首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Salt marsh sediment volume decreases from organic decomposition, compaction of solids, and de-watering, and each of these processes may change with age. Variability in the vertical accretion rate within the upper 2 m was determined by assembling results from concurrent application of the 137Cs and 210Pb dating techniques used to estimate sediment age since 1963/1964, and 0 to ca 100+ years before present (yBP), respectively. The relationship between 210Pb and the 137Cs dated accretion rates (Sed210 and Sed137, respectively) was linear for 45 salt marsh and mangrove environments. Sed210 averaged 75% of Sed137 suggesting that vertical accretion over the last 100+ years is driven by soil organic matter accumulation, as shown for the pre 137Cs dated horizon. The ratio of Sed210/Sed137 declines with increasing mineral content. A linear multiple regression equation that includes bulk density and Sed137 to predict Sed210 described 97% of the variance in Sed210. Sediments from Connecticut, Delaware and Louisiana coastal environments dated with 14C indicate a relatively constant sediment accretion rate of 0.13 cm year−1 for 1000–7000 yBP, which occurs within 2 m of today's marsh surface and equals modern sea level rise rates. Soil subsidence is not shown to be distinctly different in these vastly different coastal settings. The major reason why the Sed137 measurements indicate higher accretion rates than do the Sed210 measurements is because the former apply to younger sediments where the effects of root growth and decomposition are greater than in the latter. The most intense rates of change in soil volume in organic-rich salt marshes sediments is, therefore, neither in deep or old sediments (>4 m; >1000 years), but within the first several hundreds of years after accumulation. The average changes in organic and inorganic constituents downcore are nearly equal for 58 dated sediment cores from the northern Gulf of Mexico. These parallel changes downcore are best described as resulting from compaction, rather than from organic matter decomposition. Thus most of the volumetric changes in these salt marsh sediments occurs in the upper 2 m, and declines quickly with depth. Extrapolation forwards or backwards, using results from the 210Pb and the 137Cs dating technique appear to be warranted for the types of samples from the environments described here.  相似文献   

2.
Recent efforts to construct global ocean budgets for carbon have recognized the importance of continental margins. In this study, we constructed budgets for the Strait of Georgia, a temperate, North American west coast basin that receives the inflow of one of the world's major rivers. Drawing from published and unpublished data, we have estimated the magnitude of the various sources and sinks of fresh water, sediment and organic carbon.The Fraser River is the dominant source of fresh water and particles to the strait, contributing approximately 73% of the 158×109 m3 year−1 of water and 64% of the 30×109 kg year−1 of particles. Other rivers supply most of the remainder, while rain, groundwater and anthropogenic sources of water and particles are negligible in comparison. Fresh water escapes the Strait of Georgia through Juan de Fuca Strait, but particulate inputs are approximately balanced by sedimentation within the greater Strait of Georgia, implying almost complete trapping of particles.Dissolved and particulate organic carbon are derived mainly from in situ primary production (855×106 kg year−1) and from the Fraser River (550×106 kg year−1). Other rivers contribute 200×106 kg year−1 of organic carbon, and anthropogenic sources (ocean dumping, sewage, pulp mills and aquaculture) a further 119×106 kg year−1. Particulate organic carbon is predominantly buried (428×106 kg year−1) or oxidized (90×106 kg year−1) in the sediments of the strait. About 70% of the organic carbon that enters or is produced in the strait is dissolved. Most of the dissolved organic carbon is oxidized within the strait (784×106 kg year−1), but the remainder (400×106 kg year−1) is exported to the Pacific Ocean. Although the particulate organic carbon budget by itself implies net autotrophy, dissolved organic carbon oxidation may make the Strait of Georgia slightly net heterotrophic.  相似文献   

