°51′S, 63°55′E) and Tianzuo(27°57′S, 63°32′E)fields) were discovered. Further detailed investigations of these two hydrothermal sites were conducted by Chinese manned submersible Jiaolong in 2014–2015. The Tiancheng filed can be characterized as a lowtemperature(up to 13.2°C) diffuse flow hydrothermal field, and is hosted by fractured basalts with hydrothermal fauna widespread on the seafloor. The Tianzuo hydrothermal field is an inactive sulfide field, which is hosted by ultramafic rocks and controlled by detachment fault. The discovery of the three hydrothermal fields around Segment #11 which receives more melt than the regional average, provided evidence for local enhanced magmatism providing heat source to drive hydrothermal circulation. We further imply that hydrothermal activity and sulfide deposits may be rather promising along the easternmost SWIR.  相似文献   

3.
The Moho interface provides critical evidence for crustal thickness and the mode of oceanic crust accretion. The seismic Moho interface has not been identified yet at the magma-rich segments (46°-52°E) of the ultra- slow spreading Southwestern Indian Ridge (SWIR). This paper firstly deduces the characteristics and do- mains of seismic phases based on a theoretical oceanic crust model. Then, topographic correction is carried out for the OBS record sections along Profile Y3Y4 using the latest OBS data acquired from the detailed 3D seismic survey at the SWIR in 2010. Seismic phases are identified and analyzed, especially for the reflected and refracted seismic phases from the Moho. A 2D crustal model is finally established using the ray tracing and travel-time simulation method. The presence of reflected seismic phases at Segment 28 shows that the crustal rocks have been separated from the mantle by cooling and the Moho interface has already formed at zero age. The 2D seismic velocity structure across the axis of Segment 28 indicates that detachment faults play a key role during the processes of asymmetric oceanic crust accretion.  相似文献   

4.
北冰洋Gakkel洋中脊的地幔熔融控制因素及非岩浆地壳增生   总被引:3,自引:0,他引:3  
Spreading rate is a primary factor of mantle melting and tectonic behavior of the global mid-ocean ridges. The spreading rate of the Gakkel ridge decreases gradually from west to east. However, the Gakkel ridge can be divided into four thick-and-thin zones with varying crustal thicknesses along ridge axis. This phenomenon indicates that mantle melting of the Gakkel ridge is not a simple function of spreading rate. Mantle temperature, water content,mantle composition, and other factors are important in crustal accretion processes. Based on gravity-derived crustal thickness and wet melting model, we estimate that the mantle potential temperatures of the four zones are1 270, 1 220, 1 280, and 1 280°C(assuming that mantle water content equals to global average value), with corresponding mantle water contents of 210, 0, 340, and 280 mg/kg(assuming that mantle potential temperature is 1 260°C), respectivly. The western thinned crust zone is best modeled with low mantle temperature, whereas the other zones are mainly controlled by the enhanced conduction caused by the slower spreading rate. Along the Gakkel ridge, the crustal thickness is consistent with rock samples types. Predominated serpentinized peridotite and basalt are found in the area with crustal thickness 1.5 km and 2.5 km, respectively. The rock samples are including from basalt to peridotite in the area with crustal thickness between 1.5 and 2.5 km. Based on this consistency, the traditional magmatic accretion zone accounted for only 44% and amagmatic accretion accounted for 29% of the Gakkel ridge. The amagmatic accretion is a significant characteristic of the ultra-slow spreading ridge.  相似文献   

5.
The morphotectonic features and their evolution of the central Southwest Indian Ridge (SWIR) are dis- cussed on the base of the high-resolution flfll-coverage bathyraetric data on the ridge between 49°-51°E. A comparative analysis of the topographic features of the axial and flank area indicates that the axial topogra- phy is alternated by the ridge and trough with en echelon pattern and evolved under a spatial-temporal mi- gration especially in 49°-50.17°E. It is probably due to the undulation at the top of the mantle asthenosphere, which is propagating with the mantle flow. From 50.17° to 50.7°E, is a topographical high terrain with a crust much thicker than the global average of the oceanic crust thickness. Its origin should be independent of the spreading mechanism of ultra-slow spreading ridges. The large numbers of volcanoes in this area indicate robust magmatic activity and may be related to the Crozet hot spot according to RMBA (residual mantle Bouguer anomaly). The different geomorphological feature between the north and south flanks of the ridge indicates an asymmetric spreading, and leading to the development of the OCC (oceanic core complex). The tectonic activity of the south frank is stronger than the north and is favorable to develop the OCC. The first found active hydrothermal vent in the SWIR at 37°47'S, 49°39'E is thought to be associated with the detach- ment fault related to the OCC.  相似文献   

