首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过钻探,在珠江口盆地东部海域获取了天然气水合物实物样品,在5个取心站位目标层段进行了保压取心,获取了水合物岩心释放气样品,同时在13个层段获取了水合物分解气体样品。钻探取心的5个站位都在航次现场选择层段制备了顶空气样品。所有气体均进行了气体组成与同位素分析,结果表明:水合物气体组成以甲烷占绝对优势,甲烷含量96.5%~99.8%;乙烷含量极少,为(175~554)×10~(-6),未检测出C_(2+)以上烃类气体。水合物气体甲烷碳-氢同位素分析测试结果表明,δ~(13)C_(1 )为-68.4‰~-71.2‰,δDC_1为-182‰~-184‰,据此判识水合物气体成因类型为生物成因气。水合物气源成因类型与水合物产出形态没有直接关系,多种产出类型的水合物可能与储层发育及形态特征有密切联系。主要气源位于1000m以内的浅地层中,主要以侧向运移方式运移至稳定域有利部位形成水合物。  相似文献   

2.
按照天然气水合物形成的气体疏导方式划分,渗漏系统是海洋浅表层天然气水合物藏形成的主要模式。关键成藏要素包括温压场、气源等,温压场主要控制天然气水合物成藏的平面分布和纵向分布;海底热流低值区有利于形成天然气水合物,但在海底热流超高的海域,只要有充足的气源供给,在高甲烷通量区深海浅表层也可以形成天然气水合物藏,而且往往与泥火山、气烟囱等特殊地质体伴生,形成致密的数米厚层状天然气水合物藏。浅表层天然气水合物藏气源主要是有机热解成因气,一般其深部均发育有成熟的含油气盆地,有烃源层广泛分布,并且干酪根发生过明确的生烃过程,形成的热解甲烷气通过断层、气烟囱等破碎带垂向运移通道渗漏上升,在温压场控制的相平衡区形成天然气水合物藏,因此,海底热流值较高的海盆也是浅表层天然气水合物藏形成的有利海域。  相似文献   

3.
SH-CL13、SH-CL16与SH-CL17站位位于南海北部神狐东南海域BSR发育区内。地球化学分析结果显示,SH-CL16与SH-CL17柱状样孔隙水中的氯离子(Cl~-)浓度及氢同位素(δD)值分别随深度明显降低和升高,指示下伏沉积物可能发育水合物。3个站位的浅表层沉积物甲烷通量很低,甲烷通量的大小控制了SMI的深浅和硫酸盐通量。孔隙水SO_4~(2-)浓度变化趋势及δ~(13)C_(DIC)值表明,在浅表层沉积物中硫酸盐消耗均由有机质硫酸盐还原作用(OSR)所控制,甲烷缺氧氧化作用(AOM)发生在较深的层位。综合地球化学和地球物理研究成果,3个站位位于水合物有利发育区内,由此推测神狐东南海域可能发育扩散型水合物,具有良好的水合物勘探前景。  相似文献   

4.
冷泉碳酸盐岩是指示南海北部可能发育天然气水合物的重要证据之一。对在西沙海槽采集到的冷泉碳酸盐结壳颗粒进行了形貌、稳定同位素等的研究,讨论和揭示了冷泉碳酸盐结壳的形成机理及其与甲烷冷泉活动的关系。结果表明,碳酸盐结壳具有多孔结构,冷泉矿物为文石和重晶石,文石呈针状,含量为39.5%—46.6%,重晶石呈矮柱状,含量为15.6%—21.2%,它们均是从流体中沉淀出来的。重晶石的δ34S值为23.47‰—26.32‰,表明硫同位素发生正漂移,属于与冷泉流体有关的成岩成因重晶石。文石的碳同位素轻度亏损,δ13C值为-13.30‰—-29.59‰,主要来源于热解成因气,但结合了少量正常海水的溶解碳,δ18O值为2.32‰—3.74‰,指示碳酸盐结壳形成时的温度为3.5—9.7℃。研究表明,碳酸盐结壳形成于流体活动缓慢的环境,是深部富含Ba2 的甲烷冷泉流体向上排放和喷溢,在近海底遇到向下渗漏的富含SO42-海水,发生缺氧甲烷氧化反应沉淀出文石,流体中剩余的重34S的SO42-与Ba2 形成重晶石,因此,碳酸盐结壳是西沙海槽存在甲烷冷泉活动的证据。研究结果为进一步开展该海域潜在天然气水合物的调查和研究提供了新证据。  相似文献   