3.
This study focuses on sediment exchange in the degraded Mwache mangrove forest wetland located in southern Kenya. It involved measurement of total and particulate organic suspended sediment concentrations (TSSC and POSC), tidal water elevation and current velocities. Results showed that in the heavily degraded backwater zone mangrove forest, the ebb and flood tide total sediment fluxes were of same order of magnitude, however, flood tide sediment fluxes were slightly higher than the ebb ones. In the moderately degraded frontwater zone mangrove forest, the flood tide sediment fluxes were more than 50% higher than the ebb tide fluxes. The peak net sedimentation in the highly degraded backwater zone was 4 g m−2 tide−1 but that in the moderately degraded frontwater zone was 63 g m−2 tide−1. In the frontwater zone of the mangrove forest, the peak instantaneous ebb tide sediment flux was 3206 kg tide−1 equivalent to 35.6 g m−2 tide−1 and the flood one 8574 kg tide−1 (95 g m−2 tide−1). The peak instantaneous flood and ebb tide particulate organic sediment (POS) fluxes in the frontwater zone mangrove forest were 1316 kg tide−1 (15 g m−2 tide−1) and 587 kg tide−1 (6.5 g m−2 tide−1), respectively. The peak ebb and flood tide sediment fluxes in the backwater mangrove forest were 3206 kg tide−1 (36 g m−2 tide−1) and 3305 kg tide−1 (36.7 g m−2 tide−1), respectively. In case of POS fluxes in the backwater zone mangrove forest, the peak flood period POS flux was 969 kg tide−1 (10.7 g m−2 tide−1) while the ebb period one was 484 kg tide−1 (5.4 g m−2 tide−1). In both highly degraded backwater and moderately degraded frontwater zone of the mangrove forest, there is net import of sediments. However, the net import is relatively lower in the backwater zone forest where the trapping efficiency is 27%. In the moderately degraded frontwater zone of the mangrove forest, the sediment trapping efficiency is 65%. The net sediment import occurs mainly in periods of high river discharge in both neap and spring tides, but occurs only in spring tides during dry season. The net accretion rates in the backwater and frontwater zone mangrove forests are 0.25 and 3.5 cm year−1, respectively.  相似文献   

4.
Denitrification, anammox (Anx) and di-nitrogen fixation were examined in two mangrove ecosystems- the anthropogenically influenced Divar and the relatively pristine Tuvem. Stratified sampling at 2 cm increments from 0 to 10 cm depth revealed denitrification as the main process of N2 production in mangrove sediments. At Divar, denitrification was ∼3 times higher than at Tuvem with maximum activity of 224.51 ± 6.63 nmol N2 g−1 h−1 at 0–2 cm. Denitrifying genes (nosZ) numbered up to 2 × 107 copies g−1 sediment and belonged to uncultured microorganisms clustering within Proteobacteria. Anammox was more prominent at deeper depths (8–10 cm) mainly in Divar with highest activity of 101.15 ± 87.73 nmol N2 g−1 h−1 which was 5 times higher than at Tuvem. Di-nitrogen fixation was detected only at Tuvem with a maximum of 12.47 ± 8.36 nmol N2 g−1 h−1. Thus, in these estuarine habitats prone to high nutrient input, N2-fixation is minimal and denitrification rather than Anx serves as an important mechanism for counteracting N loading.  相似文献   

5.
Six sediment cores collected from various water depths and sampling locations along the western margin of the Bay of Bengal (BOB) were investigated for the total hydrolysable amino acids (THAA) and d-amino acids (d-AA) to understand their distribution, digenetic alteration and bacterial contribution to organic matter (OM). Irrespective of their location, THAA concentrations and yields generally decreased and mol% glycine increased with increasing water depth indicating that OM was degraded during its transit through the water column. Amino acid based degradation index (DI) indicated that OM of the surface sediments of shallow stations, BOB-1 to BOB-3 was relatively fresher than that of deeper stations, BOB-4, BOB-5 and BOB-6. The concentrations and mol% of the d-AA varied from 0.04 to 0.76 µmol gdw−1 and 0.3 to 8.5 mol%, respectively. Contribution of bacterial peptidoglycan amino acids to THAA (% THAApep/THAA) ranged between 4.0% and 55.0%. Both % THAApep/THAA and mol% d-AAs were significantly (p<0.01) higher in the surface sediments and decreased with sediment core depth. Based on the d-AA yields, bacterial OM accounted for 1.5–15.6% of TOC, and 3.7–50.0% of TN of the sediments of BOB.  相似文献   

