首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
To test the effects of site and successional stage on nitrogen fixation rates in salt marshes of the Venice Lagoon, Italy, acetylene reduction assays were performed with Salicornia veneta‐ and Spartina townsendii‐vegetated sediments from three restored (6–14 years) and two natural marshes. Average nitrogen fixation (acetylene reduction) rates ranged from 31 to 343 μmol C2H4·m?2·h?1 among all marshes, with the greatest average rates being from one natural marsh (Tezze Fonde). These high rates are up to six times greater than those reported from Southern California Spartina marshes of similar Mediterranean climate, but substantially lower than those found in moister climates of the Atlantic US coast. Nitrogen fixation rates did not consistently vary between natural and restored marshes within a site (Fossei Est, Tezze Fonde, Cenesa) but were negatively related to assayed plant biomass within the acetylene reduction samples collected among all marshes. Highest nitrogen fixation rates were found at Tezze Fonde, the location closest to the city of Venice, in both natural and restored marshes, suggesting possible site‐specific impacts of anthropogenic stress on marsh succession.  相似文献   

2.
Humic substances (HS) from salt marsh soils were characterized and the relationships among HS composition and some geochemical factors were analysed. For this, three salt marshes with the same vegetation cover (Juncus maritimus), but with different geochemical characteristics, were selected. The qualitative characterization of the soil humic acids and fulvic acids was carried out by elemental analysis, FTIR spectroscopy, fluorescence spectroscopy and VACP/MAS 13C NMR spectroscopy.HS from salt marsh soils under sea rush (Juncus maritimus) displayed some shared characteristics such as low degree of humification, low aromatic content and high proportion of labile compounds, mainly polysaccharides and proteins. However, although the three salt marsh soils under study were covered by the same type of vegetation, the HS showed some important differences. HS composition was found to be determined not only by the nature of the original organic material, but also by environmental factors such as soil texture, redox conditions and tidal influence. In general, an increase in the humification process appeared to be related to aerobic conditions and predominance of sand in the mineral fraction of the soil, while the preservation of labile organic compounds may be associated with low redox potential values and fine soil texture.  相似文献   

3.
In coastal ecosystems, denitrification is a key process in removing excess dissolved nitrogen oxides and participating in the control of eutrophication process. Little is known about the role of salt marshes on nitrogen budgets in cold weather coastal areas. Although coastal salt marshes are important sites for organic matter degradation and nutrient regeneration, bacterial-mediated nitrogen cycling processes, such as denitrification, remain unknown in northern and sub-arctic regions, especially under winter conditions. Using labelled nitrogen (15N), denitrification rates were measured in an eastern Canadian salt marsh in August, October and December 2005. Freshly sampled undisturbed sediment cores were incubated over 8h and maintained at their sampling temperatures to evaluate the influence of low temperatures on the denitrification rate. From 2 to 12 degrees C, average denitrification rate and dissolved oxygen consumption increased from 9.6 to 25.5 micromol N2 m-2 h-1 and from 1.3 to 1.8 mmol O2 m-2 h-1, respectively, with no statistical dependence of temperature (p>0.05). Nitrification has been identified as the major nitrate source for denitrification, supplying more than 80% of the nitrate demand. Because no more than 31% of the nitrate removed by sediment is estimated to be denitrified, the presence of a major nitrate sink in sediment is suspected. Among possible nitrate consumption mechanisms, dissimilatory reduction of nitrate to ammonium, metal and organic matter oxidation processes are discussed. Providing the first measurements of denitrification rate in a St. Lawrence Estuary salt marsh, this study evidences the necessity of preserving and restoring marshes. They constitute an efficient geochemical filter against an excess of nitrate dispersion to coastal waters even under cold northern conditions.  相似文献   

