首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
天然气水合物主要赋存于低温高压下的海底沉积物层中,当周围环境的温度或者压力发生变化时,其稳定性会受到破坏,诱发坍塌、海底滑坡等地质灾害,对钻井平台、海底电缆等造成巨大破坏。结合南海北部海底陆坡的实际地震资料,首先获得了符合实际情况的储层属性参数,然后基于改进的地质力学模型,获得了相应的力学模型参数,利用孔隙压力平衡方程计算得到地层的有效应力,对天然气水合物分解诱因的海底滑坡的数值模拟,基于强度折减法讨论分析了初始水合物分解量、水合物分解总量等因素引起的水合物储层变化的力学响应,获得了对应的安全系数,实现了水合物分解对海底边坡稳定性影响的分析,为今后水合物开采过程中可能诱发边坡失稳的程度及失稳位置分布预测提供了指导和帮助。  相似文献   

2.
天然气水合物作为一种新型能源,已经逐渐引起人们的重视。赋存于海底沉积物中的天然气水合物虽然本身作为亚稳定胶结物对海底有建造作用,但是由于其对特定温度和压力条件的严格依赖,海底温压条件的改变会引起其分解,从而使海底沉积物失稳甚至导致海底滑坡。本研究系统介绍了近年来国内外针对天然气水合物合成、物理性质及对海底稳定性影响进行...  相似文献   

3.
在有覆盖层的海洋天然气水合物开采过程中,由于水合物分解引起上部地层应力重新分布可能导致上部地层蠕变、坍塌、滑坡、套管变形及井口安全等事故.以海洋天然气水合物沉积层具有覆盖地层为例,利用静力学理论建立了采用控压法开采海洋天然气水合物时上部地层物性参数、井筒压力及天然气水合物分解后地层剩余支撑力之间的力学稳定性模型.从理论上讲:当K>1时,上部地层稳定;当K<1时,上部地层失稳.该力学模型可对海洋天然气水合物开采井设计及安全开采具有一定的借鉴意义.  相似文献   

4.
海底温度和海平面变化可以引起海底天然气水合物分解,导致沉积物孔隙内形成超压,改变沉积物有效应力从而触发海底滑坡。本文建立了与此相关的海底滑坡产生的数值模型,并应用于东北太平洋Cascadia陆缘14~9 kaBP期间发生的Orca滑坡形成过程研究。模拟结果显示在最近18 ka海平面逐渐上升的大背景下,18~14 kaBP期间底水温度升高引起其后的天然气水合物稳定带底界快速上移,并在13.7 kaBP达到1.18 m/ka的高底界上移速率,此时Orca地区稳定带底界粗颗粒层内的高饱和度天然气水合物发生分解,产生114 kPa的流体超压,使地层安全系数显著小于1,触发海底滑坡。因此,海底温度升高引起高饱和度天然气水合物分解可能是东北太平洋Cascadia陆缘Orca海底滑坡的主要触发因素。  相似文献   

5.
海底滑坡与天然气水合物之间的相互关系   总被引:1,自引:0,他引:1  
海底滑坡是具有巨大危害作用的海洋地质灾害之一,近来发现其与海底天然气水合物的分解有重大的关系。详细分析了天然气水合物的形成和分解对海底沉积物的影响;提出了4种自然因素引起水合物分解,导致海底滑坡的观点;列举了国内外滑坡研究的具体事例;从另外一方面讲,海底滑坡对寻找天然气水合物又具有重要的指示作用。  相似文献   

