首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 472 毫秒
1.
Diagenetic analysis based on field and petrographic observations, isotope and microthermometric data was used to reconstruct the fluid flow history of the Cretaceous shallow water limestones from the Panormide platform exposed in north-central Sicily. Analysis focused on diagenetic products in cavities and dissolution enlarged fractures of the karstified limestones that occur just below a regional unconformity. The fluid flow history could be broken down into five stages that were linked to the kinematic and burial history of the region. (1) Petrography (zoned cathodoluminescence and speleothem textures) and stable isotopes (6.5 < δ18OV-PDB < ?3.5‰ and 0 < δ13CV-PDB < ?14‰) indicate that the earliest calcite phase was associated with karstification during emergence of the platform. Limestone dissolution at this stage is important with regard to possible reservoir creation in the Panormide palaeogeographic domain. (2) Fine-grained micrite sedimentation, dated as latest Cretaceous by nannopalaeontology and its 87Sr/86Sr isotope ratio (0.7078), marks replacement by marine fluids during subsequent submergence of the karstified platform. (3) The following calcite cement was still precipitated by marine-derived fluids (?7.0 < δ18OV-PDB < ?5.0‰ and ?3.0 < δ13CV-PDB < 0.5‰/Tm = ?2 to ?5 °C), but at increasingly higher temperatures (Th = 60–120 °C). This has been interpreted as precipitation during Oligocene foredeep burial. (4) Hot (Th = 130–180 °C), low saline (Tm < ?2.5 °C) fluids with increasingly higher calculated δ18OSMOW signatures (+6 to +14‰) subsequently invaded the karst system. These fluids most likely migrated during fold and thrust belt development. The low salinity and relatively high δ18OSMOW signatures of the fluids are interpreted to be the result of clay dewatering reactions. The presence of bitumen and associated fluorite with hydrocarbon inclusions at this stage in the paragenesis constrains the timing of oil migration in the region. (5) Finally, high saline fluids with elevated 87Sr/86Sr (0.7095–0.7105) signatures invaded the karst system. This last fluid flow event was possibly coeval with localized dolomitization and calcite cementation along high-angle faults of Pliocene age, as suggested by identical radiogenic signatures of these diagenetic products.  相似文献   

2.
Below the sill depth (at about 2400 m) of the Alpha-Mendeleyev ridge complex, the waters of the Canada Basin (CB) of the Arctic Ocean are isolated, with a 14C isolation age of about 500 yr. The potential temperature θ decreases with depth to a minimum θm≈−0.524°C near 2400 m, increases with depth through an approximately 300 m thick transition layer to θh≈−0.514°C, and then remains uniform from about 2700 m to the bottom at 3200–4000 m. The salinity increases monotonically with depth through the deep θm and transition layer from about 34.952 to about 34.956 and then remains uniform in the bottom layer. A striking staircase structure, suggestive of double-diffusive convection, is observed within the transition layer. The staircase structure is observed for about 1000 km across the basin and has been persistent for more than a decade. It is characterized by 2–3 mixed layers (10–60 m thick) separated by 2–16 m thick interfaces. Standard formulae, based on temperature and salinity jumps, suggest a double-diffusive heat flux through the staircase of about 40 mW m−2, consistent with the measured geothermal heat flux of 40–60 mW m−2. This is to be expected for a scenario with no deep-water renewal at present as we also show that changes in the bottom layer are too small to account for more than a small fraction of the geothermal heat flux. On the other hand, the observed interfaces between mixed layers in the staircase are too thick to support the required double-diffusive heat flux, either by molecular conduction or by turbulent mixing, as there is no evidence of sufficiently vigorous overturns within the interfaces. It therefore seems, that while the staircase structure may be maintained by a very weak heat flux, most of the geothermal heat flux is escaping through regions of the basin near lateral boundaries, where the staircase structure is not observed. The vertical eddy diffusivity required in these near-boundary regions is O(10−3) m2 s−1. This implies Thorpe scales of order 10 m. We observe what may be Thorpe scales of this magnitude in boundary-region potential temperature profiles, but cannot tell if they are compensated by salinity. The weak stratification of the transition layer means that the large vertical mixing rate implies a local dissipation rate of only O(10−10) W kg−1, which is not ruled out by plausible energy budgets. In addition, we discuss an alternative scenario of slow, continuous renewal of the CB deep water. In this scenario, we find that some of the geothermal heat flux is required to heat the new water and vertical fluxes through the transition layer are reduced.  相似文献   