5.
为了探讨马克兰增生楔海陆泥火山气源成因及其差异,对取自陆上钱达戈普(Chandargup)泥火山口的5个水样进行了气体组分及其碳、氢同位素测试。结果显示,陆上泥火山中的气体组分主要为CH_4和CO_2,其CH_4碳同位素平均值为-42‰,属热解成因气。对比分析马克兰增生楔海陆沉积地层、断裂分布、地温梯度、有机质含量等资料,认为海域与泥火山有关的生物成因气主要来自于浅表层的Hinglaj-Ormara组泥岩,而陆域热解成因气主要来自深部的Hoshab组页岩或者更深处泥页岩,推测马克兰增生楔陆域深部地层有一定的油气资源潜力。  相似文献   

6.
对南海北部陆坡东沙海域、神狐海域及西沙海槽甲烷渗漏环境和无甲烷渗漏环境87个浅表层沉积物中的底栖有孔虫Uvigerinaspp.进行碳同位素分析研究,结果表明,东沙海域δ13C值为-0.52‰~-5.68‰,平均值为-1.41‰,出现明显的负偏移;神狐海域δ13C值介于-0.36‰~-1.10‰,平均值为-0.75‰,未见明显的δ13C值负偏移;西沙海槽δ13C值介于-0.01%~-0.89‰,平均值为-0.45‰;对Uvigerinaspp.碳同位素组成与沉积物有机碳(TOC)、甲烷(CH4)间的关系进行探讨,发现δ13C负偏移主要出现在甲烷渗漏环境,发生在末次盛冰期,与溶解无机碳负偏移以及沉积物全样的δ13C值负偏移层位相吻合,有可能作为富甲烷环境的替代指标。  相似文献   

7.
探测发现南海白云凹陷东侧存在一个宽1 500m、深达75m的巨型麻坑,在麻坑内采集了大量的碳酸盐岩结核。大部分结核中存在新鲜孔洞和流体通道。本文从中选取了5块结核,进行XRD衍射、扫描电镜、碳氧同位素分析。结果表明,5个结核中碳酸盐矿物主要是含铁白云石,其中一个还有少量方解石,碎屑矿物主要是石英和长石。结核的显微结构以纤维状为主,存在裂隙和孔洞。δ~(13)C值为-24.7‰~-10.9‰V-PDB,显示孔隙流体主要以热成因甲烷为主。δ~(18)O值为5.6‰~6.9‰V-PDB,高值主要与天然气水合物分解有关。巨型麻坑海底之下最可能存在天然气水合物埋藏。含铁白云石结核在麻坑表层沉积物之下形成,随后出露海底。碳酸盐岩结核指示巨型麻坑内曾发生的甲烷渗漏活动可能与深部油气泄露有关,浅地层剖面中疑似气体羽和结核表面管状蠕虫活体都显示巨型麻坑仍在发生甲烷渗漏。  相似文献   

8.
硫酸盐-甲烷转换带(SMTZ)是海洋富甲烷沉积环境中重要的生物地球化学分带,其内发生的甲烷厌氧氧化反应(AOM)通常能影响多种自生矿物(碳酸盐类、黄铁矿、重晶石和石膏等)的形成过程。本文选取南海东北部天然气水合物赋存区GMGS2-16站位的58个沉积物样品,对其中发育的自生矿物进行了类型、含量、分布、显微形貌和稳定同位素研究。GMGS2-16站位岩心沉积物中主要发育碳酸盐类、黄铁矿和石膏3类自生矿物,亦发现单质硫颗粒的存在。自生矿物含量分布变化较大,存在多个富集层位。自生碳酸盐类均为块状,具极负的δ~(13 )C值(-37.3‰~-51.7‰VPDB)和较重的δ~(18 )O值(3.13‰~4.95‰VPDB),指示其为甲烷碳源,即AOM成因。自生黄铁矿主要呈不规则块状、棒状-管状和生物充填状,δ~(34 )S值变化范围为-41.7‰~27.1‰VCDT,其中δ~(34)S值异常正偏很可能与大量甲烷流体上涌至SMTZ内加强AOM反应有关。多层AOM成因的自生碳酸盐类与δ~(34)S值异常的自生黄铁矿产出层位基本吻合,共同指示了研究站位曾发生过多期次甲烷渗漏事件,可能与研究站位天然气水合物藏失稳存在一定联系。自生石膏主要呈棱柱状和透镜状,偶见黄铁矿-石膏共生体,初步推测自生石膏可能与水合物形成过程中的排离子效应和(或)沉积环境氧化还原条件改变导致的黄铁矿氧化有关。因此,海洋沉积物中碳酸盐类-黄铁矿-石膏自生矿物组合对探讨古海洋甲烷渗漏事件和天然气水合物藏的演化具有重要指示意义。  相似文献   

