首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Marine Geology》1999,153(1-4):177-197
Drilling of deep-water post-Messinian sedimentary sequences by ODP Legs 160 and 161 in the Mediterranean Sea has shown that occurrence of organic-carbon-rich sapropels and sapropel-like sediments extends from the Levantine Basin westward into the Alboran Basin. In the eastern Mediterranean, sapropel deposition started in the Early Pliocene, whereas in the Western Basin the onset of sapropel formation occurred later, in the Early Pleistocene. Precessional cycles are apparently the primary external forcing for sapropel formation. Nevertheless, the pattern of sapropel occurrence suggests that the precessional influence is modulated by the glaciation cycles. Large differences were observed in the organic carbon contents of sapropels recovered in the eastern and western Mediterranean. Correspondence between organic carbon contents, Rock-Eval hydrogen index values and elemental C/N ratios indicate that both variations in the production and preservation of marine organic matter have led to the accumulation of high amounts of organic matter in sapropels. Molecular organic geochemical compositions of sapropels from the eastern Mediterranean further confirm that the major fraction of organic matter in sapropels is derived from marine algal sources and has undergone variable oxidation. Enhanced marine productivity and improved preservation of organic matter is central to sapropel formation. Accumulation of increased amounts of land-derived material at times of sapropel formation is also evidenced, supporting the hypothesis of significant periodic freshwater discharges.  相似文献   

2.
《Marine Geology》1999,153(1-4):91-101
Benthic foraminiferal records across Late Quaternary Mediterranean sapropels S6, S5 and S1 are reviewed and re-considered in the light of recent advances in foraminiferal ecology. It is suggested that the main factor controlling the foraminiferal successions that occur immediately before and after sapropel deposition is the amount of time involved in the onset of anoxic conditions and in the re-oxygenation of the benthic environment. Faunas dominated by deep infaunal taxa such as Globobulimina and Chilostomella reflect a very gradual decrease or increase of bottom water oxygenation. Post-sapropel faunas dominated by small biconvex, trochospiral taxa, which are inferred to have a much more opportunistic life strategy, are typical of a very rapid re-oxygenation of the benthic environment after sapropel deposition. The time involved in re-oxygenation depends upon the mechanism causing sapropel formation. The faunal succession found above sapropel S5 suggests a basin with a strong density gradient in the upper part of the water column during sapropel deposition, followed by a rapid turnover of the following column and quick re-oxygenation of the benthic environment. In contrast, the faunal succession above sapropel S6 suggests a water column with a more gradual density gradient deeper in the basin, a progressive deepening of the halocline, and a very slow increase of bottom water oxygenation.  相似文献   

3.
《Marine Geology》1999,153(1-4):29-39
During Ocean Drilling Program (ODP) Legs 160 and 161, sapropels were recovered both in the western and eastern Mediterranean. This obliges to a reassessment of the previous studies focused on sapropels from only the eastern Mediterranean, and to consider the changes which occurred in the Mediterranean climate but also in the water characteristics both in the Atlantic and in the western Mediterranean. In the North Atlantic, the position of the polar front which migrated southwards during glacial times and the melting of northern ice caps during interglacial periods, together with the convection in the Labrador and Norwegian Seas, appear essential to control the salinities of the waters facing the Strait of Gibraltar. The salinities of the surface and intermediate layers constitute the first driving force of the Mediterranean dynamics, the second driving force being the Mediterranean climate. The stagnation of deep waters leading to sapropel deposition in the western Mediterranean may be explained by a drastic weakening of the density difference between Mediterranean outflow and Atlantic intermediate waters facing the Strait of Gibraltar. This weakening was induced primarily by the salinity decrease of Atlantic surface water and secondly by a rather high salinity in the Atlantic intermediate layer, rather than by a drastic deterioration of the Mediterranean climate. This scenario probably concerns most of the sapropel events and it may be used for the knowledge of Atlantic and Mediterranean functioning over climatic changes.  相似文献   