3.
A novel autonomous free-fall lander vehicle, with a capability down to 6000 m, was deployed off Cape Verde for studies on bioluminescence in the deep sea. The system was equipped with a high-sensitivity Intensified Silicon Intensified Target (ISIT) video camera, a programmable control-recording unit and an acoustic current meter with depth and temperature sensors. The ISIT lander was used in three modes: (1) free falling at 34 m min−1, with the camera looking downwards at a mesh screen, recording impacts of luminescent organisms to obtain a vertical profile down to the abyssal sea floor, sampling at >100 l s−1; (2) rotating, with the lander on the sea floor and the camera orienting to the bottom current using a servo-controlled turntable, impacts of luminescent organisms carried by the bottom current onto a mesh screen mounted 0.5 m in front of the camera were recorded to estimate abundance in the benthic boundary layer; (3) baited, with the camera focused on a bait placed on the sea floor.Profiles recorded abundance of luminescent organisms as 26.7 m−3 at 500–999 m depth, decreasing to 1.6 m−3 at 2000–2499 m and 0.5 m−3 between 2500 m and the sea floor at 4046 m, with no further detectable significant change with depth. Rotator measurements at a 0.5 m height above the sea floor gave a mean abundance of 0.47 m−3 in the benthic boundary layer at 4046 m and of 2.04 m−3 at 3200 m. Thirty five minutes after the bait was placed on the sea floor at 3200 m, bioluminescent fauna apparently arrived at the bait and produced luminescent displays at a rate of 2 min−1. Moving, flashing light sources were observed and luminescent material was released into the bottom current.  相似文献   

4.
The biomass, species and chemical composition of the mesozooplankton and their impact on lower food levels were estimated along a transect across the Arctic Ocean. Mesozooplankton biomass in the upper 200 m of the water column was significantly higher (19–42 mg DW m-3) than has previously been reported for the Arctic Ocean, and it reached a maximum at ca. 87°N in the Amundsen Basin. The lowest values were recorded in the Chukchi Sea and Nansen Basin, where ice cover was lower (50–80%) than in the central Arctic Ocean. In the deeper strata (200–500 m) of the Canadian and Eurasian Basins, the biomass was always much lower (4.35–16.44 mg DW m-3). The C/N (g/g) ratio for the mesozooplankton population was high (6.5–8.5) but within the documented range. These high values (when compared to 4.5 at lower latitudes) may be explained by the high lipid content. Mesozooplankton accounted for approximately 40% of the total particulate organic carbon in the upper 100 m of the water column. Mesozooplankton species composition was homogeneous along the transect, consisting mainly of copepods (70–90% of the total number). It was dominated by four large copepod species (Calanus hyperboreus, C. glacialis, C. finmarchicus and Metridia longa), which together accounted for more than 80% of the total biomass. According to measurements of gut pigment and gut turnover rates, the mesozooplankton on average ingested between 6 and 30% of their body carbon per day as phytoplankton. Microzooplankton may have provided an additional source of energy for the mesozooplankton community. These data emphasize the importance of mesozooplankton in the arctic food web and reinforce the idea that the Arctic Ocean should no longer be considered to be a “biological desert”.  相似文献   

5.
Seawater samples were collected for microbial analyses between 55 and 235 m depth across the Arctic Ocean during the SCICEX 97 expedition (03 September–02 October 1997) using a nuclear submarine as a research platform. Abundances of prokaryotes (range 0.043–0.47×109 dm−3) and viruses (range 0.68–11×109 dm−3) were correlated (r=0.66, n=150) with an average virus:prokaryote ratio of 26 (range 5–70). Biomass of prokaryotes integrated from 55 to 235 m ranged from 0.27 to 0.85 g C m−2 exceeding that of phytoplankton (0.005–0.2 g C m−2) or viruses (0.02–0.05 g C m−2) over the same depth range by an order of magnitude on average. Using transmission electron microscopy (TEM), we estimated that 0.5% of the prokaryote community on average (range 0–1.4%) was visibly infected with viruses, which suggests that very little of prokaryotic secondary production was lost due to viral lysis. Intracellular viruses ranged from 5 to >200/cell, with an average apparent burst size of 45±38 (mean±s.d.; n=45). TEM also revealed the presence of putative metal-precipitating bacteria in 8 of 13 samples, which averaged 0.3% of the total prokaryote community (range 0–1%). If these prokaryotes are accessible to protistan grazers, the Fe and Mn associated with their capsules might be an important source of trace metals to the planktonic food web. After combining our abundance and mortality data with data from the literature, we conclude that the biomass of prokaryoplankton exceeds that of phytoplankton when averaged over the upper 250 m of the central Arctic Ocean and that the fate of this biomass is poorly understood.  相似文献   