6.
Detailed bulk geochemistry and organo-petrography of outcrop Cretaceous sediments (with no significant effects of weathering) from the Calabar Flank, southeast Nigeria were performed to understand the organic carbon source, accumulation and degradation, and paleo-climatic, paleoceanographic and paleoenvironmental conditions in West Africa during Early Cretaceous (Aptian) to Maastrichtian times. This study was based on microscopic, elemental analyses (organic carbon, nitrogen, iron and sulphur), Rock-eval pyrolysis and carbon-isotope analyses. In general, the Calabar Flank shales are characterised by highly variable total organic carbon (TOC) contents, which range between 0.1% in Aptian–Albian Mfamosing Limestone and 9.9% in the Awi Formation sediments. The organic matter (OM) is a mixture of immature to early-mature marine and terrigenous OM of types III and IV. This is indicated by low hydrogen indices (HI value (10–190 mg HC/g TOC), Tmax (417–460 °C), vitrinite reflectance %Ro (0.39–0.62 %Ro), low to high C/N ratios (3.4–1158.0) and high amounts of terrigenous macerals (vitrinite + inertinite). Based on carbon isotope, C/N ratios and sulphate reduction index (SRI), OM degradation (up to 70%, SRI > 2.5) is most pronounced for shales deposited in a marine environment. The geochemical and petrographic data indicate that local factors such as low bioproductivity, down slope transport and redeposition of sediments from a fluvial–deltaic basin to nearshore facies, shallower, oxic and mildly oxygen-deficient environments, humid–arid paleogeographic conditions, specifically controlled the amount and quality of the OM during Aptian–Mastrichtian stages where marine sediments have been assumed to be deposited during the global anoxic events. Therefore, the order of the main factors controlling OM content in sediments are: input of terrigenous material transported from the land > low OM productivity by marine photoautotrophs > low preservation.  相似文献   

7.
A cross-system analysis of bulk sediment composition, total organic carbon (TOC), atomic C/N ratio, and carbon isotope composition (δ13C) in 82 surface sediment samples from natural and planted mangrove forests, bank and bottom of tidal creeks, tidal flat, and the subtidal habitat was conducted to examine the roles of mangroves in sedimentation and organic carbon (OC) accumulation processes, and to characterize sources of sedimentary OC of the mangrove ecosystem of Xuan Thuy National Park, Vietnam. Sediment grain sizes varied widely from 5.4 to 170.2 μm (mean 71.5 μm), with the fine sediment grain size fraction (< 63 μm) ranging from 11 to 99.3% (mean 72.5%). Bulk sediment composition suggested that mangroves play an important role in trapping fine sediments from river outflows and tidal water by the mechanisms of tidal current attenuation by vegetation and the ability of fine roots to bind sediments. The TOC content ranged from 0.08 to 2.18% (mean 0.78%), and was higher within mangrove forests compared to those of banks and bottoms of tidal creeks, tidal flat, and subtidal sediments. The sedimentary δ13C ranged from − 27.7 to − 20.4‰ (mean − 24.1‰), and mirrored the trend observed in TOC variation. The TOC and δ13C relationship showed that the factors of microbial remineralization and OC sources controlled the TOC pool of mangrove sediments. The comparison of δ13C and C/N ratio of sedimentary OC with those of mangrove and marine phytoplankton sources indicated that the sedimentary OC within mangrove forests and the subtidal habitat was mainly composed of mangrove and marine phytoplankton sources, respectively. The application of a simple mixing model showed that the mangrove contribution to sedimentary OC decreased as follows: natural mangrove forest > planted mangrove forest > tidal flat > creek bank > creek bottom > subtidal habitat.  相似文献   