6.
The 26th Chinese COMRA (China Ocean Mineral Resources Research & Development Association) cruise was an important cruise. The Carlsberg Ridge (CR) of the Northwest Indian Ocean and the North Atlantic Ridge (NAR), in which less investigation has been carried out for hydrothermal activities, were investigated and studied during the first two legs of the 26th COMRA cruise. During the first leg, we found one hydrothermal activity field located in the CR at 3.5 -3.8 N on the Northwest Indian Ocean Ridge (NWIR), and sampled seafloor polymetallic sulfide deposits where only abnormalities were found before. During the second leg, we found a new hydrothermal anomaly field located in the NAR at 4 -7 N. The discovery of two hydrothermal and anomaly fields filled in the gap of hydrothermal investigation and study in the corresponding regions for China.  相似文献   

7.
The orthogonal supersegment of the ultraslow-spreading Southwest Indian Ridge at 16°–25°E is characterized by significant along-axis variations of mantle potential temperature. A detailed analysis of multibeam bathymetry,gravity, and magnetic data were performed to investigate its variations in magma supply and crustal accretion process. The results revealed distinct across-axis variations of magma supply. Specifically, the regionally averaged crustal thickness reduced systematically from around 7 Ma to the present, indicating a regionally decreasing magma supply. The crustal structure is asymmetric in regional scale between the conjugate ridge flanks, with the faster-spreading southern flank showing thinner crust and greater degree of tectonic extension. Geodynamic models of mantle melting suggested that the observed variations in axial crustal thickness and major element geochemistry can be adequately explained by an eastward decrease in mantle potential temperature of about40°C beneath the ridge axis. In this work, a synthesized model was proposed to explain the axial variations of magma supply and ridge segmentation stabilities. The existence of large ridge-axis offsets may play important roles in controlling melt supply. Several large ridge-axis offsets in the eastern section(21°–25°E) caused sustained along-axis focusing of magma supply at the centers of eastern ridge segments, enabling quasi-stable segmentation. In contrast, the western section(16°–21°E), which lacks large ridge-axis offsets, is associated with unstable segmentation patterns.  相似文献   

8.
Large-scale detachment faults on mid-ocean ridges (MORs) provide a window into the deeper earth. They have megamullion on their corrugated surfaces, with exposed lower crustal and upper mantle rocks, rela- tively high residual Bouguer gravity anomaly and P-wave velocity, and are commonly associated with ocean- ic core complex. According to 30 detachment faults identified on MORs, we found that their distances to the axis mostly range from 5 to 50 km, half-spreading rates range from 6.8 to 17 mm/a, and activity time ranges from recent to 3 Ma. Most of the detachment faults are developed on the slow spreading Mid-Atlantic Ridge (MAR) and ultra-slow spreading Southwest Indian Ridge (SWIRl, with the dominant half-spreading rates of 7-13 mm/a, especially 10-13 mm/a. Furthermore, they mostly occur at the inside corner of one segment end and result in an asymmetric seafloor spreading. The detachment faults on MORs are mainly controlled by the tectonism and influenced by the magmatism. Long-lived detachment faults tend to be formed where the ridge magma supply is at a moderate level, although the tectonism is a first-order controlling factor. At the slow spreading ridges, detachment faults tend to occur where local magma supply is relatively low, whilst at the ultra-slow spreading ridges, they normally occur where local magma supply is relatively high. These faults are accompanied by hydrothermal activities, with their relationships being useful in the study of hydrothermal polymetallic sulfides and their origin.  相似文献   