6.
The fate of terrigenous dissolved organic carbon (tDOC) delivered to the Arctic Ocean by rivers remains poorly constrained on both spatial and temporal scales. Early reports suggested Arctic tDOC was refractory to degradation, while recent studies have shown tDOC removal to be an active but slow process. Here we present observations of DOC, salinity, δ18O, and 228Ra/226Ra in the Polar Surface Layer (PSL) over the outer East Siberian/Chukchi shelf and the adjacent Makarov and Eurasian basins of the eastern Arctic Ocean. This off-shelf system receives meteoric water, introduced by rivers, after a few years residence on the shelf. Elevated concentrations of DOC (> 120 μM C) were observed in low salinity (~ 27) water over the Makarov Basin, suggesting inputs of tDOC-enriched river water to the source waters of the Transpolar Drift. The regression of DOC against salinity indicated an apparent tDOC concentration of 315 ± 7 μM C in the river water fraction, which is significantly lower than the estimated DOC concentration in the riverine sources to the region (724 ± 55 μM C). To obtain the timescale of removal, estimates of shelf residence were coupled with measurements of dissolved 228Ra/226Ra, an isotopic tracer of time since shelf residence. Shelf residence time coupled with DOC distributions indicates a first order tDOC removal rate constant, λ = 0.24 ± 0.07 yr-1, for the eastern Arctic, 2.5–4 times higher than rates previously observed in the western Arctic. The observed removal of tDOC in the eastern Arctic occurs over the expansive shelf area, highlighting the initial lability of tDOC upon delivery to the Arctic Ocean, and suggests that tDOC is composed of multiple compartments defined by reactivity. The relatively rapid remineralization of tDOC on the shelves may mitigate the strength of the Arctic Ocean atmospheric CO2 sink if a projected increase in labile tDOC flux occurs.  相似文献   

7.
Community metabolism (respiration and production) and bacterial activity were assessed in the upper water column of the central Arctic Ocean during the SHEBA/JOIS ice camp experiment, October 1997–September 1998. In the upper 50 m, decrease in integrated dissolved oxygen (DO) stocks over a period of 124 d in mid-winter suggested a respiration rate of ∼3.3 nM O2 h−1 and a carbon demand of ∼4.5 gC m−2. Increase in 0–50 m integrated stocks of DO during summer implied a net community production of ∼20 gC m−2. Community respiration rates were directly measured via rate of decrease in DO in whole seawater during 72-h dark incubation experiments. Incubation-based respiration rates were on average 3-fold lower during winter (11.0±10.6 nM O2 h−1) compared to summer (35.3±24.8 nM O2 h−1). Bacterial heterotrophic activity responded strongly, without noticeable lag, to phytoplankton growth. Rate of leucine incorporation by bacteria (a proxy for protein synthesis and cell growth) increased ∼10-fold, and the cell-specific rate of leucine incorporation ∼5-fold, from winter to summer. Rates of production of bacterial biomass in the upper 50 m were, however, low compared to other oceanic regions, averaging 0.52±0.47 ngC l−1 h−1 during winter and 5.1±3.1 ngC l−1 h−1 during summer. Total carbon demand based on respiration experiments averaged 2.4±2.3 mgC m−3 d−1 in winter and 7.8±5.5 mgC m−3 d−1 in summer. Estimated bacterial carbon demand based on bacterial productivity and an assumed 10% gross growth efficiency was much lower, averaging about 0.12±0.12 mgC m−3 d−1 in winter and 1.3±0.7 mgC m−3 d−1 in summer. Our estimates of bacterial activity during summer were an order of magnitude less than rates reported from a summer 1994 study in the central Arctic Ocean, implying significant inter-annual variability of microbial processes in this region.  相似文献   