4.
Salt marsh morphology is known to be strongly correlated to vegetation patterns through a complex interplay of biological and physical processes. This paper presents the results of field surveys at several study salt marshes within the Venice Lagoon (Italy), which indicate that salt-marsh macrophyte species may indeed be associated with narrow ranges of soil topographic elevation. Statistical analyses show that several properties of the frequency distributions of halophytes presence are sensitive not only to variations in soil elevation, but also to the specific marsh considered. Through direct in situ sampling and by use of a finite-element hydrodynamic model the role of plant submersion duration and frequency in determining the observed variability of vegetation species is then studied. Measurements of soil salinity have also been performed at selected salt marshes to address its influence on vegetation occurrence. With implications for tidal marshes in general, the distribution of halophytes in the salt marshes considered is found not to be responding to simple rules dictated by the tidal cycle or to salinity, and that such factors, when singularly considered, cannot explain the observed spatial distribution of halophytes. On the basis of observations and modelling results it is thus concluded that a combination of multiple factors, likely dominated by saturated/unsaturated flow in the soil, may be responsible for the observed macrophyte distribution.  相似文献   

5.
Visual traces of iron reduction and oxidation are linked to the redox status of soils and have been used to characterise the quality of agricultural soils. We tested whether this feature could also be used to explain the spatial pattern of the natural vegetation of tidal habitats. If so, an easy assessment of the effect of rising sea level on tidal ecosystems would be possible. Our study was conducted at the salt marshes of the northern lagoon of Venice, which are strongly threatened by erosion and rising sea level and are part of the world heritage “Venice and its lagoon”. We analysed the abundance of plant species at 255 sampling points along a land–sea gradient. In addition, we surveyed the redox morphology (presence/absence of red iron oxide mottles in the greyish topsoil horizons) of the soils and the presence of disturbances. We used indicator species analysis, correlation trees and multivariate regression trees to analyse relations between soil properties and plant species distribution. Plant species with known sensitivity to anaerobic conditions (e.g. Halimione portulacoides) were identified as indicators for oxic soils (showing iron oxide mottles within a greyish soil matrix). Plant species that tolerate a low redox potential (e.g. Spartina maritima) were identified as indicators for anoxic soils (greyish matrix without oxide mottles). Correlation trees and multivariate regression trees indicate the dominant role of the redox morphology of the soils in plant species distribution. In addition, the distance from the mainland and the presence of disturbances were identified as tree-splitting variables. The small-scale variation of oxygen availability plays a key role for the biodiversity of salt marsh ecosystems. Our results suggest that the redox morphology of salt marsh soils indicates the plant availability of oxygen. Thus, the consideration of this indicator may enable an understanding of the heterogeneity of biological processes in oxygen-limited systems and may be a sensitive and easy-to-use tool to assess human impacts on salt marsh ecosystems.  相似文献   

6.
Elemental (TOC, TN, C/N) and stable carbon isotopic (δ13C) compositions and n-alkane (nC16–38) concentrations were measured for Spartina alterniflora, a C4 marsh grass, Typha latifolia, a C3 marsh grass, and three sediment cores collected from middle and upper estuarine sites from the Plum Island salt marshes. Our results indicated that the organic matter preserved in the sediments was highly affected by the marsh plants that dominated the sampling sites. δ13C values of organic matter preserved in the upper fresh water site sediment were more negative (−23.0±0.3‰) as affected by the C3 plants than the values of organic matter preserved in the sediments of middle (−18.9±0.8‰) and mud flat sites (−19.4±0.1‰) as influenced mainly by the C4 marsh plants. The distribution of n-alkanes measured in all sediments showed similar patterns as those determined in the marsh grasses S. alterniflora and T. latifolia, and nC21 to nC33 long-chain n-alkanes were the major compounds determined in all sediment samples. The strong odd-to-even carbon numbered n-alkane predominance was found in all three sediments and nC29 was the most abundant homologue in all samples measured. Both δ13C compositions of organic matter and n-alkane distributions in these sediments indicate that the marsh plants could contribute significant amount of organic matter preserved in Plum Island salt marsh sediments. This suggests that salt marshes play an important role in the cycling of nutrients and organic carbon in the estuary and adjacent coastal waters.  相似文献   