9.
HY-2 A(Haiyang-2 A), launched in 2011, is the first ocean dynamic environment satellite of China and is equipped with a radar altimeter as one of the primary payloads. HY-2 A shifted the drift orbit in March 2016 and has been accumulating geodetic mission(GM) data for more than three years with 168-day cycle. In this paper, we present the preliminary gravity field inverted by the HY-2 A/GM data from March 2016 to December 2017 near Taiwan(21°–26°N, 119°–123°E). The gravity anomaly is computed by Inverse Vening Meinesz(IVM) formula with a onedimensional FFT method during remove-restore procedure with the EGM2008 gravity model as the reference field. For comparison, CryoSat-2 altimeter data are used to inverse the gravity field near Taiwan Island by the same method. Comparing with the gravity field derived from CryoSat-2, a good agreement between the two data sets is found. The global ocean gravity models and National Geophysical Data Center(NGDC) shipboard gravity data also are used to assess the performance of HY-2 A/GM data. The evaluations show that HY-2 A and CryoSat-2 are at the same level in terms of gravity field recovery and the HY-2 A/GM altimeter-derived gravity field has an accuracy of 2.922 mGal. Therefore, we can believe that HY-2 A will be a new reliable data source for marine gravity field inversion and has the potentiality to improve the accuracy and resolution of the global marine gravity field.  相似文献   

10.
Hydrothermal materials in deep-sea sediments provide a robust tracer to the localized hydrothermal activity at mid-ocean ridges. Major, trace and rare earth element(REE) data for surface sediments collected from the ultraslow spreading Southwest Indian Ridge are presented to examine the existence of hydrothermal component.Biogenic carbonate oozes dominate all the sediment samples, with CaO content varying from 85.5% to 89.9% on a volatile-free basis. The leaching residue of bulk sediments by ~5% HCl is compositionally comparable to the Upper Continental Crust(UCC) in SiO_2, Al_2O_3, CaO, MgO, alkali elements(Rb, Cs) and high field strength elements(Nb, Ta, Zr, Hf, Ti). These detritus-hosted elements are inferred to be prominently derived from the Australian continent by means of eolian dust, while the contribution of local volcaniclastics is insignificant. In addition, the residual fraction shows a clear enrichment in Fe, Mn, and Ba compared with the UCC. Combining the positive Eu anomaly of residual fraction which is opposed to the UCC but the characteristic of hydrothermal fluids and associated precipitates occurred at mid-ocean ridges, the incorporation of localized hydrothermal component can be constrained. REE mixing calculations indicate that more than half REE within the residual fraction(~55%–60%) are derived from a hydrothermal component, which is inferred to be resulted from a diffuse fluid mineralization. The low-temperature diffuse flow may be widely distributed along the slow-ultraslow spreading ridges where crustal faults and fissures abound, and probably have a great mineralization potential.  相似文献   

11.
As a supplementary study, we used passive seismic data recorded by one ocean bottom seismometer (OBS) station (49°41.8′E) close to a hydrothermal vent (49°39′E) at the Southwest Indian Ridge to invert the crustal structure and mantle transition zone (MTZ) thickness by P-to-S receiver functions to investigate previous active seismic tomographic crustal models and determine the influence of the deep mantle thermal anomaly on seafloor hydrothermal venting at an ultra-slow spreading ridge. The new passive seismic S-wave model shows that the crust has a low velocity layer (2.6 km/s) from 4.0 to 6.0 km below the sea floor, which is interpreted as partial melting. We suggest that the Moho discontinuity at ~9.0 km is the bottom of a layer (2–3 km thick); the Moho (at depth of ~6–7 km), defined by active seismic P-wave models, is interpreted as a serpentinized front. The velocity spectrum stacking plot made from passive seismic data shows that the 410 discontinuity is depressed by ~15 km, the 660 discontinuity is elevated by ~18 km, and a positive thermal anomaly between 182 and 237 K is inferred.  相似文献   

12.
Gravity measurements in the South Atlantic Ocean over Burdwood Bank show a large negative gravity anomaly extending along its northern edge. An interpretation of the gravity data has been made based on the seismic refraction measurements of Ludwig et al. (1968) and shows that the negative gravity anomaly can be largely attributed to a basin containing low density sediments about 8 km thick. The crustal sections constructed also indicate that the crust increases in thickness from about 20 km under Burdwood Bank to about 30 km under the Falkland Islands platform.  相似文献   