8.
Chlorophyll a (chl a) concentrations and primary production by the 0.2–2, 2–18 and >18 μm phytoplankton size-fractions were estimated along a transect in the NW Indian Ocean extending from the coast of Oman to 8°N 68°E during the late SW monsoon and autumn intermonsoonal seasons in 1994. Primary production was estimated using the 14C technique with either in situ or simulated in situ incubations. During the late monsoon season, maximal chl a and production values were recorded in the coastal upwelling zone with values of 69 mg m-2 and 3800 mg C m-2 d-1, respectively. The maxima, which were distributed patchily in this region, were dominated by the >18 μm size-fraction. Over the remainder of the transect chl a concentrations and production averaged 30 mg m-2 and 1500 mg C m-2 d-1, respectively, with approximately equal contributions by the three size-fractions in the case of chl a at the majority of stations, but in general, with a maximum in production in the 0.2–2 μm fraction. Immediately following cessation of the SW monsoon wind, chl a and production values over the northern part of the transect decreased to values similar to those over the southern part of the transect at the time of the SW monsoon, with the contributions by the three size-fractions being approximately equal. During the following intermonsoonal season, both chl a concentrations and production across the section were dominated by the 0.2–2 μm size-fraction, with average chl a and production values of the order of 20 mg m-2 and 750 mg C m-2 d-1, respectively. Considerable variation in production values, however, was exhibited across the transect. A clearly defined subsurface chl a maximum was only recorded at the southernmost stations of the transect in oligotrophic waters: the feature did not develop universally across the transect during the intermonsoon.  相似文献   

9.
Coccoliths collected by sediment traps deployed on the slope of the Bay of Biscay (northeastern Atlantic), from June 1990 to August 1991, were examined to determine their contribution to the transport of carbonate on a mid-latitude continental margin. They also were used as tracers of particle transfer processes on this slope. Two traps located at 1900 m, respectively at 2300 (Mooring Site 1) and 3000 m (Mooring Site 2) water depths provided high-resolution (4–7 days) time-series samples covering a 14-month period at MS2 and a 3-month period at MS1. Coccoliths from 28 species were identified over the course of the experiment, among which Emiliania huxleyi was always dominant (relative abundance range: 59–93%). Total coccoliths number fluxes were high but variable, ranging from 390×106 to 1610×106 coccoliths m−2 day−1 at MS1, and from 58×106 to 1500×106 coccoliths m−2 day−1 at MS2. The time-weighted mean flux, calculated for the whole experiment at MS2, was 499×106 coccoliths m−2 day−1. Estimate of coccoliths minimal contribution to total carbonate flux at 1900 m depth averaged 12%, which represented a weighted mean flux of 7.3 mg m−2 day−1 (2.7 g m−2 yr−1). Lateral transport of coccoliths resuspended from shelf and/or upper slope sediments seems to be the dominant transfer process to depth on this northeastern Atlantic slope. Nevertheless, the clear seasonal succession observed in the species composition implies that the deposition/resuspension/transport sequence is rapid (presumably less than a few months). Several short and unsmoothed signals directly issued from coccoliths bloom events also were recorded in our traps, a result that indicates rapid settling rates. The overall coccolith sedimentation processes appear as being quite diversified, but quantitative and qualitative analyses of aggregates collected by the traps suggest that they are important carriers of coccoliths in this margin environment.  相似文献   