4.
《Marine Geology》1999,153(1-4):275-302
Detailed interpretation of single-channel air-gun and deep-tow boomer profiles demonstrates that the Marmara Sea, Turkey, experienced small-amplitude (∼70 m) fluctuations in sea level during the later Quaternary, limited in magnitude by the sill depth of the Strait of Dardanelles. Moderate subsidence along the southern shelf and Quaternary glacio-eustatic sea-level variations created several stacked deltaic successions, separated by major shelf-crossing unconformities, which developed during the transitions from global glacial to interglacial periods. Near the Strait of Dardanelles, a series of sand-prone deposits are identified beneath an uppermost (Holocene) transparent mud drape. The sandy deposits thicken into mounds with the morphology and cross-sectional geometries of barrier islands, sand waves, and current-generated marine bars. All cross-stratification indicates unidirectional flow towards the Dardanelles prior to the deposition of the transparent drape which began ∼7000 years BP, in strong support of the notion that the Marmara Sea flowed westwards into the Aegean Sea through the Dardanelles at times of deglaciation in northern Europe. The global sea-level curve shows that, at ∼11,000 and ∼9500 years BP, sea level rose to the sill depths of the Straits of Dardanelles and Bosphorus, respectively. The effect from ∼11,000 to ∼9500 years BP was seawater incursion into the Marmara Sea, drowning and formation of algal-serpulid bioherms atop lowstand barrier islands, and transgression of shelves and lowstand deltas. At ∼9500 years BP, glacial meltwater temporarily stored in the Black Sea lake, developed into a vigorous southward flow toward the Aegean Sea, forming west-directed sandy bedforms in the western Marmara Sea and initiating deposition of sapropel S1 in the Aegean Sea. This strong outflow persisted until ∼7000 years BP, after which a mud drape began to accumulate in the Marmara Sea and euryhaline Mediterranean mollusks successfully migrated into a progressively more saline Black Sea where sapropel deposition began. Most eastern Mediterranean sapropels from S1 to S11 appear to correlate with periods of rising sea level and breaching, or near-breaching, of the Bosphorus sill. These events are believed to coincide with times of vigorous outflow of low-salinity (?fresh) surface waters transiting the Black Sea–Marmara Sea corridor, and ultimately derived from melting of northern European ice sheets.  相似文献   

5.
Variation in sedimentology as well as freshwater and marine palynomorphs has been studied in ecological perspective in two 2.5‐ and 5‐m deep sediment cores deposited since 3440 and 3630 cal BP, respectively in the central part of Pichavaram mangrove wetland, Cauvery River delta. The palynological and sedimentological results of the sediments reveal a monsoonal circulation and a climatic shift from warm and humid with strengthened monsoon (3630–3190 cal BP) to dry and arid (~2750–760 cal BP). Since the last millennium (~760 cal BP), Pichavaram estuary has been influenced by a similar cyclicity but with a less wet and humid climate due to weakened monsoon conditions. These ecological changes in turn affect the relative sea level rise and fall which is reflected by the variability/extinction of freshwater and marine palynomorphs. The estuary remained an active water channel between ~3630 and 2750 cal BP, responding to the strengthened monsoon, during which the freshwater algal remains with thecamoebians and marine dinoflagellate cysts and foraminiferal linings both dominated with a ratio of 1.5 for marine/freshwater forms. After this period, since ~2750 cal BP there has been a dominance of marine forms with a ratio of 4.5 for marine/freshwater forms, indicating fluvio‐marine sediment deposition and suggesting the recent landward intrusion of seawater during weakened monsoon conditions. Freshwater thecamoebians are vulnerable to the salinity >3 in the aqueous soil solution of estuarine sediment, and therefore serve as an excellent proxy for monitoring salinity gradient along with short‐term high resolution palaeoecological fluctuations induced by climate and relative sea‐level changes in an estuarine ecosystem.  相似文献   

6.
《Marine Geology》1999,153(1-4):11-28
For 50 years the existence of sapropels (organic-carbon-rich sediments) deposited within Plio–Pleistocene sediments of the Mediterranean Sea has been known. Initially, research concentrated on material recovered in relatively short gravity/piston cores taken from the eastern basins where sequences were found to be well developed/preserved and had extensive spatial coverage. In the main, previous studies concentrated upon establishing a workable stratigraphy, spatial correlation of individual layers and determining the probable depositional mechanisms. However, despite a plethora of research papers, some issues still remain unresolved. This is in part due to a lack of agreement between investigators; sampling and analytical short comings, restricted sample size and the fact that, in many instances, like was not being compared with like. Recently, the limit of sapropels in the western basin has been further extended. As a result, the palaeoceanographic/palaeoclimate models which had previously been developed for deposition of sapropels in the eastern basin have been modified. Most recently, strong links have been established between astronomical cyclicity and sapropel formation. This review paper provides a summary of sapropel research to date, and ongoing sapropel research in the Mediterranean, some of which appears in this thematic issue of Marine Geology. It is fitting that this thematic issue of Marine Geology be dedicated to the memory of Colette Vergnaud-Grazzini and Rob Kidd who in many ways helped to initiate the resurgence in sapropel studies in the 1970s in the Mediterranean —perhaps in 50 more years we will know all of the answers!  相似文献   