8.
De-embankment in the salt marshes of the island of Langeoog was carried out in 2004, thereby inducing an artificial transgression within an area of 2.2 km2. Material from three suspended matter traps (SMTs) located along a N–S transect was collected monthly between January 2006 and February 2007. Besides geochemical (major and trace elements) and grain-size analyses, the duration and height of water cover were continuously measured by pressure gauges during the sampling period at two sites, thus revealing inundation frequency (max. 280 year−1) and level (max. 2.4 m). Generally, the silt-dominated SMT material exhibits a geochemical composition similar to that of suspended particulate matter from the adjacent Wadden Sea. However, distinctly increasing enrichments of TOC, P, Mn and Mo from the shoreline towards the higher salt marsh clearly indicate fractionation processes during material transport. Geochemical comparison with older Holocene coastal deposits reveals a mixture of brackish and tidal flat sediments, thus reflecting an early stage of sea-level rise and the development from a terrestrial towards a marine-dominated system. Sedimentation rates are higher than the local sea-level rise, as revealed by vertical salt marsh growth. Storm surges deliver the highest amounts of sediment and play an important role in salt marsh accumulation within the study area. Average accumulation rates of TOC (780 t year−1), P (54 t year−1) and Mn (5.2 t year−1) in the de-embanked area suggest that the former sand-dominated sediments currently receive significant amounts of reactive organic-rich material, thus fostering biogeochemical cycling.  相似文献   

9.
In this study, the contents, sources and accumulation rate of sedimentary organic matter (OM) in the Pearl River Estuary (PRE) and adjacent coastal area were investigated. The stable carbon isotopic composition (δ13C) is a reliable geochemical proxy and was used to indicate the OM origin here. Nevertheless, the organic carbon and nitrogen molar ratios (TOC/TN) and the stable nitrogen isotopic composition (δ15N) were affected by diagenesis and could be the supplementary indicators. The sources of OM were estimated based on the two end-member model. The results showed that in the estuary, sedimentary OM originated from terrestrial and aquatic mixing origins, whereas, OM in coastal sediments was dominantly algae-derived. The accumulation rate of sedimentary OM was analyzed based on 210Pb dating. Due to the sampling sites and the distinct hydraulic environments, the accumulation rates of TOC, aquatic and terrestrial OC were obviously higher in the estuary than in coastal area. TOC accumulation rates were 18–27 mg cm−2 y−1 in the estuary, and 0.84–3.6 mg cm−2 y−1 in coastal area. Aquatic OC accumulation rates were 7.9–11.3, 0.8–1.3, and 2.6–3.1 mg cm−2 y−1, and terrestrial OC accumulation rates were 9.7–16.3, 0.02–0.14, 0.16–0.42 mg cm−2 y−1 in cores 2, 5, 6, respectively. It could be seen from the high accumulation rate of organic matter in the estuary that, when nutrients increased in the river, phytoplankton biomass and productivity would also have increased. As a result, phytoplankton sinking and organic matter sedimentation usually increased with primary productivity, resulting in the observed accumulation rate of aquatic OC in the estuary. Furthermore, terrestrial OC accumulation rates in the estuary and coastal area showed an increasing trend with the age.  相似文献   

10.
Mangrove ecosystems are acknowledged as a significant carbon reservoir, with a potential key role as carbon sinks. Little however is known on sediment/soil capacity to store organic carbon and the impact of benthic fauna on soil organic carbon (SOC) stock in mangrove C-poor soils. This study aimed to investigate the effects of macrobenthos on SOC storage and dynamic in mangrove forest at Gazi Bay (Kenya). Although the relatively low amount of organic carbon (OC%) in these soils, they resulted in the presence of large ecosystem carbon stock comparable to other forest ecosystems. SOC at Gazi bay ranged from 3.6 kg m 2 in a Desert-like belt to 29.7 kg m 2 in the Rhizophora belt considering the depth soil interval from 0 cm to 80 cm. The high spatial heterogeneity in the distribution and amount of SOC seemed to be explained by different dominant crab species and their impact on the soil environment. A further major determinant was the presence, in the subsoil, of horizons rich in organic matter, whose dating pointed to their formation being associated with sea level rise over the Holocene. Dating and soil morphological characters proved to be an effective support to discuss links between the strategies developed by macrobenthos and soil ecosystem functioning.  相似文献   