10.
The stable carbon isotope composition of particulate organic carbon (δ13CPOC) and naturally occurring long-lived radionuclide 226Ra (T1/2=1600 a) were applied to study the variations of upper ocean (<100 m) carbon dynamics in response to sea ice melting in Prydz Bay, East Antarctica during austral summer 2006. Surface δ13CPOC values ranged from −27.4‰ to −19.0‰ and generally decreased from inner bay (south of 67°S) toward the Antarctic Divergence. Surface water 226Ra activity concentration ranged from 0.92 to 2.09 Bq/m3 (average 1.65±0.32 Bq/m3, n=20) and increased toward the Antarctic Divergence, probably reflecting the influence of 226Ra-depleted meltwater and upwelled 226Ra-replete deep water. The fraction of meltwater, fi, was estimated from 226Ra activity concentration and salinity using a three-component (along with Antarctic Summer Surface Water, and Prydz Bay Deep Water) mixing model. Although the fraction of meltwater is relatively minor (1.6–11.9%, average 4.1±2.7%, n=20) for the surface waters (sampled at ~6 m), a positive correlation between surface δ13CPOC and fi13CPOC=0.94×fi−28.44, n=20, r2=0.66, p<0.0001) was found, implying that sea ice melting may have contributed to elevated δ13CPOC values in the inner Prydz Bay compared to the open oceanic waters. This is the first time for a relationship between δ13CPOC and meltwater fraction to be reported in polar oceans to our knowledge. We propose that sea ice melting may have affected surface ocean δ13CPOC by enhancing water column stability and providing a more favorable light environment for phytoplankton photosynthesis, resulting in drawdown of seawater CO2 availability, likely reducing the magnitude of isotope fractionation during biological carbon fixation. Our results highlight the linkage of ice melting and δ13CPOC, providing insights into understanding the carbon cycling in the highly productive Antarctic waters.  相似文献   

11.
Sediments were sampled and oxygen profiles of the water column were determined in the Indian Ocean off west and south Indonesia in order to obtain information on the production, transformation, and accumulation of organic matter (OM). The stable carbon isotope composition (δ13Corg) in combination with C/N ratios depicts the almost exclusively marine origin of sedimentary organic matter in the entire study area. Maximum concentrations of organic carbon (Corg) and nitrogen (N) of 3.0% and 0.31%, respectively, were observed in the northern Mentawai Basin and in the Savu and Lombok basins. Minimum δ15N values of 3.7‰ were measured in the northern Mentawai Basin, whereas they varied around 5.4‰ at stations outside this region. Minimum bottom water oxygen concentrations of 1.1 mL L?1, corresponding to an oxygen saturation of 16.1%, indicate reduced ventilation of bottom water in the northern Mentawai Basin. This low bottom water oxygen reduces organic matter decomposition, which is demonstrated by the almost unaltered isotopic composition of nitrogen during early diagenesis. Maximum Corg accumulation rates (CARs) were measured in the Lombok (10.4 g C m?2 yr?1) and northern Mentawai basins (5.2 g C m?2 yr?1). Upwelling-induced high productivity is responsible for the high CAR off East Java, Lombok, and Savu Basins, while a better OM preservation caused by reduced ventilation contributes to the high CAR observed in the northern Mentawai Basin. The interplay between primary production, remineralisation, and organic carbon burial determines the regional heterogeneity. CAR in the Indian Ocean upwelling region off Indonesia is lower than in the Peru and Chile upwellings, but in the same order of magnitude as in the Arabian Sea, the Benguela, and Gulf of California upwellings, and corresponds to 0.1–7.1% of the global ocean carbon burial. This demonstrates the relevance of the Indian Ocean margin off Indonesia for the global OM burial.  相似文献   

12.
In the Eastern North Atlantic Ocean iron (Fe) speciation was investigated in three size fractions: the dissolvable from unfiltered samples, the dissolved fraction (<0.2 μm) and the fraction smaller than 1000 kDa (<1000 kDa). Fe concentrations were measured by flow injection analysis and the organic Fe complexation by voltammetry. In the research area the water column consisted of North Atlantic Central Water (NACW), below which Mediterranean Overflow Water (MOW) was found with the core between 800 and 1000 m depth. Below 2000 m depth the North Atlantic Deep Water (NADW) proper was recognised. Dissolved Fe and Fe in the <1000 kDa fraction showed a nutrient like profile, depleted at the surface, increasing until 500–1000 m depth below which the concentration remained constant. Fe in unfiltered samples clearly showed the MOW with high concentrations (4 nM) compared to the overlying NACW and the underlying NADW, with 0.9 nM and 2 nM Fe, respectively. By using excess ligand (Excess L) concentrations as parameter we show a potential to bind Fe. The surface mixed layer had the highest excess ligand concentrations in all size fractions due to phytoplankton uptake and possible ligand production. The ratio of Excess L over Fe proved to be a complementary tool in revealing the relative saturation state of the ligands with Fe. In the whole water column, the organic ligands in the larger colloidal fraction (between 0.2 μm and 1000 kDa) were saturated with Fe, whereas those in the smallest fraction (<1000 kDa) were not saturated with Fe, confirming that this fraction was the most reactive one and regulates dissolution and colloid aggregation and scavenging processes. This regulation was remarkably stable with depth since the alpha factor (product of Excess L and K′), expressing the reactivity of the ligands, did not vary and was 1013. Whereas, in the NACW and the MOW, the ligands in the particulate (>0.2 μm) fraction were unsaturated with Fe with respect to the dissolved fraction, thus these waters had a scavenging potential.  相似文献   