6.
天然气水合物目前已经成为世界范围的一个研究热点,而我国的天然气水合物研究起步则相对较晚,通过阅读国内外有关文献,总结了天然气水合物在海底的分布特征,聚集和形成机制,产状及其形成机理,甲烷羽的形成过程,天然气水合物在沉积物中的聚集位置通常有两种情况:一是较浅的沉积物(海底以下几米)中,受控于泥底辟,泥火山,断层等;二是较深的沉积物(海底以下几十米,甚至更深)中,受控于流体,当断层延伸至海底时,通常在水合物聚集处的上部发现甲烷羽,天然气以溶解气,游离气或分子扩散的形式运移,在温,压适宜的沉积物中,即水合物稳定带内聚集并形成水合物,水合物的形成过程是:最初形成晶体,呈分散状分布于沉积物中,之后逐渐聚集,生长成结核状,层状,最后形成块状,在细粒的浅层沉积物中,通常以较慢的速度生长,形成分散状的水合物;而在粗粒沉积物中,水合物通常呈填隙状,并且这种产状可能位于较深层位中,我国南海在温度,压力,构造条件,天然气来源等方面都能满足天然气水合物的形成条件,并且在南海也发现了一些水合物存在的标志,如似海底反射层(BSR)以及孔隙水中氯离子浓度的降低。因此,天然气水合物在我国南海海域可能有很好的前景。  相似文献   

7.
冲绳海槽天然气水合物与地质构造的关系   总被引:7,自引:0,他引:7  
海底天然气水合物大多与通过切穿沉积盖层的断裂的上升烃类流体相关,这些高渗透带包括底辟和泥火山等侵入构造,所以海底断裂、底辟和泥火山等构造周围可能赋存天然气水合物;其次,高沉积速率和巨厚沉积层可使有机质迅速掩埋而保存起来,为天然气水合物的生成提供充足物源,因此,邻近陆坡河谷口的海底沉积扇也是天然气水合物赋存的有利地区;另外,由于陆坡区的水合物沉积层比海盆更容易受外界温压变化的影响发生失稳分解,诱发海底滑坡,所以滑坡与天然气水合物赋存之间的关系也非常密切。冲绳海槽邻近海域具有覆水深、沉积厚度大、沉积速率高和有机质丰富等有利赋存条件,目前的研究已经在该海域发现了天然气水合物赋存的地球物理证据BSR,因此,在现有研究基础上开展断裂、泥火山、海底扇、海底滑坡等与天然气水合物相关的构造研究,可以深入了解天然气水合物在不同地质构造中的分布特征与演化,为更精确地评估其资源潜力提供参考。  相似文献   

8.
海底边坡失稳会给人类造成巨大危害,部分海底边坡失稳案例被证实与水合物分解有关。由于海底条件的复杂性,人们很难直接观察水合物分解引起的海底边坡失稳过程。数值模拟可以相对准确地预测水合物分解可能引起的海底边坡失稳状况。通过选用基于ABAQUS软件的有限元强度折减法,模拟海底边坡失稳的过程并得到相应结果,分析了水合物分解程度、水合物带上覆厚度、边坡角度等因素对海底边坡稳定性的影响。结果表明,正常情况下,塑性区首先在坡脚区域出现并逐渐向上发展至坡顶;当水合物分解达到一定程度后,塑性区首先出现在水合物带,随后自水合物带向上发展至坡顶,并和随后在坡脚出现的塑性区形成贯通边坡的塑性带。水合物埋藏越深,越有可能造成大规模的滑坡;边坡角度高于15°时,水合物分解会急剧促进边坡失稳。  相似文献   

9.
水合物开采可能诱发海底滑坡或其他工程地质灾害。实现水合物商业化开采需要中长期稳定产气,长期荷载下储层的蠕变特性是地层稳定性评价的基础力学参数。利用南海水合物储层粉黏土为试验介质在压缩加载条件下的系列固结排水蠕变测量试验结果,对粉黏土的蠕变特性进行了分析。结果表明,加载过程中,含水合物沉积物经历瞬时变形、固结变形和蠕变变形3个阶段;随着加载应力和水合物饱和度的提高,蠕变应变不断增加;修正的Singh-Mitchell蠕变模型可以较好预测不同应力水平和水合物饱和度下粉黏土的蠕变特性。  相似文献   

10.
海洋天然气水合物开采方法及产量分析   总被引:2,自引:0,他引:2  
海洋天然气水合物的巨大储量刺激了世界各国能源部门努力研究如何从天然气水合物储层生产天然气。根据水合物形成的条件,只有当水合物处在其相平衡条件以外,水合物才能分解。因此,水合物的开采方法只能为热熔法、抑制剂刺激法、减压法和地面分解法。为了对天然气水合物储层中气体的生产有个定量的评估,本文以水合物开采井为例,运用数学方法推导了水合物井中气体的产生量。结果表明,在天然气水合物储层中,天然气释放量是井内水合物分解温度、压力及水合物层气体渗透性的敏感函数。该函数可以用于天然气水合物井气体开采量的计算及对水合物储层可开采性评价。  相似文献   