7.
《Marine Geology》1999,153(1-4):253-274
The planktic foraminiferal distribution identified in 60 cores collected in different basins of the Mediterranean Sea allowed to establish an ecostratigraphical scheme which provides a very important tool for the biochronological subdivision of the uppermost Quaternary. We identified a succession of ten ecozones during the last 23 ka in the Tyrrhenian basin and eight ecozones in the Adriatic Sea during the last 15 ka. The ecozones boundaries have been calibrated by 14C AMS radiometric data and by the stable oxygen isotope record. The chronological framework defined by the successive bioevents shows a very high resolution (millenary scale) and evidences that the changes in the planktic microfauna occurred more or less synchronously throughout the central Mediterranean Sea. Differences due to different oceanographic settings of the basins do not affect the general distributional pattern of planktic foraminifera.  相似文献   

8.
The modern Mediterranean Sea is oligotrophic, yet its sediment record contains layers of organic-carbon-rich sapropels at 21 ky (precessional) spacing that imply periods of elevated paleoproductivity that approached the high productivities of modern upwelling systems. Resolution to this paradox is provided by lines of evidence suggesting that the mode of primary productivity changed from one dominated by algae to one during times of sapropel deposition in which photosynthetic bacteria were important. We have made a high-resolution comparison of the organic carbon and nitrogen isotopic compositions of three sapropels and their background sediments in a 3-m sequence that corresponds to 1001 to 946 ka. Organic δ13C values systematically increase from − 26‰ to − 21‰ and δ15N values systematically decrease from 4‰ to < 0‰ as organic carbon mass accumulation rates increase in the sapropel layers. The increase in carbon isotope values mirrors the increases in primary productivity and associated organic matter export indicated by the increased mass accumulation rates. The decrease in nitrogen isotope values implies major contributions of nitrogen-fixing cyanobacteria to the total marine productivity. The precessional minima with which sapropels coincide were times of wetter climate that stratified the surface Mediterranean Sea, increased delivery of soil-derived phosphorus, and evidently amplified microbial primary production. Our high-resolution study reveals several relatively rapid excursions into and out of the high-productivity mode that suggest that sapropel deposition was a climate-sensitive surface-driven phenomenon that was not accompanied by basin-wide stagnation.  相似文献   

9.
Marine isotope stage (MIS) 9 is one of the least investigated Pleistocene interglaciations. The present study describes reconstructions of deep-water conditions during this time interval based on benthic foraminiferal assemblages from sediment core M23414 (Rockall Plateau, North Atlantic). The results of faunal analysis were supported by planktic δ18O, sea surface temperature reconstructions based on planktic foraminiferal assemblages and content of ice rafted debris. Statistical data processing using principal component analysis revealed five climate-related benthic foraminiferal associations that changed in response to alterations of deep-water circulation.  相似文献   

10.
《Marine Geology》1999,153(1-4):103-116
Diagenetic dissolution of magnetic minerals has been widely observed in organic-rich sediments from many environments. Organic-rich sediments from the eastern Mediterranean Sea (sapropels), recovered during Leg 160 of the Ocean Drilling Program, reveal a surprising catalogue of magnetic properties. Sapropels, from all sites studied across the eastern Mediterranean Sea, are strongly magnetic and the magnetization is directly proportional to the organic carbon content. The magnetization of the sapropels is dominated by a low-coercivity, probably single domain magnetic mineral (with an inverse magnetic fabric) that exhibits a clear decay in magnetic properties when exposed to air. During heating, the magnetic particles irreversibly break down between 360 and 400°C. The contrast between the magnetic properties of sapropels and surrounding sediments is marked, with remanence intensities of sapropels often being more than three orders of magnitude higher than those of underlying sediments. The contrast between the magnetic properties of sapropels and the surrounding sediments is apparently controlled by non-steady-state diagenesis: sulphate-reducing conditions dominated during sapropel deposition, while overlying sediments were deposited under oxic conditions. The mineral responsible for the magnetic properties of sapropels is most likely to have formed under sulphate-reducing conditions that existed during times of sapropel formation. Attempts to identify this mineral have been unsuccessful, but several lines of evidence point toward an unknown ferrimagnetic iron sulphide phase. The influence of diagenesis on the magnetic properties of cyclically-deposited eastern Mediterranean sedimentary sequences suggests that magnetic parameters may be a useful proxy for diagenesis in these sediments.  相似文献   