13.
Sea-ice and water samples were collected at 14 stations on the shelves and slope regions of the Chukchi and Beaufort Seas during the spring 2002 expedition as part of the Shelf–Basin Interaction Studies. Algal pigment content, particulate organic carbon and nitrogen, and primary productivity were estimated for both habitats based on ice cores, brine collection and water samples from 5-m depth. The pigment content (0.2–304.3 mg pigments m−2) and primary productivity (0.1–23.0 mg C m−3 h−1) of the sea-ice algae significantly exceeded water-column parameters (0.2 and 1.0 mg pigments m−3; <0.1–0.4 mg C m−3 h−1), making sea ice the habitat with the highest food availability for herbivores in early spring in the Chukchi and Beaufort Seas. Stable isotope signatures for ice and water samples did not differ significantly for δ15N, but for δ13C (ice: −25.1‰ to −14.2‰; water: −26.1‰ to −22.4‰). The analysis of nutrient concentrations and the pulse-amplitude-modulated fluorescence signal of ice algae and phytoplankton indicate that nutrients were the prime limiting factor for sea-ice algal productivity. The estimated spring primary production of about 1–2 g C m−2 of sea-ice algae on the shelves requires the use of substantial nutrient reservoirs from the water column.  相似文献   

14.
Methane is a useful tracer for studying hydrothermal discharge, especially where the source fluids are of low temperature and lack metal precipitates. However, the dual origins of deep-sea methane, both chemical and biological, complicate the interpretation of methane observations. Here, we use both the concentration and stable carbon isotopic composition (δ13C) of dissolved methane to trace hydrothermal plumes and identify the source and behavior of methane at two sites of newly discovered hydrothermal activity on the Central Indian Ridge (11–13°S). At both sites, methane and optical anomalies between 2500 and 3500 m at all stations indicate active hydrothermal discharge. We compared methane concentrations and δ13C at three stations, two (CTIR110136 and CTIR110208) with the most prominent anomalies at each site, and a third (CTIR110140) with near-background methane values. At stations CTIR110136 and CTIR110208, the concentration and δ13C of methane in distinct plumes ranged from 3.3 to 42.3 nmol kg−1 and −30.0 to −15.4‰, respectively, compared to deep-water values of 0.5 to 1.2 nmol kg−1 and −35.1 to −28.9‰ at the station with a near-background distal plume (CTIR110140). δ13C was highest in the center of the plumes at CTIR110136 (−15.4‰) and CTIR110208 (−17.8‰). From the plume values we estimate that the δ13C of methane in the hydrothermal fluids at these stations was approximately −19‰ and thus the methane was most likely derived from magmatic outgassing or the chemical synthesis of inorganic matter. We used the relationship between δ13C and methane concentration to examine the behavior of methane at the plume stations. In the CTIR110208 plume, simple physical mixing was likely the major process controlling the methane profile. In the CTIR110136 plume we interpret a more complicated relationship as resulting from microbial oxidation as well as physical mixing. We argue that this difference in methane behavior between the two areas stems from a distinct bathymetric dissimilarity between the two stations. The location of CTIR110208 on the open slope of a ridge allowed rapid plume dispersion and physical mixing, whereas the location of CTIR110136 in a small basin surrounded by wall structures inhibited physical mixing and enhanced microbial oxidation.  相似文献   