9.
孙萍 《海洋地质前沿》2008,24(11):41-43
贝尔加湖首次发现气体水合物是1997年贝加尔钻探计划(BDP)在盆地南部海底深度121m和161m处,气体成分主要是甲烷,8δC值范围为-68.2‰~-57.6‰,表明这些气体水合物是微生物成因的。最近,在盆地南部的Malenky泥火山和盆地中部的Kukuy K-2地区海底发现气体水合物,这些站点位于抬升地形带上,并且具有流体溢出口特征。  相似文献   

10.
海洋区域蕴藏了丰富的天然气水合物资源,是地球上巨大的碳储库之一。当海洋环境发生变化时,部分水合物会分解释放出大量天然气,其向上运移过程中会发生厌氧或好氧氧化反应,从而减少由海洋向大气的碳排放量,起到消耗截流的作用。本文选取含烷烃好氧氧化菌的海底沉积物进行了水合物分解气的微生物好氧降解模拟实验,实验中用混合气(C_1+C_2+C_3)来模拟多组分水合物分解气。实验结果显示,在微生物作用下烃类混合气发生好氧氧化降解反应至消耗殆尽,反应优先顺序为C_1C_2C_3,降解速率C_1C_2C_3。且随着烃类组分含量的减少,其碳氢同位素组成发生了微生物降解分馏效应,并呈现出不同程度的富集趋势。C_1、C_2和C_3的碳同位素富集变化量分别为71.05‰、12.03‰和4.61‰,碳同位素分馏系数(εC)的平均值分别为-11.219‰、-2.951‰和-1.539‰;氢同位素富集变化量分别为368.64‰、156.00‰和111.97‰,氢同位素分馏系数(εH)的平均值分别为-56.092‰、-99.696‰和-73.303‰。可见,三者的碳位素富集程度C_1C_2C_3,而氢同位素富集程度C_2C_3C_1。此外,水合物分解气在微生物降解过程中气体成分组成及碳氢同位素特征发生了改变,对判别气体成因起到一定的干扰作用,因此,利用分解溢出气体样品进行气体溯源时需要适当考虑这一影响因素。  相似文献   

11.
在天然气水合物发育区海底沉积物中甲烷厌氧氧化作用(AOM)是碳循环的重要组成部分。通过定量计算表层沉积物中甲烷迁移转化通量,可以更准确评估甲烷来源碳对沉积物碳库和海洋深部碳库影响。本文利用反应―运移模型对采集于南海神狐水合物发育区两个站位(SH-W19-PC、SH-W23-PC)采集的孔隙水SO_4~(2-)、溶解无机碳(DIC)、Ca~(2+)剖面进行拟合,同时对DIC碳同位素进行分析,确定近海底沉积物中的碳循环。研究显示两个站位孔隙水中SO_4~(2-)和Ca~(2+)浓度在剖面上随深度呈线性减少,DIC浓度随深度逐渐增加,其δ~(13)C_(DIC)值随深度逐渐降低至约-25‰,表明两个站位存在一定程度的AOM。模拟计算两个站位沉积物孔隙水溶解甲烷向上的通量分别为25.9和18.4 mmol·m~(-2) a~(-1),AOM作用产生的DIC分别占其总DIC量的70.7%和60%。由沉积物向海水中释放的DIC通量占DIC汇的约60%。因此,在天然气水合物发育区向海底渗漏甲烷大部分以DIC的形式进入上覆海水,这些具有极负碳同位素值的甲烷来源的DIC可能对局部深海碳库产生一定的影响。  相似文献   

12.
随着深海调查研究的不断深入,发现大洋基性和超基性岩与水相互作用可发生蛇纹岩化作用产生无机成因甲烷等烃类气体,可能在大洋区海底形成水合物。为评估大洋蛇纹岩化无机成因甲烷水合物生成热力学条件及水合物稳定带分布特征,本文利用实测的原位温度、水深等条件,结合甲烷水合物-水-游离气三相平衡温压条件,计算了马里亚纳弧前蛇纹岩泥火山、北大西洋Fram海峡超慢速扩张脊和Lost City慢速扩张脊3个不同地质构造环境的蛇纹岩化发育的大洋区海底环境甲烷水合物稳定带底界,并对其水合物发育潜力进行了评估。研究表明马里亚纳弧前蛇纹岩泥火山和北大西洋Fram海峡超慢速扩张脊满足天然气水合物发育的热力学条件,可能发育有甲烷水合物,相应的水合物稳定带底界深度分别约为858~2 515和153~232 mbsf。大西洋Lost City喷口附近发育甲烷水合物可能性较小。  相似文献   