11.
Numerous sapropels and sapropelic strata from Upper Pliocene and Pleistocene hemipelagic sediments of the Tyrrhenian Sea show that intermittent anoxia, possibly related to strongly increased biological productivity, was not restricted to the eastern Mediterranean basins and may be a basin-wide result of Late Pliocene-Pleistocene climatic variability. Even though the sapropel assemblage of the Tyrrhenian Sea clearly originates from multiple processes such as deposition under anoxic conditions or during spikes in surface water productivity and lateral transport of organic-rich suspensates, many “pelagic sapropels” have been recognized. Stratigraphic ages calculated for the organic-rich strata recovered during ODP Leg 107 indicate that the frequency of sapropel formation increased from the lowermost Pleistocene to the base of the Jaramillo magnetic event, coinciding with a period when stable isotope records of planktonic foraminifera indicate the onset of climatic cooling in the Mediterranean. A second, very pronounced peak in sapropel formation occurred in the Middle to Late Pleistocene (0.73-0.26 Ma). Formainifers studied in three high-resolution sample sets suggest that changes in surface-water temperature may have been responsible for establishing anoxic conditions, while salinity differences were not noted in the faunal assemblage. However, comparison of sapropel occurrence at Site 653 with the oxygen isotopic record of planktonic foraminifers established by Thunell et al. (Proc. ODP, Sci. Results 107, 1990) indicates that sapropel occurrences coincide with negative δ18O excursions in planktonic foraminifers in thirteen of eighteen sapropels recognized in Hole 653A. A variant of the meltwater hypothesis accepted for sapropel formation in the Late Pleistocene eastern Mediterranean may thus be the cause of several “anoxic events” in the Tyrrhenian as well. Model calculations indicate that the amount of oxygen advection from Western Mediterranean Deep Water exerts the dominant control on the oxygen content in deep water of the Tyrrhenian Sea. Inhibition of deep-water formation in the northern Adriatic and the Balearic Basin by increased meltwater discharge and changing storm patterns during climatic amelioration may thus be responsible for sapropel formation in the Tyrrhenian Sea.  相似文献   

12.
Nineteen surface sediment samples, collected onboard ORV Sagar Kanya during the 199C and 200th (the pilot expedition to Southern Ocean) cruises along a north-south transect between 1.92° S to 55.01° S latitude and 67.88° E and 44.89° E longitude, were studied for total planktonic foraminiferal assemblage, relative abundance and the oxygen isotopic values of the indicator planktic species Globigerina bulloides. These profiles were compared with the latitudinal variations in the average salinity and nutrient (phosphate) contents of the top 100 meters water column. The initial results have traced the signatures of salinity linked variations of different water masses in the study region. The influence of Australian Mediterranean Water (AAMW) has been noticed in the present dataset.  相似文献   

13.
In core ADE3-23 collected in the Libyan Sea, the nannofossil species Coccolithus pelagicus, Coronosphaera spp., Helicosphaera spp., Syracosphaera spp., Calcidiscus spp., small Gephyrocapsa spp., and the planktonic foraminifers Globigerina bulloides, Neogloboquadrina pachyderma, Globorotalia scitula, Turborotalita quinqueloba and Neogloboquadrina dutertrei prevail in sapropel S6 (midpoint at 172 ka b.p.), indicative of cold and highly productive surface conditions. Warm and highly stratified water-column conditions are recorded by the characteristic assemblage of Globigerinoides ruber, Globoturborotalita rubescens, Florisphaera profunda, Rhabdosphaera spp. during the sapropel S5 depositional interval (midpoint at 124 ka b.p.). Compared with S5, Globigerinita glutinata, Globorotalia inflata, Globigerinella siphonifera, Globorotalia truncatulinoides and the calcareous nannofossil Emiliania huxleyi characterise less stratified conditions within sapropel S1 (midpoint at 8.5 ka b.p.). Multivariate statistical analyses of calcareous nannofossil and planktonic foraminifers in core ADE3-23 identify planktonic assemblages which typify sapropels S6, S5 and S1 in the Libyan Sea. A warmer interval is recognised in the middle part of the cold S6, and can be associated with an influx of less saline waters and the occurrence of a faint, temporary deep chlorophyll maximum. Evidence for enhanced surface productivity and breakdown of stratification is observed in the middle–upper part of the warm S5, associated with climatic deterioration. Moreover, an increase in surface productivity in the upper S1 implies weak stratification. Our combined calcareous nannofossil and planktonic foraminiferal data add to the evidence that climate variability was more pronounced than commonly considered to date for all the three studied Eastern Mediterranean sapropel depositional intervals.  相似文献   

