首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
基于参与第六次耦合模式比较计划(CMIP6)的8个地球系统耦合模式所输出的历史模拟结果,本文通过与观测对比,评估了CMIP6模式对东南印度洋亚南极模态水的模拟能力,并预估了在中等强迫情景和高强迫情景下,该模态水潜沉率、体积及性质的变化趋势。结果表明:与Argo观测相比,CMIP6模式中南印度洋混合层偏深且上层海洋的位势密度偏小,因此其模拟的东南印度洋亚南极模态水潜沉率偏大而位势密度偏小。不同CMIP6模式之间模拟的东南印度洋亚南极模态水潜沉区存在差异,混合层侧向输入是导致这一差异的主要原因。此外,在历史模拟和两种情景试验中,东南印度洋亚南极模态水均呈现出潜沉率和体积减小、温度升高、盐度和密度降低的趋势。其中,在高强迫情景下,变化趋势最大,中等强迫情景次之,历史模拟中的变化趋势最小。这表明,辐射强迫越强,东南印度洋海表温度升高和淡水输入增加的趋势越大,导致混合层变浅及其南北梯度减小的趋势越快,东南印度洋亚南极模态水潜沉率、体积和性质变化的趋势也随之增大。  相似文献   

2.
北太平洋副热带潜沉率及其变化中海面风的作用   总被引:1,自引:0,他引:1  
采用中国科学院大气物理研究所的高分辨率逐日风场驱动的全球海洋模式(LICOM1·0)对北太平洋海域的潜沉(Subduction)过程和副热带模态水形成区潜沉率的年际变化进行了数值模拟,并将模拟结果与同化的海洋模式资料(SODA)进行了比较。研究结果表明,该高分辨率的海洋模式对北太平洋的绝大部分海域晚冬混合层底水质点的运动方向和路径的数值模拟结果较好,模式模拟的副热带环流比SODA资料中的副热带环流流速强;模式模拟的混合层深度比SODA资料中的混合层深度深,更接近观测;模式中副热带海域的潜沉率大于SODA资料中的副热带海域的潜沉率。模式结果表明,副热带环流和副极地环流交界处是潜沉过程发生的最主要区,该区气候平均的潜沉率超过100m/a,最大为150m/a,海面风变异引起的海洋平流的年际和年代际变化,是该区潜沉率发生年际和年代际变化的主要原因;在太平洋副热带东部模态水形成区,气候平均的潜沉率超过50m/a,在该区潜沉率的年际变化中,局地风应力旋度决定的Ekman抽吸要比海洋平流效应更加重要。  相似文献   

3.
根据Huang和Qiu 1995年的潜沉率计算公式,采用同化的海洋模式资料和海洋-大气界面的通量观测资料,计算了北太平洋副热带海域3个模态水形成区逐年的潜沉率,研究了潜沉率产生年际变化的机制.研究结果表明:西部、中部和东部3个模态水形成区潜沉率的年际变化主要周期分别为6,2~5和2 a;北太平洋副热带模态水的3个形成区的潜沉率都发现年代际的变化特征:在1985年以前,西部模态水形成区的潜沉率年际变化最为显著,但1985后年际变化振幅明显减小;在中部模态水形成区,1975~1992年间潜沉率随时间的变化的振幅较大,潜沉率在这段时间内的平均值也达到33.99 m/a,而在1970~1975年间和1993~1998年间潜沉率都小于20 m/a;西部副热带模态水形成区的潜沉率的年际变化与这里海面的净热通量的年际变化有很好的相关性,中部副热带模态水形成区潜沉率的年际变化则取决于局地Ekman流的年际变化,而在东部模态水形成区局地风应力旋度的变化直接影响潜沉率的大小.  相似文献   