15.
The goal of this study was to explore how net community production (NCP) is influenced by the relationship between primary production and community respiration in the western Arctic Ocean. Plankton NCP and respiration were determined by measuring changes in oxygen in light and dark bottle incubations, respectively. Rates of NCP averaged over shelf, slope and basin waters were positive in summer 2002 (57±191 mmol O2 m−2 d−1) and spring 2004 (85±86 mmol O2 m−2 d−1) and negative in summer 2004 (−25±176 mmol O2 m−2 d−1). Determinations of NCP obtained from bottle incubations were similar to rates inferred from in situ changes in dissolved inorganic carbon. An examination of the spatial variability of primary production and community respiration indicated that respiration is distributed more uniformly than primary production. A spatial offset between photosynthesis and respiration from the shelf to the Arctic basin was present in spring 2004, but was not seen at other times. NCP and the potential for export appear to be dependent on an uncoupling of primary production and community respiration. NCP continued into the summer after the stock of NO3 had been depleted. Our data suggest that the uniform distribution of respiration relative to primary production is an important factor influencing NCP and the potential for export in the western Arctic.  相似文献   

16.
The effects of extreme atmospheric forcing on the export flux of particulate organic carbon (POC) in the warm oligotrophic nitrogen-limited northwest Pacific Ocean were examined in 2007 during the spring Asian dust storm period. Several strong northeast monsoon events (maximum sustained wind speeds approaching 16.7 m s? 1, and gusts up to 19.0 m s? 1) accompanied by dust storms occurred during a 1-month period. The cold stormy events decreased surface water temperature and induced strong wind-driven vertical mixing of the water column, resulting in nutrient entrainment into the mixed layer from subsurface waters. As a result, the export flux of POC ranged from 49 to 98 (average value = 71 ± 16) mg m? 2 day? 1, approximately 2–3 times greater than average values in other seasons. As dry and wet deposition of nitrogen attributable to Asian dust storm events does not account for the associated increases in POC stocks in this N-limited oligotrophic oceanic region, the enhancement of POC flux must have been caused by nutrient entrainment from subsurface waters because of the high winds accompanying the dust storm events.  相似文献   

17.
Seasonal depth stratified plankton tows, sediment traps and core tops taken from the same stations along a transect at 29°N off NW Africa are used to describe the seasonal succession, the depth habitats and the oxygen isotope ratios (δ18Oshell) of five planktic foraminiferal species. Both the δ18Oshell and shell concentration profiles show variations in seasonal depth habitats of individual species. None of the species maintain a specific habitat depth exclusively within the surface mixed layer (SML), within the thermocline, or beneath the thermocline. Globigerinoides ruber (white) and (pink) occur with moderate abundance throughout the year along the transect, with highest abundances in the winter and summer/fall season, respectively. The average δ18Oshell of G. ruber (w) from surface sediments is similar to the δ18Oshell values measured from the sediment-trap samples during winter. However, the δ18Oshell of G. ruber (w) underestimates sea surface temperature (SST) by 2 °C in winter and by 4 °C during summer/fall indicating an extension of the calcification/depth habitat into colder thermocline waters. Globigerinoides ruber (p) continues to calcify below the SML as well, particularly in summer/fall when the chlorophyll maximum is found within the thermocline. Its vertical distribution results in δ18Oshell values that underestimate SST by 2 °C. Shell fluxes of Globigerina bulloides are highest in summer/fall, where it lives and calcifies in association with the deep chlorophyll maximum found within the thermocline. Pulleniatina obliquiloculata and Globorotalia truncatulinoides, dwelling and calcifying a part of their lives in the winter SML, record winter thermocline (~180 m) and deep surface water (~350 m) temperatures, respectively. Our observations define the seasonal and vertical distribution of multiple species of foraminifera and the acquisition of their δ18Oshell.  相似文献   