13.
A combined ocean bottom seismometer, multichannel seismic reflection and gravity study has been carried out along the spreading direction of the Knipovich Ridge over a topographic high that defines a segment center. The youngest parts of the crust in the immediate vicinity of the ridge reveal fractured Oceanic Layer 2 and thermally expanded and possibly serpentinized Oceanic Layer 3. The mature part of the crust has normal thickness and seismic velocities with no significant crustal thickness and seismic velocity variations. Mature Oceanic Layer 2 is in addition broken into several rotated fault blocks. Comparison with a profile acquired ~40 km north of the segment center reveals significant differences. Along this profile, reported earlier, periods of slower spreading led to generation of thin crust with a high P-wave velocity (Vp), composed of a mixture of gabbro and serpentinized mantle, while periods of faster spreading led to generation of more normal gabbroic crust. For the profile across the segment center no clear relation exists between spreading rate and crustal thickness and seismic velocity. In this study we have found that higher magmatism may lead to generation of oceanic crust with normal thickness even at ultra-slow spreading rates.  相似文献   

14.
The potential hydrothermal systems unexplored in the Southwest Indian Ocean   总被引:1,自引:0,他引:1  
Deep-sea hydrothermal vents possess complex ecosystems and abundant metallic mineral deposits valuable to human being. On-axial vents along tectonic plate boundaries have achieved prominent results and obtained huge resources, while nearly 90% of the global mid-ocean ridge and the majority of the off-axial vents buried by thick oceanic sediments within plates remain as relatively undiscovered domains. Based on previous detailed investigations, hydrothermal vents have been mapped along five sections along the Southwest Indian Ridge (SWIR) with different bathymetry, spreading rates, and gravity features, two at the western end (10°–16°E Section B and 16°–25°E Section C) and three at the eastern end (49°–52°E Section D, 52°–61°E Section E and 61°–70°E Section F). Hydrothermal vents along the Sections B, C, E and F with thin oceanic crust are hosted by ultramafic rocks under tectonic-controlled magmatic-starved settings, and hydrothermal vents along the Section D are associated with exceed magmatism. Limited coverage of investigations is provided along the 35°–47°E SWIR (between Marion and Indomed fracture zones) and a lot of research has been done around the Bouvet Island, while no hydrothermal vents has been reported. Analyzing bathymetry, gravity and geochemical data, magmatism settings are favourable for the occurrence of hydrothermal systems along these two sections. An off-axial hydrothermal system in the southern flank of the SWIR that exhibits ultra-thin oceanic crust associated with an oceanic continental transition is postulated to exist along the 100-Ma slow-spreading isochron in the Enderby Basin. A discrete, denser enriched or less depleted mantle beneath the Antarctic Plate is an alternative explanation for the large scale thin oceanic crust concentrated on the southern flank of the SWIR.  相似文献   

15.
Duanqiao hydrothermal field is located between the Indomed and Gallieni fracture zones at the central volcano, at 50°28′E in the ultraslow-spreading Southwest Indian Ridge (SWIR). Twenty-eight subsamples from a relict chimney and massive sulfides were dated using the 230Th/238U method. Four main episodes of hydrothermal activity were determined according to the restricted results: 68.9–84.3, 43.9–48.4, 25.3–34.8, and 0.7–17.3 kyrs. Hydrothermal activity of Duanqiao probably started about 84.3 (±0.5) kyrs ago and ceased about 0.737 (±0.023) kyrs ago. The periodic character of hydrothermal activity may be related to the heat source provided by the interaction of local magmatism and tectonism. The estimated mean growth rate of the sulfide chimney is <0.02 mm/yr. This study is the first to estimate the growth rate of chimneys in the SWIR. The maximum age of the relict chimney in Duanqiao hydrothermal filed is close to that of the chimneys from Mt. Jourdanne (70 kyrs). The hydrothermal activity in Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. The massive sulfides are younger than the sulfides from other hydrothermal fields such as Rainbow, Sonne and Ashadze-2. The preliminarily estimated reserves of sulfide ores of Duanqiao are approximately 0.5–2.9 million tons.  相似文献   