7.
To explore the influences of semi-lunar spring and neap tidal changes on nitrogen cycling in intertidal sediments, a comparative study among waterlogged, desiccated and reflooded systems was carried out in August 2005 and February 2006 by analyzing nitrification, denitrification and N2O depth profiles in the intertidal flats of the Yangtze estuary. Laboratory experiments showed that alternating emersion and inundation resulted in the significant changes in nitrification and denitrification rates in the intertidal sediment systems. Due to the desiccation-related effects, lowest nitrification and denitrification rates were observed in the desiccated sediment cores. Highest nitrification and denitrification rates were however detected in the waterlogged and reflooded systems, respectively. It is hypothesized that the highest nitrification rates in the waterlogged sediments were mainly attributed to higher nitrifier numbers and NH4+ being more available, whereas the availability of NO3 might dominate denitrification in the reflooded sediments. In addition, the highest N2O concentrations were detected in the reflooded sediment cores, and the lowest found in the dried sediment cores. It was also shown that N2O in the intertidal sediments was mainly from nitrification under the desiccated condition. In contrast, N2O in the intertidal sediments was produced mainly via denitrification under the waterlogged and reflooded conditions. It is therefore concluded that the semi-lunar tidal cycle has a significant influence on nitrification, denitrification and N2O production in the intertidal sediment systems.  相似文献   

8.
The effects of the reed,Phragmites australis (Trin.), growing in a brackish water lagoon, were studied in relation to the grain-size distribution of the substratum. At the salt marshes near the lagoon, the upper soils from the surface to a depth of 20 cm contained much silt-clay. These fine particles were found to be transferred from the river and fish ponds near the lagoon, and to be deposited when the tidal rhythm changed, that is, when the water current stopped. In addition, the fine particles, which were deposited on the bottom of the lagoon adjacent to the marshes, became resuspended as a result of wind-caused wave action, and then were transported and redeposited in the salt marshes at the flood tide. Since the reeds further reduced the water current caused by the waves and tide, the reeds were thought to promote redeposition of the resuspended matter. In other words, the reeds were considered to protect deposited and redeposited particles such as silt and clay from resuspension as a result of wave action by reducing the effects of waves and wind. These processes suggested that silt-clay will become abundant in the substratum of the salt marsh adjacent to the lagoon.  相似文献   

9.
Salt marshes accrete both organic and inorganic sediments. Here we present analytical and numerical models of salt marsh sedimentation that, in addition to capturing inorganic processes, explicitly account for above- and belowground organic processes including root growth and decay of organic carbon. The analytical model is used to examine the bias introduced by organic processes into proxy records of sedimentation, namely 137Cs and 210Pb. We find that accretion rates estimated using 210Pb will be less than accretion rates estimated using the 137Cs peak in steadily accreting marshes if (1) carbon decay is significant and (2) data for 210Pb extend below the 137Cs peak. The numerical model expands upon the analytical model by including belowground processes such as compaction and root growth, and by explicitly tracking the evolution of aboveground biomass and its effect on sedimentation rates. Using the numerical model we explore how marsh stratigraphy responds to sediment supply and the rate of sea-level rise. It is calibrated and tested using an extensive data set of both marsh stratigraphy and measurements of vegetation dynamics in a Spartina alterniflora marsh in South Carolina, USA. We find that carbon accumulation in marshes is nonlinearly related to both the supply of inorganic sediment and the rate of sea-level rise; carbon accumulation increases with sea-level rise until sea-level rise reaches a critical rate that drowns the marsh vegetation and halts carbon accumulation. The model predicts that changes in carbon storage resulting from changing sediment supply or sea-level rise are strongly dependent on the background sediment supply: if inorganic sediment supply is reduced in an already sediment poor marsh the storage of organic carbon will increase to a far greater extent than in a sediment-rich marsh, provided that the rate of sea-level rise does not exceed a threshold. These results imply that altering sediment supply to estuaries (e.g., by damming upstream rivers or altering littoral sediment transport) could lead to significant changes in the carbon budgets of coastal salt marshes.  相似文献   