4.
王艺珊  夏瑞彬 《海洋学报》2022,44(10):35-48
本文利用第五次国际耦合模式比较计划(CMIP5)中的地球系统模式(ESM2M),结合Argo观测数据和由Ishii等整理的再分析数据集,分析现在气候背景和辐射强迫极端增强下副热带东北太平洋海域(10°~40°N,110°~160°W)混合层深度(MLD)和潜沉率的季节变化特征,研究其对全球变暖的响应。在现在气候背景下,二者最大值均出现在冬季。潜沉率的主要贡献项存在显著的季节变化差异,1?5月主要受侧向潜沉率的变化控制,6?12月则由风应力旋度导致的埃克曼抽吸速度变化主控。全球变暖后,季节循环信号的主控要素不变。但受风应力旋度等要素变化的影响,各季节的MLD减小,大值区范围收缩。由于冬季减小幅度远大于夏季,MLD季节波动幅度(振幅)显著变小。长期看,MLD呈现持续变浅的趋势,其空间不均匀性减弱引起的MLD锋面减弱是控制侧向潜沉率减弱,最终导致总潜沉率减弱的关键。由于埃克曼抽吸速度的季节变化信号对全球变暖的响应较小,因此总潜沉率在冬季受全球变暖的影响最为强烈。上述结果表明,构成潜沉率的两个关键要素对总潜沉率的贡献比例是随着季节变化而改变的:冬季MLD锋面强盛时期,侧向潜沉率的影响将显著增强。全球变暖前后二者截然不同的变化会显著改变潜沉率的季节循环振幅,可能对该区域模态水的形成和输运产生深远的影响。  相似文献   

5.
在位于澳大利亚的东海岸29°S附近的“Tasman”海洋锋面延伸区,从WOCE的PR11断面的观测中发现南太平洋副热带模态水的存在。在深度1500~2500Pa,南太平洋副热带模态水的温度范围为16.5℃~19.5℃,且温度梯度〈1.6℃/100m;密度范围为25.4~26.0kg·m^3,且位势涡度的梯度〈2×10^10^-1·s^-1。和北太平洋及北大西洋中的副热带模态水的形成过程一样,南太平洋副热带模态水由于南半球冬天失热引起的强烈的深混合而形成,与此同时,如浮标资料所示,深层的冷水会卷加进入混合层中。冬天南太平洋副热带模态水的形成过程中,局地的海洋涡旋起到了重要的作用。并且影响南太平洋副热带模态水第二年的分布型。在南太平洋模态水形成区,冬天深(浅)的混合层伴随着下降(上升)的温跃层与局地的反气旋(气旋)式得海洋涡旋有直接的关系。在反气旋存在的海域往往可以发现生成的副热带模态水的厚度〉50m且主温跃层的深度也要超过4500Pa。  相似文献   

6.
使用一个全球海洋环流模式的18 a(1993~2010 年)数据, 对北太平洋副热带中部模态水(CMW)潜沉区混合层内热收支的空间分布状况及其季节和年际变率特征进行了分析, 并重点讨论了热收支与太平洋年代际震荡(PDO)之间的相互关联。结果表明, CMW 潜沉区的热收支是海表热力强迫与海洋动力过程之间的平衡。其中混合作用, 特别是湍流扩散是海洋动力过程的主要分量, 对该海区混合层内部的热量耗散起到关键的作用。该海区的热收支具有显著的季节变化信号, 在春夏季与秋冬季存在明显的差异。热收支的年际变化与PDO 的超前滞后相关性分析表明, 该海区的混合层温度(MLT)具有显著的PDO 信号, 同时 PDO 与 MLT 两者随时间的变化信号( ?[P]/?t 与?[T]/?t )之间也有强相关性。?[P]/?t与海表热力强迫项(SEF)显著的相关性表明, SEF 可能会对PDO信号的产生及变化过程产生重要的影响;?[P]/?t 与夹卷项的高相关性则间接证明潜沉的 CMW 的温度存在 PDO 信号; 作为海洋动力过程的主体, 扩散项和平流项均会对PDO 信号变化做出滞后响应。本研究增进了对CMW 潜沉区混合层内海水温度变化特征的认识。  相似文献   