18.
An autonomous upwardly-moving microstructure profiler was used to collect measurements of the rate of dissipation of turbulent kinetic energy (ε) in the tropical Indian Ocean during a single diurnal cycle, from about 50 m depth to the sea surface. This dataset is one of only a few to resolve upper ocean ε over a diurnal cycle from below the active mixing layer up to the air–sea interface. Wind speed was weak with an average value of ~5 m s−1 and the wave field was swell-dominated. Within the wind and wave affected surface layer (WWSL), ε values were on the order of 10−7–10−6 W kg−1 at a depth of 0.75 m and when averaged, were almost a factor of two above classical law of the wall theory, possibly indicative of an additional source of energy from the wave field. Below this depth, ε values were closer to wall layer scaling, suggesting that the work of the Reynolds stress on the wind-induced vertical shear was the major source of turbulence within this layer. No evidence of persistent elevated near-surface ε characteristic of wave-breaking conditions was found. Profiles collected during night-time displayed relatively constant ε values at depths between the WWSL and the base of the mixing layer, characteristic of mixing by convective overturning. Within the remnant layer, depth-averaged values of ε started decaying exponentially with an e-folding time of 47 min, about 30 min after the reversal of the total surface net heat flux from oceanic loss to gain.  相似文献   

19.
Recent hydrographic measurements within the eastern South Pacific (1999–2001) were combined with vertically high-resolution data from the World Ocean Circulation Experiment, high-resolution profiles and bottle casts from the World Ocean Database 2001, and the World Ocean Atlas 2001 in order to evaluate the vertical and horizontal extension of the oxygen minimum zone (<20 μmol kg−1). These new calculations estimate the total area and volume of the oxygen minimum zone to be 9.82±3.60×106 km2 and 2.18±0.66×106 km3, respectively. The oxygen minimum zone is thickest (>600 m) off Peru between 5 and 13°S and to about 1000 km offshore. Its upper boundary is shallowest (<150 m) off Peru, shoaling towards the coast and extending well into the euphotic zone in some places. Offshore, the thickness and meridional extent of the oxygen minimum zone decrease until it finally vanishes at 140°W between 2° and 8°S. Moving southward along the coast of South America, the zonal extension of the oxygen minimum zone gradually diminishes from 3000 km (15°S) to 1200 km (20°S) and then to 25 km (30°S); only a thin band is detected at ∼37°S off Concepción, Chile. Simultaneously, the oxygen minimum zone's maximum thickness decreases from 300 m (20°S) to less than 50 m (south of 30°S). The spatial distribution of Ekman suction velocity and oxygen minimum zone thickness correlate well, especially in the core. Off Chile, the eastern South Pacific Intermediate Water mass introduces increased vertical stability into the upper water column, complicating ventilation of the oxygen minimum zone from above. In addition, oxygen-enriched Antarctic Intermediate Water clashes with the oxygen minimum zone at around 30°S, causing a pronounced sub-surface oxygen front. The new estimates of vertical and horizontal oxygen minimum zone distribution in the eastern South Pacific complement the global quantification of naturally hypoxic continental margins by Helly and Levin [2004. Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Research I 51, 1159–1168] and provide new baseline data useful for studies on the role of oxygen in the degradation of organic matter in the water column and the related implications for biogeochemical cycles. Coastal upwelling zones along the eastern Pacific combine with general circulation to provide a mechanism that allows renewal of upper Pacific Deep Water, the most oxygen-poor and oldest water mass of the world oceans.  相似文献   

20.
We examine seasonal variations in the stable carbon and oxygen isotopic composition of individual shells of the pteropods Limacina inflata and Styliola subula, collected from Oceanic Flux Program sediment traps (at 500 m depth) near Bermuda in the western Sargasso Sea. Calcification depths estimated from L. inflata δ18O vary between 200 and 650 m in late winter and spring, and between 50 and 250 m in late summer and fall. S. subula shows similar seasonal variability with calcification depths between 250 and 600 m in late winter and spring and 50–400 m in late summer and fall. These results suggest that both species calcify across a greater range of depths than indicated by previous geochemical studies. Furthermore, the data indicate that these species change their calcification depth in conjunction with changes in thermal stratification of the water column. Pteropod shell δ13C values vary inversely with δ13CDIC but show a positive correlation with seawater [CO32−] and temperature after depth differences in δ13CDIC are accounted for. We hypothesize that either the influence of temperature on metabolic CO2 incorporation during shell growth and/or the influence of ambient [CO32−] on shell geochemistry can explain these relationships. Taken together, the individual shell δ18O and δ13C data suggest that shell calcification, and by inference the life cycle, of these pteropods is several months or less. Individual pteropod shell analyses have potential for contributing to our understanding of the environmental parameters that play a role in seasonal calcification depth shifts, as well as to our knowledge of past upper ocean thermal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号