10.
A combination of field and numerical modeling methods was used to assess porewater movement in a narrow (20 m) Spartina marsh which was flooded regularly by tidal waters. Soil composition and soil hydraulic properties did not vary across the marsh or with depth. Hydraulic head was monitored on a transect perpendicular to the creekbank. During exposure of the marsh surface, hydraulic gradients were predominantly horizontal; vertical gradients were small or zero. Subsurface flow was directed from the marsh interior toward the creekbank. Approximately 141 of pore water were discharged laterally to the adjacent tidal creek per meter of creekbank over a complete tidal cycle.A numerical hydrological model was modified to simulate subsurface hydraulics in the creekbank vicinity of regularly flooded tidal marshes. The model was parameterized to represent soil conditions, tidal fluctuations and topography at the field site. Observed changes in hydraulic head over complete tidal cycles were accurately predicted by the model. Model simulations identified the vertical infiltration of creek water into the marsh surface at the onset of tidal flooding as the primary source (66%) for the replacement of water drained at the creekbank. Significant replacement (31%) also occurred as discharge from the interior marsh. Horizontal recharge at the creekbank was minimal (3%).A sensitivity analysis was conducted with the model to assess the relative importance of geomorphological factors and soil properties in controlling pore water export at the creekbank of tidal marsh soils. Each parameter was varied systematically over a realistic range for field conditions. Changes in marsh elevation exerted greater control over creekbank discharge than changes in soil hydraulic properties. More rapid turnover of pore water near creekbanks of higher elevation marshes is hypothesized.  相似文献   

11.
Sediment collections on a mainland fringing marsh, a lagoon marsh and a barrier island fringing marsh were conducted in conjunction with Geographic Information Systems (GIS) analysis of aerial photographs to relate changes in marsh area to sedimentary processes. The island marsh lost 7·2% of its area in 8 years by overwash. The lagoon marsh lost 10·6% of its area over 41 years by recession of marsh edges. The mainland marsh area increased by 8·2% over 50 years, primarily by upland encroachment. Surface sediment was collected monthly at the mainland and lagoon marshes for 1 year to identify changes in the mean grain size, organic content and mass of sediment deposited on sampling plates. Short-term variability in these characteristics obscured seasonal differences. Grain size and monthly sediment accumulation decreased towards the interior of both marshes, while the organic matter content increased. On the lagoon marsh, coarse sediment at creekside stations, as well as grain size contrasts between surface and subsurface sediment, are consistent with erosion evident in GIS analysis. On the mainland marsh, sediment does not vary as much with location or depth, and topography appears stable. Tidal currents appear to be competent to resuspend most particle sizes represented in surface sediment samples, including aggregates, except at the edge of the lagoon site. Decreasing rates of marsh edge change reflect moderation of oceanic processes, while the interior of both lagoon and mainland marshes remained stable throughout the study. Both lagoon marsh losses to recession and mainland marsh gains from upland reflect the submergence which this shoreline experiences.  相似文献   

12.
Salt marsh sediment volume decreases from organic decomposition, compaction of solids, and de-watering, and each of these processes may change with age. Variability in the vertical accretion rate within the upper 2 m was determined by assembling results from concurrent application of the 137Cs and 210Pb dating techniques used to estimate sediment age since 1963/1964, and 0 to ca 100+ years before present (yBP), respectively. The relationship between 210Pb and the 137Cs dated accretion rates (Sed210 and Sed137, respectively) was linear for 45 salt marsh and mangrove environments. Sed210 averaged 75% of Sed137 suggesting that vertical accretion over the last 100+ years is driven by soil organic matter accumulation, as shown for the pre 137Cs dated horizon. The ratio of Sed210/Sed137 declines with increasing mineral content. A linear multiple regression equation that includes bulk density and Sed137 to predict Sed210 described 97% of the variance in Sed210. Sediments from Connecticut, Delaware and Louisiana coastal environments dated with 14C indicate a relatively constant sediment accretion rate of 0.13 cm year−1 for 1000–7000 yBP, which occurs within 2 m of today's marsh surface and equals modern sea level rise rates. Soil subsidence is not shown to be distinctly different in these vastly different coastal settings. The major reason why the Sed137 measurements indicate higher accretion rates than do the Sed210 measurements is because the former apply to younger sediments where the effects of root growth and decomposition are greater than in the latter. The most intense rates of change in soil volume in organic-rich salt marshes sediments is, therefore, neither in deep or old sediments (>4 m; >1000 years), but within the first several hundreds of years after accumulation. The average changes in organic and inorganic constituents downcore are nearly equal for 58 dated sediment cores from the northern Gulf of Mexico. These parallel changes downcore are best described as resulting from compaction, rather than from organic matter decomposition. Thus most of the volumetric changes in these salt marsh sediments occurs in the upper 2 m, and declines quickly with depth. Extrapolation forwards or backwards, using results from the 210Pb and the 137Cs dating technique appear to be warranted for the types of samples from the environments described here.  相似文献   