16.
深入研究珠江口地区海陆过渡带壳内低速层的结构和构造特征对于理解板内地震的发震机理、孕震构造及该区域的地壳结构具有重要的地质地球物理意义。利用2015年珠江口区域海陆地震联测L2-ME测线上的19个地震台站(包括陆上台站14台, 海底地震仪5台)记录到的地震数据来探明该区域低速层的结构和构造特征。在常规震相的基础上, 加入了大量的滑行波震相(Ph)进行结构模型计算, Ph震相的增加使得地壳内部10~20km范围内的射线覆盖密度有了显著提高, 从而获得了L2-ME测线下方更为精确的地壳纵波速度结构模型。结果发现, 模型中测线下方13~18km深度范围内稳定连续展布的壳内低速层被清晰成像, 其内部速度稳定在5.7~6.0 km·s-1之间, 与上下层界面速度差分别为0.5km·s-1、0.4km·s-1, 低速特征明显。该低速层厚度由陆侧的3.5km左右降至海侧的1km, 呈现出向海侧逐渐减薄的趋势, 低速层底界面起伏变化较大且具有与莫霍面相似的起伏特征。  相似文献   

17.
About 16,000 km of multichannel seismic (MCS), gravity and magnetic data and 28 sonobuoys were acquired in the Riiser-Larsen Sea Basin and across the Gunnerus and Astrid Ridges, to study their crustal structure. The study area has contrasting basement morphologies and crustal thicknesses. The crust ranges in thickness from about 35 km under the Riiser-Larsen Sea shelf, 26–28 km under the Gunnerus Ridge, 12–17 km under the Astrid Ridge, and 9.5–10 km under the deep-water basin. A 50-km-wide block with increased density and magnetization is modeled from potential field data in the upper crust of the inshore zone and is interpreted as associated with emplacement of mafic intrusions into the continental margin of the southern Riiser-Larsen Sea. In addition to previously mapped seafloor spreading magnetic anomalies in the western Riiser-Larsen Sea, a linear succession from M2 to M16 is identified in the eastern Riiser-Larsen Sea. In the southwestern Riiser-Larsen Sea, a symmetric succession from M24B to 24n with the central anomaly M23 is recognized. This succession is obliquely truncated by younger lineation M22–M22n. It is proposed that seafloor spreading stopped at about M23 time and reoriented to the M22 opening direction. The seismic stratigraphy model of the Riiser-Larsen Sea includes five reflecting horizons that bound six seismic units. Ages of seismic units are determined from onlap geometry to magnetically dated oceanic basement and from tracing horizons to other parts of the southern Indian Ocean. The seaward edge of stretched and attenuated continental crust in the southern Riiser-Larsen Sea and the landward edge of unequivocal oceanic crust are mapped based on structural and geophysical characteristics. In the eastern Riiser-Larsen Sea the boundary between oceanic and stretched continental crust is better defined and is interpreted as a strike-slip fault lying along a sheared margin.  相似文献   

18.
This study presents the results of a seismic refraction experiment that was carried out off Dronning Maud Land (East Antarctica) along the Explora Escarpment (14° W–12° W) and close to Astrid Ridge (6°E). Oceanic crust of about 10 km thickness is observed northwest of the Explora Escarpment. Stretched continental crust, observed southeast of the escarpment, is most likely intruded by volcanic material at all crustal levels. Seismic velocities of 7.0–7.4 km/s are modelled for the lower crust. The northern boundary of this high velocity body coincides approximately with the Explora Escarpment. The upper crystalline crust is overlain by a 4-km thick and 70-km wide wedge of volcanic material: the Explora Wedge. Seismic velocities for the oceanic crust north of the Explora Escarpment are in good agreement with global studies. The oceanic crust in the region of the Lazarev Sea is also up to 10-km thick. The lower crystalline crust shows seismic velocities of up to 7.4 km/s. This, together with the larger crustal thickness might point to higher mantle temperatures during the formation of the oceanic crust. The more southerly rifted continental crust is up to 25-km thick, and also has seismic velocities of 7.4 km/s in the lower crystalline crust. This section is interpreted to consist of stretched continental crust, which is heavily intruded by volcanic material up to approximately 8-km depth. Multichannel seismic data indicate that, in this region, two volcanic wedges are present. The wedges are interpreted to have evolved during different time/rift periods. The wedges have a total width of at least 180 km in the Lazarev Sea. Our results support previous findings that the continental margin off Dronning Maud Land between ≈2°E and ≈13°E had a complex and long-lived rift history. Both continental margins can be classified as rifted volcanic continental margins that were formed during break-up of Gondwana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号