11.
Sediment accumulation rates were determined at several sites throughout Nauset Marsh (Massachusetts, U.S.A.), a back-barrier lagoonal system, using feldspar marker horizons to evaluate short-term rates (1 to 2 year scales) and radiometric techniques to estimate rates over longer time scales (137Cs,210Pb,14C). The barrier spit fronting theSpartina-dominated study site has a complex geomorphic history of inlet migration and overwash events. This study evaluates sediment accumulation rates in relation to inlet migration, storm events and sea-level rise. The marker horizon technique displayed strong temporal and spatial variability in response to storm events and proximity to the inlet. Sediment accumulation rates of up to 24 mm year−1were recorded in the immediate vicinity of the inlet during a period that included several major coastal storms, while feldspar sites remote from the inlet had substantially lower rates (trace accumulation to 2·2 mm year−1). During storm-free periods, accumulation rates did not exceed 6·7 mm year−1, but remained quite variable among sites. Based on137Cs (3·8 to 4·5 mm year−1) and210Pb (2·6 to 4·2 mm year−1) radiometric techniques, integrating sediment accumulation over decadal time scales, the marsh appeared to be keeping pace with the relative rate of sea-level rise from 1921 to 1993 of 2·4 mm year−1. At one site, the210Pb-based sedimentation rate and rate of relative sea-level rise were nearly similar and peat rhizome analysis revealed thatDistichlis spicatarecently replaced this onceS. patenssite, suggesting that this portion of Nauset Marsh may be getting wetter, thus representing an initial response to wetland submergence. Horizon markers are useful in evaluating the role of short-term events, such as storms or inlet migration, influencing marsh sedimentation processes. However, sampling methods that integrate marsh sedimentation over decadal time scales are preferable when evaluating a systems response to sea-level rise.  相似文献   

12.
《Marine Chemistry》2005,93(2-4):159-177
Sediment core samples were collected from two sites in the lower Mississippi River, an oxic shelf site and a hypoxic shelf site (in September 1998 and July 1999), and from a cross-shelf transect (in April 2000), to examine the differential effects of redox and sedimentation rate on carbon decay dynamics in a river-dominated margin. Downcore distribution of pigments, bulk organic carbon and nitrogen, and radioactive isotopes (210Pb, 7Be) were used to evaluate the decomposition and preservation of pigments and bulk organic carbon. The distinctly different sedimentary regimes and dynamic nature of the LA shelf limit the application of diagenetic models. Sedimentation processes in the lower Mississippi River and oxic shelf sites were significantly impacted by the river discharge. In areas with low sedimentation, the depth of the surface mixed layer fluctuated with seasonal variation of weather forcing. It was observed that pigment decay rate constants in the mixed layer (7.52 year−1 for chlorophyll-a) were greater than those in the accumulation layer (0.14–0.22 year−1 for chlorophyll-a) by 1–2 orders of magnitude. This suggests that enhanced decomposition of reactive organic carbon occurred in the mixed layer at locations with low sedimentation rates—due to higher decay rates. Conversely, at locations with high sedimentation rates (>10 cm year−1), the reactive carbon pool was rapidly buried below the mixed layer. The surface mixed layer likely worked as a biogeochemical reactor receiving high inputs of phytodetritus, supported by an active microbial community. We propose that despite the frequency of occurrence of bottom water hypoxia on the Louisiana shelf, sedimentation rate and lability of organic matter are more important in controlling the preservation of organic carbon.  相似文献   