13.
Ecosystem engineers can influence community and ecosystem dynamics by controlling resources, modifying the flow of energy or biomass, or changing physical characteristics of the habitat. Invasive hybrid cordgrass (Spartina alterniflora × Spartina foliosa) is an ecosystem engineer in salt marshes in San Francisco Bay, California, U.S.A. that raises intertidal elevations and may be either increasing C4 plant carbon input into food webs or tying up carbon in a form that is not usable by consumers. A manipulative experiment compared abundance, growth, and stable isotope (δ13C and δ15N) composition of the clam Macoma petalum (=M. balthica) among native marsh, hybrid Spartina, and mudflats in central San Francisco Bay. We found higher densities (individuals m−2) of M. petalum on mudflats compared to either native or hybrid Spartina (p < 0.001). Macoma petalum shell growth was significantly greater in mudflats than in either vegetation type in 2002 (p = 0.005) but not 2003. Differences in shell growth between native and hybrid Spartina were not significant. Stable isotope results showed differences between habitats in δ13C but not δ15N. Carbon signatures of M. petalum placed in Spartina were much more depleted than the isotopic signature of Spartina. Neither native nor hybrid Spartina appears to be a significant carbon source for M. petalum in San Francisco Bay, and we found no evidence that hybrid Spartina contributes carbon to M. petalum beyond what is provided by S. foliosa, despite the hybrid's much greater biomass. Our results show that loss of mudflat habitat, rather than increased input of C4 carbon, is the greatest effect of the invasion of hybrid Spartina on M. petalum.  相似文献   

14.
We studied the population ecology of the snail Melampus bidentatus in relation to patch composition and landscape structure across several salt marsh systems in Connecticut, USA. These marshes have changed significantly over the past 40–50 years including loss of total area, increased areas of short Spartina alterniflora, and decreased areas and fragmentation of Spartina patens. These changes are consistent with tidal inundation patterns that indicate frequent flooding of high marsh areas. Melampus bidentatus densities were highly variable, both among different salt marsh systems and locations within specific marshes, but were generally similar among short Sp. alterniflora and Sp. patens patches within locations. Densities were lowest where the marsh was regularly inundated at high tide and only remnant Sp. patens patches remained. Almost no snails were found in bare patches. Areas that had large Sp. patens patches adjacent to short Sp. alterniflora supported the highest M. bidentatus densities. Population size‐structure varied significantly among patch types, with higher proportions of large individuals in short Sp. alterniflora and hummocked Sp. patens patches than in large and remnant Sp. patens patches. This was likely due to size‐selective predation and/or higher snail growth rates due to better food resource conditions in short Sp. alterniflora patches. Egg mass densities and the number of eggs per egg mass were highest in short Sp. alterniflora. Our results indicate that M. bidentatus is resilient to the level and patterns of salt marsh change evident at our study sites. Indeed, snail densities were significantly higher than reported in other field studies, suggesting that increased patch areas of short Sp. alterniflora and associated environmental conditions at our study sites may provide more favorable habitats than previously when marshes were dominated by extensive Sp. patens meadows. However, there may be threshold conditions that could overwhelm the ability of M. bidentatus to maintain itself within salt marsh systems where changes in hydrology, sedimentation and other factors lead to increased numbers of bare patches and ponds and loss of short Sp. alterniflora and Sp. patens. Studies of the responses of resident and transient fauna to salt marsh change are critically needed in order to better understand the implications for salt marsh ecosystem dynamics and services.  相似文献   