7.
为了揭示南极海冰年际变化的机制,利用南极海冰边缘区密集度和海面风资料,选择南极海冰边缘区海冰密集度年际变化较大的5个海区进行统计分析.研究表明:南半球冬季在这5个海区海冰密集度年际变化与南侧西风的年际变化有较密切的关系,南半球冬季南极海冰边缘区南侧西风形成向北的Ekman输运对海冰边缘区的海冰密集度有重要的影响,这种影响在南太平洋和南大西洋比在南印度洋东部更明显.  相似文献   

8.
利用世界大洋环流实验的南大洋观测温度、盐度和溶解氧资料,分析并说明了南印度洋绕极深层水的性质和空间分布特征,比较了30°E,90°E和145°E断面上温度、盐度和溶解氧的垂直分布及其异同,着重指出,在南印度洋的这3个不同经度断面上,绕极深层水和锋面的不同特征与南极绕极流越洋输运和南印度洋绕极深层水的经向运动有着密切的关系。实际上,绕极流的越洋输运是南大西洋与南印度洋之间以及南印度洋与南太平洋之间水交换的主要动力因素,对形成绕极深层水的物理性质的空间分布有着重要的作用。  相似文献   

9.
北太平洋副热带模态水形成区混合层热动力过程诊断分析   总被引:2,自引:0,他引:2  
利用NCEP海洋数据和COADS海气通量资料,通过诊断分析,揭示了海表热力强迫、垂直夹卷、埃克曼平流和地转平流效应在北太平洋副热带模态水形成过程中的贡献。研究表明,在北太平洋副热带3个模态水形成海域冬季混合层降温过程中,海表热力强迫和垂直夹卷效应是主导因素,二者的相对贡献分别约为67%和19%(西部模态水)、53%和21%(中部模态水)、65%和30%(东部模态水);并且在东部模态水形成海域,埃克曼平流和地转平流皆是暖平流效应,而在西部和中部模态水形成海域,仅有地转平流是暖平流效应。进一步的分析表明,海洋平流(地转平流、埃克曼平流)对北太平洋副热带模态水形成海域秋、冬季混合层温度的年际、年代际异常有显著影响,在西部模态水形成海域,海表热力强迫(62%)和地转平流(32%)是导致混合层温度年际、年代际变化的主要因子;在中部模态水形成海域,混合层温度的年际、年代际变化是埃克曼平流(32%)、地转平流(30%)和海表热力强迫(25%)共同作用的结果;相对而言,东部模态水形成海域混合层温度的年际、年代际异常主要受海表热力强迫(67%)控制。  相似文献   

10.
关键海区潜沉率对全球变暖停滞的可能影响   总被引:1,自引:0,他引:1  
本文从潜沉率入手,探究了潜沉率在全球变暖停滞过程中可能发挥的作用。本文利用SODA资料首先分析了全球潜沉率的时空分布特征,然后基于EOF分解明确了北大西洋翻转流区域和南极绕极流区域是潜沉率变率较大的两个海区,在此基础上选出了4个关键海区研究了局地潜沉率变化与全球海表温度异常之间的相关关系,最后对关键区潜沉率变化的原因进行了初步探索。结果表明,北大西洋翻转流和南极绕极流范围内的关键区域与全球变暖停滞之间存在超前10年的相关关系,潜沉过程可能是北大西洋翻转流和南极绕极流对全球变暖停滞产生作用的一种机制。平流项在这些关键区域的潜沉率变化中起主导作用。在南极绕极流地区,海面风应力的大小与该区域的潜沉变化密切相关。  相似文献   

11.
南印度洋SST与南亚季风环流年代际变化的研究   总被引:2,自引:0,他引:2  
利用美国NCEP全球大气再分析资料和JONES全球海表面温度异常(SSTA)资料,分析了南印度洋SSTA和南亚季风环流年代际变化的特征。研究发现,无论是南印度洋副热带海水辐合区的SST还是赤道以北非洲西海岸附近上升运动海区的SST的长期变化趋势,除了准3-5年的变化以外,还存在着明显的年代际的变化。对于全球最显著南亚季风环流的分析表明,南亚季风环流也存在明显的年代际时间尺度的变化。与南太平洋SST的年代际变化相比,南印度洋SST的变化周期要相对短一些。通过分析南半球冷空气年代际活动的特征发现,冷空气与南印度洋SST年代际时间尺度的变化具有密切的联系。  相似文献   