13.
The Es3L (lower sub-member of the third member of the Eocene Shahejie Formation) shale in the Jiyang Depression is a set of relatively thick and widely deposited lacustrine sediments with elevated organic carbon, and is considered to be one of the most important source rocks in East China. We can determine the mineralogy, organic and inorganic geochemistry of the Es3L shale and calculate paleoclimate indexes by using multiple geochemical proxies based on organic chemistry (total organic carbon [TOC] and Rock-Eval pyrolysis), major and trace elements, X-Ray diffraction, and carbon and oxygen isotope data from key wells alongside ECS (Elemental Capture Spectroscopy) well log data. These indicators can be used to analyze the evolution of the paleoenvironment and provide a mechanism of organic matter (OM) accumulation. The Es3L oil shale has high TOC abundance (most samples >3.0%) and is dominated by Type I kerogens. Additionally, the organic-rich shale is rich in CaO and enrichment in some trace metals is present, such as Sr, Ba and U. The positive δ13C and negative δ18O values, high Sr/Ba, B/Ga and Ca/Ca + Fe ratios and low C/S ratios indicate that the Es3L shales were mainly deposited in a semi-closed freshwater-brackish water lacustrine environment. The consistently low Ti/Al and Si/Al ratios reflect a restricted but rather homogeneous nature for the detrital supply. Many redox indicators, including the Th/U, V/(V + Ni), and δU ratios, pyrite morphology and TOC-TS-Fe diagrams suggest deposition under dysoxic to suboxic conditions. Subsequently, the brackish saline bottom water evolved into an anoxic water body under a relatively arid environment, during which organic-lean marls were deposited in the early stage. Later, an enhanced warm-humid climate provided an abundant mineral nutrient supply and promoted the accumulation of algal material. OM input from algal blooms reached a maximum during the deposition of the organic-rich calcareous shale with seasonal laminations. High P/Ti ratios and a strongly positive relationship between the P and TOC contents indicate that OM accumulation in the oil shale was mainly controlled by the high primary productivity of surface waters with help from a less stratified water column. Factors such as the physical protection of clay minerals and the dilution of detrital influx show less influence on OM enrichment.  相似文献   

14.
The distribution and abundance of viable and non-viable (so-called resting eggs) embryos of the calanoid copepod Tortanus forcipatus were determined in the laboratory by the enumeration of nauplii that emerge from sediments collected in Victoria Harbor (Hong Kong). Sediment cores sliced down to a depth of 37 cm showed the highest number of viable resting eggs near the surface layer (0–5 cm). The number of viable eggs sharply decreased with sediment depth, particularly at the inner harbor stations, although diapause eggs remained viable as deep as 25 cm. 210Pb analyses of the sediments indicated that the mean egg age was 4.9 years. The egg mortality of T. forcipatus in the sediments was 0.135 year−1, or 78.22% annual egg survival, calculated by regressing ln (egg density) from sediment age. The range of horizontal distribution of viable resting eggs was 24.25 × 103–58.90 × 103 m−2, with a mean value of 36.8 × 103 m−2 over all stations. The accumulation of viable resting eggs that can persist for an extended period of time provided evidence for the existence of an egg bank of T. forcipatus in the sediments of Victoria Harbor.  相似文献   

15.
Eutrophication has often been one of the major problems encountered in estuaries and coastal waters. The oxic/anoxic status of an estuary can be effectively determined by measurement of the Sediment Oxygen Demand (SOD). The present study forms a pioneering attempt to evaluate the SOD of the Cochin Backwater System (CBS), a tropical eutrophic estuary in the south-west coast of India. The CBS exhibited significant spatio-temporal variations in SOD. The mean net SOD during the dry season (2569.73 μmol O2 m−2 h−1) was almost twice that of the wet season (1431.28 μmol O2 m−2 h−1), presumably due to higher discharge during the latter season. The observed pockets of net oxygen release indicate that the CBS still retains certain autotrophic regions in spite of heavy organic drains. The low oxygen flux in light chambers points towards the role of microphytobenthos in maintaining the oxygen reservoir of the estuarine system.  相似文献   