14.
《Marine Geology》1999,153(1-4):221-237
The Quaternary climate of southern Europe (south Italy and Greece) is investigated by pollen analysis of the sapropels which were deposited in the deep eastern Mediterranean Sea during the last 1 million year (Ma). The time-scale of core KC01b in the Ionian Sea has been established by tuning its oxygen isotopic record to the ice volume model of Imbrie and Imbrie (1980). For the last 250,000 year (250 ka), the previous pollen studies and astronomical tuning have been confirmed. Sapropels were deposited under a large range of Mediterranean climates: fully interglacial, fully glacial, and intermediary, as revealed mainly by the balance between the respective pollen abundances of oak (Quercus) and sage-brush (Artemisia). The high value of the oak reveals the warm and wet climate of an Interglacial, and the high value of the sage-brush, the dry and cold climate of a Glacial. Whereas the Mediterranean climate is directly related to the variation of the high-latitude ice sheets, the deposition of sapropels is not so. In contrast with the wide climatic range, sapropels were deposited only when summer insolation in the low latitudes reached its highest peaks. However, between 250 ka and 1 Ma, that stable pattern is not yet established. Only six sapropels are observed, many expected ones do not appear, even as ghosts signalled by peaks of barium abundance, that remain after the post-deposition oxidation of organic matter. The pattern of sapropel formation in stable and direct relationship to highest insolation does not seem to apply. For five of those sapropels, neither climate extremes are observed; they mainly formed during intermediary types of Mediterranean climate. In contrast, one sapropel (and one ghost) relates to a relatively low peak of insolation, and its climate is of a unique, composite type not seen later. This might suggest an unsuspected, more complex pattern linking the formation of Mediterranean sapropels to the astronomical configuration.  相似文献   

15.
《Marine Geology》1999,153(1-4):319-335
Sediments from a boxcore in the previously anoxic brine-filled Poseidon Basin, eastern Mediterranean, have been studied and compared to sediments deposited in a `normal' eastern Mediterranean environment. The boxcore can be divided into three main sedimentary intervals based on AMS-radiocarbon ages, foraminiferal and geochemical zonations. From the base of the core upwards these are: (1) 12.3–31.2 cm, organic-rich sediments redeposited from within the brine; (2) 6.6–12.3 cm, sediment containing a `cold' foraminifera fauna redeposited from above the brine into the basin while the brine was still present; (3) 0–6.6 cm, oxic pelagic sediment accumulated since the reoxygenation of Poseidon Basin which occurred ∼1800 yrs BP. Near the base of the latter unit, a Mn-oxide peak has formed and it marks the present boundary between oxic and suboxic environments. A progressive downward oxidation front, which is usually found in `normal' sapropel S1 sediments, has never formed in Poseidon Basin sediments. This has resulted in the preservation of the relationship between organic carbon and organic-related trace elements, e.g. Se, in the organic-rich sediments of Poseidon Basin, whereas such a relationship has been obliterated in `normal' sapropel S1 sediments. On the basis of the carbonate content as well as the Sr/Ca ratio, preservation of carbonates appears to be better in the brine sapropel sediments of BC15 than it is in `normal' sapropel S1 sediments. The high opal content of BC15 shows that biogenic opal is also much better preserved. The overall lower Corg/Ba ratio in BC15 suggests a better preservation of barite relative to that of organic carbon in shallow brine sediments, but is as yet inconclusive for the organic carbon preservation potential of brine relative to `normal' unoxidised sediments.  相似文献   

16.
Continuous pollen and isotopic records were established for core BAN 84 09 GC retrieved from the anoxic Bannock Basin in the Eastern Mediterranean. On the basis of two 14C dates, they document the palaeoclimate between about 25.7 ka B.P. and 5.2 ka B.P. in the northern borderlands of the Ionian Basin. The upper half of the core has been redeposited.