11.
天然气水合物被誉为洁净的潜在能源.海洋天然气水合物约占水合物总量的99%,绝大部分海洋水合物没有良好的覆盖层,不能用开采传统油气资源的方法进行开采.分析了利用海底采矿技术开采海底浅层水合物的方法,设计出水合物采矿车开采量与高压水泵输送的水力输送设备参数.根据水合物分解热及输送量,建立水合物输送系统与分解速度之间的理论关...  相似文献   

12.
海底天然气渗漏系统水合物成藏过程及控制因素   总被引:16,自引:0,他引:16  
在海底天然气渗漏系统沉淀水合物的动力学基础上,建立了水合物沉淀与分解的化学动力学模型。应用该模型分析了美国墨西哥湾布什山天然气渗漏系统水合物的成藏过程,探讨了水合物沉淀、稳定性影响因素。在渗漏通量为每年400kg·m-2的单个通道中,约需425a才能导致水合物稳定带沉积层约30%孔隙完全被水合物充填,渗漏通道被堵塞,沉淀的水合物在剖面上从稳定带底部向海底趋于富C3+C4。在渗漏通道天然气流量由弱到强再到弱的演化过程中,渗漏速度增大过程中形成的水合物在渗漏速度减小过程中将分解,总量约10%的水合物将被分解。如果分解产生的天然气可快速迁移出渗漏系统,海底温度的升高可引起约40%的水合物在20d内分解,并导致海底渗漏速度的急剧增大。  相似文献   

13.
海底管道是天然气水合物大规模开采和集输的关键装备。天然气水合物的开采过程会扰动沉积层的结构,改变沉积层的强度和力学特性,诱发海床发生不均匀沉降,并对水合物开采区内海底管道的力学特性产生影响,如引起管道发生大变形、悬跨、屈曲、断裂等。基于ABAQUS有限元软件,建立天然气水合物开采区内“海床-管道”耦合作用模型,模拟了天然气水合物开采过程中海床沉降变形及其对管道应力、应变、弯矩、悬跨等力学行为的影响。研究结果表明,在天然气水合物开采过程中,海床的不均匀沉降将引起管道发生显著位移并发生弯曲,管道的应力、应变随着变形的增大而增大。当海床沉降量达到某一程度时,管道将脱离海床,产生悬跨,并引发涡激振动风险。  相似文献   

14.
针对南海神狐海区含天然气水合物的高孔隙度、以粉砂质黏土为主的未固结的深水沉积地层,采用Lee提出的改进的Biot-Gassmann(BGTL)模型,利用纵波速度数据估算了A井天然气水合物的饱和度。BGTL模型假设非固结沉积地层的横波速度与纵波速度比与地层骨架的横波速度与纵波速度比与地层孔隙度有关。模型中参数的选择与天然气水合物在沉积物中的赋存方式、沉积物的矿物组成、地层压差、孔隙度及微观孔隙结构等参数密切相关。A井中天然气水合物在沉积物中赋存模式接近于颗粒骨架支撑模式。根据岩心分析资料将A井的矿物骨架简化为黏土矿物、碳酸盐、陆源碎屑3类,根据各矿物组分的理论弹性参数和体积百分比可以计算得到地层骨架的弹性模量和密度。应用BGTL理论估算得到的A井天然气水合物主要赋存于海底以下195~220mbsf井段,饱和度多数为20%~40%,最大饱和度为47%左右,与实测结果吻合。  相似文献   