16.
The accumulation of nine heavy metals in fine-grained sediments from the mangrove fringed coast of French Guiana is evaluated. The dynamic features of the South American tropical coastline, from the Amazon to the Orinoco Rivers, result in mangrove sediments being alternately submitted to phases of erosion and net sedimentation a few tens of years long. This process influences the distribution of the heavy metals associated with these frequently re-mobilized deposits. Sedimentary cores and mangrove plant samples were collected, at different seasons, in various swamps characterized by different properties (content of sedimentary organic matter, distance from sea water and fresh water). The ranges of measured concentrations expressed in μmol g 1 were the following: Cu (0.06 to 0.61), Co (0.12 to 0.68), Pb (0.08 to 0.18), Ni (0.32 to 0.76), Cr (0.61 to 1.40), Zn (1.25 to 5.94), Mn (4.36 to 45.4) and Fe (441 to 1128). No differences were found between sediments from mangroves developing upstream and downstream of urban areas, i.e. Cayenne and Kourou. This suggests that the content of mangrove sediments in heavy metals along the coastline of French Guiana is essentially the result of the continuous alternation of accumulation and transport phases occurring upstream after departing from the Amazon watershed. The sources of this heavy metals content are thus difficult to identify. However it is well known that the alluvium produced by the natural erosion of the Amazonian soils is naturally enriched in mercury. Also, the run-off from gold mining activities is known to contribute to mercury pollution. Ranges in total Hg were between 0.15 and 2.57 nmol g 1, with mean values close to 0.41 nmol g 1, and were clearly correlated with total organic carbon except for some outstanding high values, which may be a result of rapid geochemical changes. Heavy metal concentrations showed variations with depth. The redox conditions and the decay processes affecting the organic matter control the cycling of iron and manganese, which in turn control the concentrations and associations of heavy metals. These preliminary results suggest that the variations in heavy metal content with depth or between mangrove areas result largely from diagenetic processes rather than changes in metal input resulting from local human activities.  相似文献   

17.
Microfossil analysis (e.g. diatoms, foraminifera and pollen) represents the cornerstone of Holocene relative sea-level (RSL) reconstruction because their distribution in the contemporary inter-tidal zone is principally controlled by ground elevation within the tidal frame. A combination of poor microfossil preservation and a limited range in the sediment record may severely restrict the accuracy of resulting RSL reconstructions. Organic δ13C and C/N analysis of inter-tidal sediments have shown some potential as coastal palaeoenvironmental proxies. Here we assess their viability for reconstructing RSL change by examining patterns of organic δ13C and C/N values in a modern estuarine environment. δ13C and C/N analysis of bulk organic inter-tidal sediments and vegetation, as well as suspended and bedload organic sediments of the Mersey Estuary, U.K., demonstrate that the two main sources of organic carbon to surface saltmarsh sediments (terrestrial vegetation and tidal-derived particulate organic matter) have distinctive δ13C and C/N signatures. The resulting relationship between ground elevation within the tidal frame and surface sediment δ13C and C/N is unaffected by decompositional changes. The potential of this technique for RSL reconstruction is demonstrated by the analysis of part of an early Holocene sediment core from the Mersey Estuary. Organic δ13C and C/N analysis is less time consuming than microfossil analysis and is likely to provide continuous records of RSL change.  相似文献   

18.
Surface sediment samples from a matrix of fifty-five sites covering virtually the entire Bohai Sea (Bohai), China were analyzed for total organic carbon (TOC), total nitrogen (TN), n-alkanes, unresolved complex mixture (UCM), biomarkers and stable carbon isotopic composition (δ13C), and principal component analysis was performed for source identification of organic matter (OM). The distribution of organic carbon correlated well with sediment grain size with the finest sediments having the highest concentration, suggesting the influence of hydrodynamics on the accumulation of sedimentary organic matter (SOM). The corrected TOC/ON (organic nitrogen) ratios and δ13C indicated mixed marine and terrestrial sources of SOM. Results suggested that δ13C could be used as a potential indicator to observe the dispersion of Huanghe-derived sediments in Bohai. Total n-alkane concentrations varied over 10-fold from 0.39 to 4.94 μg g− 1 (dry weight) with the maximum terrigenous/aquatic alkane ratio observed at the Huanghe River Estuary (HRE) due to more higher plant OM from riverine inputs. C12–C22 n-alkanes with even-to-odd predominance were observed in several central-eastern Bohai sites. The HRE and its adjacent area is the main sink for the Huanghe river-derived OC. The ubiquitous presence of UCM, biomarkers (hopanes and steranes) and PCA results indicated the presence of petroleum contamination in Bohai, mainly from offshore oil exploration, discharge of pollutants from rivers, shipping activities and atmospheric deposition.  相似文献   