The isotopic record displays a correlation with pollen percentages that is strong and positive for Artemisia (sage-brush) and negative for Quercus (oak). The last glacial maximum and the deglaciation are identified by these combined taxa, together with Chenopodiaceae. The glacial maximum around 18 ka B.P. (which has elsewhere been dated from 20 to 15 ka B.P.) has pollen percentages that are high for Artemisia and low for Quercus. The climate in the pollen source area was arid, cold in winter, briefly warm in summer and sustained the vegetation of a semi-desert. The onset of deglaciation after 18 ka B.P. coincides with that of the decline in Artemisia pollen percentage. However, this decline does not indicate reduced aridity, because it is accompanied by a pollen percentage rise of the even more arid herbs Chenopodiaceae and Ephedra. Throughout the deglaciation from 18 to 11 ka B.P., the aridity progressively increases, culminating at 11 ka B.P. This trend is briefly interrupted by a more humid event, shown by a peak in Artemisia pollen percentage and a smaller peak in oak; these two peaks are coeval with the Bölling-Alleröd chronozone (13-11 ka B.P.). Maximum aridity occurs during the Younger Dryas chronozone (11-10 ka B.P.). Afterwards, the oak pollen percentage begins a steady increase, and its maximum value is coeval with the lowest isotopic value, dated at 8760 ± 170 yr B.P. This period was one of high moisture, warm summers, and, according to altitude, mild to cool winters. This climate sustained forests that were Mediterranean in the lowlands and warm temperate in the uplands. A high pollen concentration is observed during this period and reveals the presence of sapropel S1, which is otherwise unrecognizable in this entirely black core. During the following period between 8760 ± 170 and 5200 yr B.P., the δ180 reverts to slightly higher values and the Quercus pollen percentage decreases, while the pollen percentage of the wetter Ostrya, the oriental hornbeam, increases. The high pollen concentration during the deposition of sapropel S1 cannot have been caused by increased pollen input into the sea, this pollen being wind-borne, nor by increased pollen production for all taxa, both trees and herbs. We conclude that it is entirely due to increased preservation of this allochtonous organic material by the deep anoxia of the bottom water, below a thick anoxic water column. The coincidence of sapropel deposition with warm and humid local climate as well as with the second global meltwater pulse suggests that the cessation of bottom-water ventilation was due to decreased surface water density, resulting from less saline incoming Atlantic surface water, increased local runoff, and warmer winters.  相似文献   


17.
Sediment trap samples collected from the Western Arabian Sea yielded a rich assemblage of intact and non-living (opaque white) pteropod tests from a water depth of 919 m during January to September 1993. Nine species of pteropods were recorded, all (except one) displaying distinct seasonality in abundance, suggesting their response to changing hydrographical conditions influenced by the summer/winter monsoon cycle. Pteropod fluxes increased during the April–May peak of the intermonsoon, and reached maximum levels in the late phase of the southwest summer monsoon, probably due to the shallowing of the mixed layer depth. This shallowing, coupled with enhanced nutrient availability, provides ideal conditions for pteropod growth, also reflected in corresponding fluctuations in the flux of the foraminifer Globigerina bulloides. Pteropod/planktic foraminifer ratios displayed marked seasonal variations, the values increasing during the warmer months of April and May when planktic foraminiferal fluxes declined. The variation in fluxes of calcium carbonate, organic carbon and biogenic opal show positive correlations with fluxes of pteropods and planktic foraminifers. Calcium carbonate was the main contributor to the total particulate flux, especially during the SW monsoon. In the study area, pteropod flux variations are similar to the other flux patterns, indicating that they, too could be used as a potential tool for palaeoclimatic reconstruction of the recent past.  相似文献   