13.
为了探讨日本海天然气水合物的气源成因及其控制因素,收集和整理了日本海西南郁陵盆地和日本海东缘上越盆地及邻近的相关资料。结果显示,上越盆地及邻近海域甲烷羽状流、麻坑、自生碳酸盐岩及地震剖面上"气烟囱"和BSR等发育,块状水合物出露海底为热解成因;郁陵盆地羽状流不太发育,而自生碳酸盐岩和地震剖面上的"气烟囱"较发育,钻孔发现的水合物主要为生物成因。结合日本海构造演化特征综合分析认为,日本海东缘热解成因水合物的主控因素是近S—N向和近E—W向交互断裂作用以及NE—SW向的晚期构造挤压;日本海西南海域生物成因为主兼热解成因水合物的主控因素是NEE—SWW向的晚期构造挤压;而日本海西北海域构造定型早且缺少晚期构造挤压,因此,推测其水合物气源应该主要为生物成因,热成因的可能性很小。  相似文献   

14.
介绍了国外在布莱克海隆(包括ODP164航次994、995、997站位)进行天然气水合物勘查过程中应用稳定同位素的研究实例;通过对这3个站位样品的甲烷、CO2、DIC(dissolved inorganic carbon)、有机碳以及自生碳酸盐的δ^13C分析,指出浅部(0-30m)甲烷和DIC的δ^13C值随深度迅速降低又迅速升高的变化可以作为天然气水合物存在的地球化学指标。994站位孔隙水δ^18O值深度从0.30‰下降到-0.37‰;氢同位素δD随深度略有下降(从11‰到-12‰),这与水合物形成时氢氧重同位素相对富集于固相有关,表明天然气水合物的存在。997站位δ^37Cl从海底沉积物表层以下30m处为接近海水的最大值0,至钻孔底746.85m处降为-3.68‰,可能也与天然气水合物的形成有关。  相似文献   

15.
冲绳海槽浮岩中碳、氢同位素组成特征   总被引:4,自引:1,他引:3  
利用分阶段热解释放气体质谱分析法研究了冲绳海槽浮岩热解释放气中CO2和H2O的碳、氢同位素组成,结果显示:浮岩中原生CO2和H2O主要释放于400~1 000℃,CO2的碳同位素组成介于-6.7×10-3~-22.7×10-3,H2O的氢同位素组成从-45×10-3变到-71×10-3,均落入幔源火山岩的变化范围,而且浮岩的氢同位素组成与海槽区玄武岩的氢同位素组成非常接近,这表明冲绳海槽浮岩与玄武岩之间具有密切的成因联系,浮岩岩浆和玄武岩岩浆是同源岩浆不同程度结晶分异的产物.另外,这些浮岩较洋中脊玄武岩要贫13C,并富集D,同时具有从洋中脊玄武岩向岛弧玄武岩变化的趋势,这表明浮岩岩浆在形成或上升过程中可能受到俯冲板块释放流体的影响.  相似文献   

16.
西沙海槽潜在天然气水合物成因及形成地质模式   总被引:10,自引:0,他引:10  
西沙海槽具备良好的热解成因气及断层通道、深部异常压力等运移条件,分析海底表层沉积物所含甲烷气来源可以很好地指示潜在天然气水合物成因.西沙海槽海底表层沉积物所含甲烷气以热解成因气为主,可能混有少量生物成因气.表层沉积物所含甲烷气为断层渗逸-自由扩散作用双重运移结果,主要有3种来源:(1)直接来自于下部断层通道中气态烃的释放;(2)来自于动态变化的水合物分解,再由渗滤作用或沿浅部微小断层向上运移;(3)来自于原地少量的生物气.不同地区有不同的气体来源,这是海底表层沉积物甲烷高值区与下部断层相关性较大而与BSR区域并非完全一致的原因.甲烷气来源及运聚条件综合分析表明,潜在天然气水合物以热解成因为主,为断层-渗滤综合地质模式.  相似文献   