12.
The fronts and water masses in the Antarctic Circumpolar Current (ACC) are examined with a streamfunction projection of historical hydrographic data. The study shows that only structural criterion provides circumpolarly consistent and time-invariant definition for ACC fronts. The Polar Front position varies little in the streamfunction space, but the Subantarctic Front exhibits significant meridional deflection. Two types of the Antarctic Intermediate Water (AAIW) are identified: the Pacific-Atlantic type represents the recently-formed AAIW through the along-isopycnal subduction of polar surface waters; the Indian–Australian type represents relatively old AAIW which is strongly modified by the Agulhas water. The Subantarctic Mode Water (SAMW) is located in the South Pacific and south of Australia. There is evidence that the SAMW in the southeast Pacific originates from polar surface waters. Therefore the eastward freshening and cooling of SAMW is ascribed to influences from the south.  相似文献   

13.
利用环日本岛沿岸38个验潮站连续36 a的实测水位资料,分析了环日本岛沿岸平均海平面的长期变化特征,结果表明平均海平面的异常变化在1984年前后发生较大转折,近20多年来主要呈现持续上升趋势,部分站位在1997年前后也有较明显的下降趋势,表明海平面的长期变化中存在较长周期的波动情况。通过对所有验潮站的日平均海平面序列进行平均,发现与西北太平洋SST异常变化呈正相关,相关系数为0.908;与太平洋年代际变化(PDO)指数呈负相关,相关系数为-0.6;与西北太平洋风旋度场的异常变化呈正相关,相关系数为0.402。结果表明环日本岛沿岸平均海平面的长期变化受到海水热膨胀效应、太平洋年代际变化以及风应力引起的海水堆积和流失等因素的影响。同时,发现从2000年开始西北太平洋的SST开始下降,而平均海平面仍然在持续上升,其上升原因还需作进一步研究与探讨。  相似文献   

14.
Variations of water properties in surface and intermediate layers along 32°S in the southern Indian Ocean were examined using a 50-year (1960–2010) time series reproduced from historical hydrographic and Argo data by using optimum interpolation. Salinity in the 26.7–27.3σθ density layer decreased significantly over the whole section, at a maximum rate of 0.02 decade−1 at 26.8–26.9σθ, for the 50-year average. Three deoxygenating cores were identified east of 75°E, and the increasing rate of apparent oxygen utilization in the most prominent core (26.9–27.0σθ) exceeded 0.05 ml l−1 decade−1. The pycnostad core of Subantarctic Mode Water (SAMW) and the salinity minimum of Antarctic Intermediate Water shifted slightly toward the lighter layers. Comparisons with trans-Indian Ocean survey data from 1936 suggest that the tendencies found in the time series began before 1960. Interestingly, cores of many prominent trends were located just offshore of Australia at 26.7–27.0σθ, which is in the SAMW density range. Spectrum analysis revealed that two oscillation components with time scales of about 40 and 10 years were dominant in the subsurface layers. Our results are fairly consistent with, and thus support, the oceanic responses in the southern Indian Ocean to anthropogenic climate change predicted by model studies.  相似文献   

15.
热带印度洋上层水温的年循环特征   总被引:1,自引:0,他引:1  
通过分析多年气候月平均的Levitus水温资料,结合多年气候月平均海表面风场资料以及观测的热带印度洋上层海流的分布状况,探讨热带印度洋上层水温的时空分布特征,剖析了热带印度洋混合层深度及印度洋暖水的季节变化规律。分析表明:热带印度洋的海表面温度低值区始终位于大洋的南部,而高值区呈现明显的季节变化,冬季位于赤道附近,在夏季则处于大洋的东北部;在热带印度洋的中西部、赤道偏南海域的次表层终年存在一冷心结构;热带印度洋表面风场的季节变化是影响该海域混合层深度季节性变化的主要因素;印度洋暖水在冬、春季范围较大,与西太平洋暖池相连,而在夏、秋季范围较小,并与西太平洋暖池分开。  相似文献   