15.
为了研究天然气水合物降压开采过程的储层应力及其稳定性,运用线性多孔弹性力学和岩石力学知识,考虑水合物储层原始应力、孔隙压力、渗流附加应力及降压开采水合物过程中水合物饱和度的变化,建立了降压开采天然气水合物储层的力学模型,结合墨西哥湾某处水合物藏的基本参数,对降压开采水合物储层应力变化和开采过程的储层稳定性进行研究。结果表明:井底压力是影响水合物储层应力变化的关键因素之一;渗流附加应力在一定程度上减小了储层的应力;水合物分解储层应力发生变化,储层应力在井壁处的波动最大,井壁处是整个储层所受轴向偏应力最大的位置,因此井壁处是优先发生剪切破坏的位置;为了储层的稳定性,降压开采水合物生产压差应小于2.19 MPa。  相似文献   

16.
近年的研究表明南海北部陆坡区发育有底辟构造、海底滑坡以及活动断层带等有利于天然气水合物形成的地质构造环境.受深部地幔上隆的影响,南海整个海区热流背景值偏高,地热资源十分丰富,由此提出了利用地热加热海水,用热激发法分解天然气水合物的设想,并设计了初步的生产工艺.用传统热激发方法开采天然气水合物藏本身需要消耗大量能源,而且...  相似文献   

17.
<正>天然气水合物是一种由天然气和水形成的类似冰状的固体物质,主要赋存于低温高压背景下的海底沉积物和陆地永久冻土地带(颜文涛,2006)。自20世纪7 0年代海洋油气勘探过程中在海底一定深度发现天然气水合物稳定层并采集到实物样品以来,社会对它的关注程度便日益提高。海底滑坡是一种会造成重大破坏性后果的海洋地质灾害之一。近些年来研究人员不断发现,海底天然气水合物的分解导致海底岩层稳定性降低,这是  相似文献   

18.
天然气水合物是一种赋存在低温,高压条件下海底沉积物中的规模巨大的新型能源,研究表明,地球化学是识别海底天然气水合物赋存的一种有效方法。国际上通过分析由大洋钻探采上来的柱状沉积物和孔隙水的地球化学异常,已建立了一套较为成熟的地球化学识别方法。但是,在没有钻井岩心的情况下,如何通过浅表层(<20m)沉积物和孔隙水及底层海水的地球化学分析来识别海底可能存在的天然气水合物,是国际国内天然气水合物勘查中面临的一道难题,通过对国际上已有数据和资料的全面总结,尝试提出了一系列在海底浅层条件下识别天然气水合物赋存的地球异常标志,包括底层海水的烃类气体及其同位素组成异常,沉积物有机碳和水的含量异常,沉积物中孔隙水的元素和同位素组成异常,沉积物中气体含量异常及沉积物中自生碳酸盐矿物的化学和同位素组成异常等。这些标志的建立将有助于在我国海域开展天然气水合物的勘查工作。  相似文献   

19.
南海陆坡天然气水合物饱和度估计   总被引:5,自引:0,他引:5  
基于双相介质理论和热弹性理论,建立了沉积层纵波速度与天然气水合物饱和度、弹性性质及地层孔隙度之间的关系。通过对比饱和水的理论P波速度与实际P波速度,可以得到天然气水合物饱和度。根据ODP184航次的电阻率、声波速度、密度等测井资料以及地质资料,初步推断南海陆坡存在天然气水合物。根据声波测井的纵波速度估算出南海1146和1148井天然气水合物饱和度分别为孔隙空间的25%~30%和10%~20%,1148井个别沉积层天然气水合物饱和度可达40%~50%。沉积层的纵波速度与饱和水速度差值越大,天然气水合物饱和度越高。  相似文献   

20.
沉积物中天然气水合物合成及开采模拟实验研究   总被引:2,自引:0,他引:2  
基于自行研发的天然气水合物模拟开采实验装置,进行了电加热法和减压法2种开采技术的实验研究.实验材料采用粒径为0.18~0.25 mm的自然砂,0.03%的十二烷基硫酸钠(SDS)水溶液和高纯甲烷,每次实验都分为水合物合成和开采两个阶段.实验结果表明:水合物首先在沉积物体系上层与外侧生成,然后在体系内部逐渐生成.在电加热法开采过程中,可分为初始分解、沉积物体系升温、大量分解3个阶段,加热点的位置、热量传递方向和速率决定着沉积物中水合物的分解位置和速率,该方法能量利用率较低.在减压法开采过程中,水合物分解速度先快后慢,设置的分解压力越低,分解速度越快.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号