15.
Natural and created Spartina brackish marsh habitats in the Guadalupe Estuary, adjacent to the Aransas National Wildlife Refuge, Texas, USA were surveyed during spring, summer, and fall 2004 to evaluate the equivalence of nekton assemblages in an old (>30 years) created marsh. During each season, six replicate samples were collected in each marsh type using a 1-m2 drop sampler. Multivariate analysis revealed significant differences in nekton assemblage structure among marsh type, both within and across seasons. Species richness was significantly higher in the natural marsh in spring and summer but not in fall. Several species that were dominant in the natural marsh but rare or absent in the created marsh had strong correlations with the presence of oyster substrate that was only encountered in natural marsh samples. Although cumulative richness was greater in the natural marsh, eight species were collected only from the created marsh. Shrimp and fish biomass was significantly higher in natural marsh. Analysis of the density, biomass and size structure of three commercially important crustaceans indicated that the created marsh supported similar biomass of some species (white shrimp, blue crab); however, the size structure of some populations was variable among marshes (blue crab, brown shrimp). We conclude that lower substrate complexity (specifically oyster) and soil organic content in the created marsh reduced measures of nekton similarity and recommend that these features be addressed in future restoration efforts.  相似文献   

16.
The evolution of the cross section of a salt-marsh channel is explored using a numerical model. Deposition on the marsh platform and erosion and deposition in the channel affect the tidal prism flowing through the cross section, such that the model captures the evolution of the stage–discharge relationship as the channel and marsh platform evolve. The model also captures the growth of salt-marsh vegetation on the marsh platform, and how this vegetation affects flow resistance and the rate of sedimentation. The model is utilized to study the influence of hydroperiod and vegetation encroachment on channel cross section. Numerical results show that a reduction in hydroperiod due to the emergence of the marsh platform causes an infilling of the channel. Vegetation encroachment on the marsh surface produces an increase in flow resistance and accretion due to organic and mineral sedimentation, with important consequences for the shape of the channel cross section. Finally, modeling results indicate that in microtidal marshes with vegetation dominated by Spartina alterniflora, the width-to-depth ratio of the channels decreases when the tidal flats evolve in salt marshes, whereas the cross-sectional area remains proportional to the tidal peak discharge throughout channel evolution.  相似文献   

17.
The Bolmon lagoon (South of France) is an oligo-mesohaline coastal lagoon that has undergone intense eutrophication in the past decades, resulting from a strong concentration of human activities in its drainage basin. Consequently, it exhibits some characteristics typical of an advanced trophic state; namely, the disappearance of submerged vegetation, the permanently intense phytoplankton growth and the recurrence of cyanoprokaryote blooms. As cyanoprokaryote dominance in south-temperate saline lagoons is little reported, we carried out this study in order to understand the seasonal variations in the phytoplankton composition and biomass, and to analyse the influence of environmental parameters such as salinity, nutrients and climate on the seasonal succession of species. In this lagoon, the phytoplankton was permanently dominated by cyanoprokaryotes, probably because of high availability of nutrients, low light penetration in the water column and frequent turbulent mixing induced by wind. The two most abundant species Planktothrix agardhii (in winter–spring) and Pseudanabaena limnetica (in summer) have low light requirements and are well adapted to a high mixing frequency, which defines the S1 functional group in Reynolds' typology for phytoplankton. Although widely studied in north-temperate lakes, blooms of these typically freshwater species are almost unreported in the Mediterranean area, especially in brackish ecosystems that are not their normal habitat. In the Bolmon lagoon, all their requirements for nutrients, light and mixing are satisfied and they seem to cope with a moderate presence of salt but P. agardhii was less competitive than P. limnetica at highest salinities, the latter being probably more halophytic. Contrary to the observations in lakes located at higher latitudes, the Mediterranean climate seems to induce a typical seasonal pattern of succession characterised by the dominance of P. agardhii (winter) – Chroococcales (spring) – Pseudanabaenaceae (summer) – P. agardhii (autumn, winter). The warm temperatures seemed to have a major influence on the phytoplankton succession, being responsible for the survival of Planktothrix during winter and its rapid and intense development in early spring. Intense mixing and high irradiance in summer promoted the development of Pseudanabaenaceae, as reported in another south-temperate lagoon, the Albufera of Valencia (Spain). The ecological success of Oscillatoriales observed in the Bolmon lagoon is a perfect example of a shift to the “turbid stable state” as proposed for freshwater shallow lakes only. Our work demonstrated that hypereutrophic Mediterranean lagoons can function very similarly to shallow lakes at higher latitudes; but the warmer climate and higher irradiances are probably responsible for differences in the seasonal pattern of species dominance.  相似文献   