19.
《Marine Geology》2005,216(3):155-167
A total of 83 cores were collected in the Gulf of Lions continental margins and analysed for 210Pbxs (excess 210Pb) in order to understand sedimentation patterns. Apparent sedimentation rates (ASR) range from 0.65 cm year−1 in the vicinity of the Rhône River mouth to 0.01 cm year−1 in the deep basin. Except for the prodelta area, rates decrease with depth linearly with the water depth. On the slope, ASR do not differ between canyons and open slope, except for the western area where the rates are slightly higher in the Lacaze–Duthiers canyon compared to its adjacent, open slope. In the canyon and open slope areas, mass accumulation rates determined from 210Pbxs profiles (0.10 and 0.08 g cm−2 year−1, respectively) are in good agreement with particulate fluxes calculated from 5 years of near-bottom sediment trap data, even when the trap particle fluxes and the apparent accumulation rates are overestimated in response to resuspension and bioturbation effects.However, differences in sediment trap data, between west and east portion of the slope, are not observed in the sedimentation rates calculated with 210Pbxs. The outer shelf area may have an important role in trapping sediment but it is not sufficiently documented. Sediment surface mixed layer depths decrease with water depth, with a mean value for the whole margin of 8±6 cm.210Pbxs inventories in the sediment are systematically higher than the net 210Pb export flux estimated from the above water column. Over the margin, the ratio between accumulated 210Pb and available 210Pb is about 3, suggesting boundary scavenging effects and advective transport.  相似文献   

20.
Organic carbon fluxes through the sediment/water interface in the high-latitude North Atlantic were calculated from oxygen microprofiles. A wire-operated in situ oxygen bottom profiler was deployed, and oxygen profiles were also measured onboard (ex situ). Diffusive oxygen fluxes, obtained by fitting exponential functions to the oxygen profiles, were translated into organic carbon fluxes and organic carbon degradation rates. The mean Corg input to the abyssal plain sediments of the Norwegian and Greenland Seas was found to be 1.9 mg C m−2 d−1. Typical values at the seasonally ice-covered East Greenland continental margin are between 1.3 and 10.9 mg C m−2 d−1 (mean 3.7 mg C m−2 d−1), whereas fluxes on the East Greenland shelf are considerably higher, 9.1–22.5 mg C m−2 d−1. On the Norwegian continental slope Corg fluxes of 3.3–13.9 mg C m−2 d−1 (mean 6.5 mg C m−2 d−1) were found. Fluxes are considerably higher here compared to stations on the East Greenland slope at similar water depths. By repeated occupation of three sites off southern Norway in 1997 the temporal variability of diffusive O2 fluxes was found to be quite low. The seasonal signal of primary and export production from the upper water column appears to be strongly damped at the seafloor. Degradation rates of 0.004–1.1 mg C cm−3 a−1 at the sediment surface were calculated from the oxygen profiles. First-order degradation constants, obtained from Corg degradation rates and sediment organic carbon content, are in the range 0.03–0.6 a−1. Thus, the corresponding mean lifetime of organic carbon lies between 1.7 and 33.2 years, which also suggests that seasonal variations in Corg flux are small. The data presented here characterize the Norwegian and Greenland Seas as oligotrophic and relatively low organic carbon deep-sea environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号