16.
An attempt to the approximate figures of seasonal distribution of solar energy reached to and penetrated in the water of the oceans, as a preliminary step to the estimation of primary production in the oceans from the optical point, was performed in the Indian Ocean, North Pacific Ocean and Antarctic Ocean on the same lines in the part III. In consequence, the total amount of solar energy for the year in each depth showed marked differences in each zone of the oceans as illustrated in Fig. 5. By way of example, it could be said that underwater solar energy already came to 33.4 Kg·cal/cm2·year in 10 m deep in the equator of Indian Ocean and was 54% of that, in the Kuroshio region of the North Pacific Ocean, 44% in the Sub-Antarctic zone, 13% in the Antarctic zone and 6% in the Antarctic Convergence zone, respectively. Besides, on the assumption that a lower limit of the photic zone is marked by the depth here underwater surface solar energy is reduced to 1% or 5g·cal/cm2·day, the ratio of the total photic zone for the year in unit area of sea surface was approximately 100∶80∶60∶25 or 100∶75∶50∶20 in the equator of the Indian Ocean, Kuroshio region, Sub-Antarctic zone, and Antarctic and Antarctic Convergence zones, respectively.  相似文献   

17.
1Introduction TheIndianCentralWater (ICW) ,formedandsubductedintheSubtropicalConvergenceintheSouthIndianOcean ,occupiesasignificantportionofthethermoclineintheIndianOcean[1,2 ]  (Fig .1 ) .TheSubantarcticModeWater(SAMW)isformedinthe 2 6.5-2 7.1σθrangenorthoftheSub antarcticFront—thesouthernboundaryofthesubtropicalgyres[3]  .InthesoutheastIndianO cean ,theSAMWisthethickest,ventilatedasathicklayerofhighoxygenextendingtothetropicalIndianOcean[4 ,5 ]  . Watermasstransformation…  相似文献   

18.
北冰洋西伯利亚陆架海是北极气候快速变化最为显著的海域之一,而沉积硅藻作为极地海洋生态系统的重要组成部分,对环境变化具有敏感的响应。对楚科奇海、东西伯利亚海和拉普捷夫海表层沉积物开展了硅藻组成鉴定,利用典型对应分析方法分析了硅藻属种与1986~2015年环境变量之间的关系。结果表明,夏季和秋季海冰密集度、表层海水盐度是影响研究区表层硅藻分布特征最主要的因素。此外,根据表层站位与环境变量的典型对应分析,可将西伯利亚极地海域划分为4个区域,分别为海冰硅藻组合带、暖水硅藻组合带、沿岸硅藻组合带和混合硅藻组合带。这些表层站位的分区与相应区域的海流模式有明显的相关性,海冰硅藻组合带仅分布于研究区北部的高纬度地区;暖水硅藻组合带位于受白令水和太平洋海水的分支——阿拉斯加沿岸水影响为主的区域;拉普捷夫海南部的沿岸硅藻组合带则受到河流径流和西伯利亚沿岸流的强烈影响;混合硅藻组合带受极地冷水、海冰覆盖、太平洋暖水和陆地径流的共同影响。  相似文献   

19.
南海南部NS93-5柱样揭示的晚第四纪以来的古海洋学特征   总被引:3,自引:0,他引:3  
由南海南部海区NS93 - 5柱样的浮游有孔虫氧同位素地层学和浮游有孔虫分析结果获得的古环境参数 ,揭示了距今 1 90ka以来南部海区受西太平洋热带水的影响 ,以及南沙海区表层水和苏禄海变性水的变化历史 ;在末次盛冰期碳酸盐含量较低 ,但是碳酸盐含量的最低值出现在氧同位素 4期 ;表层水体的含氧量呈现为间冰期大于冰期 ,而古生产力的变化则为冰期大于间冰期 ;依据氧同位素和浮游有孔虫特征分析结果 ,建立了南部海区距今 1 90ka以来的古气候演变序列。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号