17.
琼东南盆地气烟囱构造特点及其与天然气水合物的关系   总被引:5,自引:1,他引:4  
气烟囱是由于天然气(或流体)垂向运移在地震剖面上形成的异常反射,是气藏超压、构造低应力和泥页岩封隔层综合作用而形成。气烟囱在形成过程中携带大量富含甲烷气的流体向上运移到天然气水合物稳定带,其形成之后仍可作为后期活动的油气向上运移的特殊通道。在中中新世后,气烟囱是琼东南盆地气体向上运移的通道。地震识别出的似海底反射(BSR)分布区存在大量的气烟囱构造,通过速度、泥岩含量、流体势等属性参数及钻井资料,判断该烟囱构造为有机成因的泥底辟型烟囱构造。  相似文献   

18.
白云石成因一直是地学中尚未解决的难题,海底冷泉系统中发育的原生白云石为解决白云石成因问题提供了新途径。台湾甲仙白云仙谷早上新世盐水坑组页岩地层中发育有冷泉白云岩,其流体来源和沉积环境并不清楚。本文通过矿物学和岩石学,结合碳氧同位素、微量和稀土元素地球化学,探索该冷泉白云岩的流体特征和形成环境,为解决白云石成因提供参考。白云仙谷冷泉白云岩以烟囱状或透镜状产出于页岩中,碳酸盐矿物均为泥微晶白云石,含量为61.4%~88.0%。冷泉白云岩的δ13C为-27.08‰~-10.58‰,指示形成白云石的碳源可能是热成因甲烷和海水的混合。Ni/Co均值为12.54,稀土元素配分模式呈中稀土富集、无Ce异常,均表明冷泉白云岩形成于弱还原的沉积环境。在弱还原环境中的冷泉微生物的作用下,促进了HCO3-的增加和SO42-的消耗,可能有利于冷泉白云石的形成。  相似文献   

19.
本文采用元素分析、镜下观察、红外光谱、扫描电镜和热解分析等技术,分析了冲绳海槽柱状样中腐植酸、富里酸和干酪根的化学、物理特征,并探讨了它们之间的成因关系和干酪根类型。沉积物的产烃能力甚差,每吨沉积物仅能生成0.49~1.18kg烃类物质。  相似文献   

20.
西太平洋典型弧后盆地的地质构造、岩浆作用与热液活动   总被引:2,自引:0,他引:2  
研究了西太平洋典型弧后盆地冲绳海槽和马努斯海盆的区域地质背景、岩浆岩、喷口流体、热液柱、沉积物以及多金属硫化物。结果表明,冲绳海槽在构造和地球物理特征上南北分异,从北向南地壳厚度减薄,南部重力异常变化大,发育条带状磁异常,中部则具有最高的热流值。马努斯海盆的重力异常变化较小,磁力异常呈东西向展布,海底扩张中心附近出现磁异常条带。马努斯海盆已出现洋壳,冲绳海槽的地壳属于过渡性地壳,在中南部的地堑中可能已出现洋壳。 冲绳海槽与马努斯海盆玄武岩的岩浆是由地幔源区部分熔融产生的原始岩浆与板块俯冲组分混合构成。中酸性岩与基性岩具有相同的岩浆物质来源,是玄武质岩浆结晶分异的产物。与马努斯海盆火山岩相比,冲绳海槽火山岩存在不同程度的地壳混染。 冲绳海槽的喷口流体为富含金属元素(Mn、Fe、Zn、Pb)的酸性高温(高达320 °C)流体,其热液柱中的Zn2 、Cd2 、Pb2 、Cu2 离子浓度明显高于正常海水。马努斯海盆的热液柱呈现出CH4、Mn、Al、δ3He正异常及pH负异常的特征。与马努斯海盆PACMANUS热液区的喷口流体(220–276 °C、pH = 2.5–3.5)相比,DESMOS热液区的喷口流体温度(≥88–120 °C)相对较低,酸性更强(pH ≤ 2.1),二者较低的δ34SH2S和δD值表明岩浆演化过程中有酸性挥发分进入岩浆流体。冲绳海槽与马努斯海盆含金属沉积物的分布及其元素含量特征具有差异,相应地,两个弧后盆地含金属沉积物中的微生物群落也不同。冲绳海槽和马努斯海盆热液区均具富Zn型、Ba-Pb-Zn型、Si-硫化物型和Si-硫化物-硫酸盐型热液产物。与冲绳海槽的多金属硫化物相比,马努斯海盆中多金属硫化物的Pb和Au含量较低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号