18.
This paper reports changes in vegetation distribution and species cover in relation to soil factors and hydrology in a semiarid Mediterranean salt marsh adjacent to the Mar Menor saline lagoon. Species cover, soil salinity, and the groundwater level were monitored between 1991 and 1993 and between 2002 and 2004, and total organic carbon, total nitrogen, total phosphorus, nitrates, ammonium and exchangeable phosphorus were measured in the soils in both study periods. In addition, three soil profiles were described in August 1992 and August 2004. The results indicate an elevation of the water table throughout the 13-year period, which was attributable to water flowing from areas with intensive agriculture. Flooding increased and soil salinity dropped in the most saline sites and increased in the least saline ones. The morphology of the soil profiles reflected the increase in flooding periods, due to the appearance of a greyer matrix in the deeper horizons and a more diffuse pattern of Fe mottles. Following these environmental changes, Sarcocornia fruticosa, Phragmites australis and Juncus maritimus strongly expanded at the wettest sites, which led to the disappearance of the original zonation pattern. The cover of Limonium delicatulum, in turn, decreased with the increase in moisture but increased following the increase in salinity. Changes in soil nutrients were only very evident in the sandy soils of the beach, probably due to the influence of organic debris deposited on the shoreline by the storms and due to the strong increase in the colonisation of this habitat by perennial species. According to the results obtained, control measures are needed in order to preserve habitat diversity in this and other salt marshes of this area. Monitoring of the vegetation distribution could be a useful tool to identify environmental impacts, in order to implement remedial actions.  相似文献   

19.
Supralittoral and terrestrial talitrid amphipods were collected from a salt marsh in Southern Tasmania by pitfall trapping along transects from the mid-tidal level to above the high-tide mark, and by hand collecting from sites chosen to represent the full range from salt marsh to terrestrial vegetation. At each site, the cover of all major plant species was recorded, and soil samples were collected from which soil moisture, organic content and salinity were measured.Eight talitrid species from four ecological groups were collected; one palustral species, one beachflea, three coastal landhoppers and three eastern forest landhoppers. There was substantial overlap in the distributions of these groups. The undescribed beachflea had the widest distribution, from the wettest, most saline sites to theSchoenus nitenstussock grassland at the extreme high-tide mark. The palustral species,Eorchestia palustris, overlapped substantially with the beachflea, but was found within a narrower band of salinities (though not in the most saline sites) and in more poorly-drained sites than the beachflea. Coastal landhoppers,Austrotroides maritimus,Keratroides rexand an undescribed species ofTasmanorchestia, were found mainly in theS. nitenstussock grassland, where they overlapped with forest landhoppers,Keratroides vulgaris,Mysticotalitrus tasmaniaeandM. cryptus, which were found mainly in non-saltmarsh terrestrial sites, well above the high-tide mark.These distributions are discussed in terms of the likelihood that salt marshes provided the route by which talitrid amphipods colonized land. There is no reason from these data to reject salt marshes as the route to land, and it is suggested that they are a more likely route than via rocky or sandy shores.  相似文献   

20.
The Cumberland Basin, a 118 km2 estuary at the head of the Bay of Fundy which has an average tidal range of about 11m, contains large tracts of salt marsh (15% of the area below highest high water). Low marsh (below about 0·9 m above mean high water) is composed almost exclusively of Spartina alterniflora while the vegetation on high marsh is more diverse but dominated by Spartina patens. Because of its higher elevation, high marsh is flooded infrequently for short periods by only extreme high tides. Low marsh is inundated much more frequently by water as much as 4m deep for periods as long as 4 h per tide. Temporal variability in the occurrence of extreme tides influences the flooding frequency of high marsh for any given month and year. Using a modification of Smalley's method, the mean annual net aerial primary production (NAPP) of low and high marsh is estimated to be 272 and 172 g C m?2, respectively. Vegetation turnover times average 1·0 and 2·0 y for low and high marsh, respectively. Because of abundant tidal energy, much of the low marsh production appears to be exported and distributed widely about the estuary. Since high levels of turbidity suppress phytoplankton production, salt marshes produce approximately half of the carbon fixed photosynthetically in the Cumberland Basin. It is concluded that salt marshes play a major ecological role in the Cumberland Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号