18.
Mid-Miocene (Langhian; ∼15.4 Ma) sapropels formed within the easternmost Mediterranean basin, now uplifted in northern Cyprus. These sapropels represent the oldest known sapropels in a predominantly marl succession. Six well-developed sapropels were studied. Strontium isotope dating of twelve samples gave a preferred age of ∼15.4 Ma (Langhian); i.e. during the final phases of the Middle Miocene Climatic Optimum (MCO). The age of the best-preserved nannofossil assemblage (Langhian) is close to the strontium ages. The Langhian strontium ages are preferred over an alternative early Serravallian age for less well-preserved nannofossil assemblages. Total organic carbon contents in the sapropels reach maximum values of 3.9 wt.%. Relative to the host marls, the sapropels show enrichments in terrigenous-derived minerals and related major and trace elements. Sedimentological evidence indicates that the terrigenous sediments were eroded from the northern borderlands of the deep-water basin under warm, humid conditions. High fresh-water run-off from surrounding landmasses is likely to have promoted a low-salinity lid to the eastern Mediterranean deep-water basin. This, in turn, would have restricted deep-water ventilation and promoted widespread anoxia. Exceptionally high concentrations of chalcophile elements (e.g. Cu, Ni and Zn) are consistent with anoxic conditions. Abundant nutrient-rich fresh-water input is also likely to have stimulated siliceous productivity (although any siliceous microfossils did not survive diagenesis). A significant role for diagenesis in sapropel formation is indicated by the mobilisation of Ba from sapropels to marl directly beneath. Orbitally induced dry–wet oscillation, the mechanism invoked to explain the Pliocene to Holocene sapropels, apparently was already in place during the latest stages of the MCO when the Langhian sapropels accumulated. These sapropels accumulated immediately after the Middle Miocene closure of the Southern Neotethys when the Eastern Mediterranean Sea apparently became more sensitive to orbital cyclicity. The development of a semi-enclosed deep-water basin was, therefore, a prerequisite for sapropel formation.  相似文献   

19.
The sedimentology, stratigraphic position, and benthic foraminiferal biostratigraphy of early- to mid-Holocene deposits from the west-central Florida shelf suggest that barrier islands developed along this coast as early as 8.3 ka, in an environment that was more arid than today. Predominant foraminifera of three paralic sedimentary facies deposited between 5.3 and 8.3 ka include miliolids, Elphidium spp., and Ammonia spp., all of which are common in back-barrier environments. Foraminiferal assemblages also suggest that early back-barrier sediments were deposited in a hypersaline environment, similar to that of the arid Laguna Madre of the western Gulf of Mexico. Modern back-barrier foraminifera in the Tampa Bay region are indicative of the humid subtropical climate of today. Thus, the climate of west-central Florida at approximately 8 ka was more arid than today, which is consistent with recent studies showing that climate in the Gulf of Mexico was dryer and cooler during this time period.  相似文献   

20.
The early Holocene marine flooding of the Black Sea has been the subject of intense scientific debate since the “Noah’s Flood” hypothesis was proposed in the late 1990s. The chronology of the flooding is not straightforward because the connection between the Black Sea and the Mediterranean Sea involves the intermediate Marmara Sea Basin via two sills (Dardanelles and Bosphorus). This study explores the chronology of late Pleistocene–Holocene flooding by examining sedimentary facies and molluscs from 24 gravity cores spanning shelf to slope settings in the southern Marmara Sea Basin. A late Pleistocene Ponto-Caspian (Neoeuxinian) mollusc association is found in 12 of the cores, comprising 14 mollusc species and dominated by brackish (oligohaline–lower mesohaline) endemic taxa (dreissenids, hydrobiids). The Neoeuxinian association is replaced by a TurritellaCorbula association at the onset of the Holocene. The latter is dominated by marine species, several of which are known to thrive under dysoxic conditions in muddy bottoms. This association is common in early Holocene intervals as well as sapropel intervals in younger Holocene strata. It is an indicator of low-salinity outflows from the Black Sea into the Marmara Sea that drive stratification. A marine Mediterranean association (87 species) represents both soft bottom and hard substrate faunas that lived in well-ventilated conditions and upper mesohaline–polyhaline salinities (ca. 25 psu). Shallower areas were occupied by hard substrate taxa and phytopdetritic communities, whereas deeper areas had soft bottom faunas. The middle shelf part of the northern Gemlik Gulf has intervals with irregular and discontinuous sedimentary structures admixed with worn Neoeuxinian and euryhaline Mediterranean faunas. These intervals represent reworking events (slumping) likely related to seismic activity rooted in the North Anatolian Fault system. The core data and faunas indicate an oscillating postglacial sea-level rise and phases of increased/decreased ventilation in the Marmara Sea during the Holocene, as well as palaeobiogeographic reorganisations of Ponto-Caspian and Mediterranean water bodies since the latest Pleistocene (<30 ka). The findings contribute to arguments against a single catastrophic flooding of the Black Sea at about 7.5 ka (Noah’s Flood).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号