首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
台风"苏力"是2013年最强的台风之一。本文利用再分析资料、卫星遥感资料及ARGO浮标数据等分析了台风过境所引起的海表面温度(SST)、海表面高度异常(SLA)以及海洋次表层温、盐的变化规律,给出了上层海洋对台风响应的基本特征。台风所经过的海域都存在着明显的降温,在冷涡区域引起了6~7℃的海表温度的冷却,降温区域集中在路径的右侧。台风造成SLA降低,最大为20cm左右。海表温度的变化滞后于海面高度的变化。ARGO浮标数据显示,台风引起了海面的显著降温,最大降温幅度为5℃,位于冷涡内,且位于路径的右侧。路径左侧的SST的降低相对较小,为1.5~2.5℃。台风的扰动导致次表层水涌升到表层,改变了表层的盐度和密度,引起混合层加深。  相似文献   

2.
连续台风对海表温度和海表高度的影响   总被引:1,自引:0,他引:1  
利用多卫星观测资料,分析了2008年9月3个连续台风前后的海表温度(SST)和海表高度距平(SSHA)的时空变化特征,并探讨了影响其变化的主要因子。结果表明:(1)3个台风引起了强烈的上升流(1×10-5~150×10-5 m/s),海表显著降温(1~6 ℃),海表高度也有不同程度降低(10~50 cm);(2)台风引起的SST最大降温中心与SSHA负值或中尺度冷涡的区域中心十分吻合,同时台风使得先前存在的海洋中尺度冷涡得到加强;(3)同一区域台风对SST影响程度大小受台风的强度、移动速度以及台风对海面强迫时间等因素控制;(4)在原先SSHA为正值的海域,3个台风连续强迫下使得局地洋面形成一个SSHA为负值的中尺度涡,这与单一"打转"台风强迫海洋生成中尺度涡的现象不同。因此,对于西北太平洋海域而言,频发的台风在中尺度涡生消演变过程中的影响应不容忽视。  相似文献   

3.
台风过境会引起所经海域海洋环境要素场剧烈响应。本文通过分析南海东北部上层海域各要素对2015年第10号台风"莲花"的响应过程,发现以下规律:台风过境期间,海表温度(SST)影响台风的移动路径和强度,两次显著的台风移动方向偏转均发生在台风下垫面温度发生显著改变的条件下。台风吸收海表热量引起SST降低0~1.5℃,而这种热量(以短波辐射和潜热通量为主的海表净热通量)吸收引起的海表失热每秒可达60 W/m2,对台风移动过程产生影响。同时,台风过境时(7月6—9日)的SST降低与失热变化都存在一定的"左偏性"。台风引起的Ekman抽吸速率最高可达1.6×10-3m/s,引起台风过后(7月9日之后) SST的降低。通过对海面10 m风场、海表温度、降雨量进行EOF分析发现:风场在南海东北部海域呈东西反位相分布,风场增强持续时间约5天,具有显著"右偏性"且近岸的局部风场特征明显;降雨量在台风期间呈全域一致性的增加,持续时长约4天,具有显著"左偏性"且在吕宋岛北部局部降雨特征明显;SST在南海东北部绝大部分海域呈降温态势,时长超过8天,降温时间滞后风场约2~3天。整个降温过程(7月5—15日)受Ekman抽吸作用较海表失热作用更大,表现为在台风右侧降温更为显著。同时,台风移动速度越慢,降温效果越明显。台风过境时,粤东离岸流显著增强,上升流区的垂直温度降幅可达2.5℃且滞后流场响应约1~2天;垂直盐度降幅可达1.3 psu且滞后流场响应约2~3天。总体上看,温度在台风响应过程中起着重要的联结作用。  相似文献   

4.
根据ECMWF和CFSV2的数据,本文选择了3个影响我国南海的典型台风过程,分析了海表温度SST在台风期间的变化。结果表明,台风期间SST下降,台风路径右侧的降温幅度明显高于左侧。在过境2d左右,SST下降幅度最为明显,其中201509号台风威马逊降温中心右侧最大异常值可达-2.5762℃,左侧为-1.441℃,降温中心呈明显的右偏性。在此基础上,对SST异常与有效波高,热通量以及风速的相关性进行研究。统计表明,台风期间的SST异常与有效波高和风速的相关性较高,相关系数高达0.6-0.7;与热通量相关性最低,相关系数为0.2-0.4,且台风的最大风速越大,相关系数就越高。通过计算台风期间风向海表波浪输入动能发现,风应力越大,风向波浪输入的动能以及动能下传的深度也越大。海洋内部的混合就越剧烈,故而由混合引起的海表降温幅度较大。可见SST异常与风速以及波浪要素确实有很高的相关性。  相似文献   

5.
利用POM及其与WRF的耦合模式对"格美"台风影响下的该海区进行了5组数值模拟试验,在对结果分析的基础上,得到了西北太平洋西边界流系源区对此次台风过程的响应。研究表明:在台风影响下,最大风速区及热通量输送决定了海表温度(SST)降温中心范围,热通量的输送对SST的降低贡献超过16.7%;受此次台风影响的混合层(OML)加深、维持的时间为42 h,热通量对OML的加深有正作用,但不如风应力的贡献明显。台风移动方向右侧,OML加深范围更大,且SST最大降低区并不是OML最大加深区。此次台风过程对黑潮南向流的影响较弱,主要增加了海洋混合层的北向流流量。利用耦合模式,考虑了海气间的相互作用,在台风中心附近模拟出由于低压引起的海面升高现象。  相似文献   

6.
台风背景下海浪对海表流场和海表温度的影响   总被引:1,自引:0,他引:1  
海浪作为海-气界面中重要的物理过程,对海洋上混合层的近表面分布具有重要作用。本文以台风"威马逊"和"麦德姆"为背景,基于FVCOM耦合模式模拟了台风浪及上层海洋的响应过程,探讨了海浪对海表流场和海表温度的影响。结果表明耦合模式能够较准确地模拟出有效波高,台风过境后海表流场在海浪的作用下反映出与台风相对应的气旋性特性,改变的流场量级可达0.4 m/s;海表温度出现不同程度的下降,最大降温约4℃,最大降温中心与流场变化区域相对应,且降温区相对台风路径呈显著的"右偏性"。最大降温滞后台风中心过境2 d左右,恢复时间一般超过10 d,与实况相吻合。  相似文献   

7.
海面温度变化影响台风"海棠"强度的数值研究   总被引:1,自引:0,他引:1  
通过对台风"海棠"5 d的数值模拟,研究海表温度(SST)变化对台风强度的影响。与NCEP月平均海表温度相对比,在中尺度大气模式中引入热带测雨卫星(TRMM)微波成像仪(TMI)/先进微波扫描辐射计(AMSR-E)来考察SST对台风"海棠"路径和强度的影响。研究结果表明,每天变化SST的试验模拟的台风强度和路径整体效果不错;模拟的台风路径不敏感于SST的变化,而台风强度的变化不仅取决于由于台风移动引发的SST冷却的幅度大小,而且取决于SST冷却区域的相对位置。在台风"海棠"强烈发展过程中,台风中心右侧冷却区对台风中心气压影响很小;台风强烈发展过后,SST冷却区开始影响台风强度,但造成台风中心气压下降幅度不大,6 h内台风中心气压减弱约3.9 hPa。海面热量通量和海面风速与SST的分布都有良好的相关性:在SST变化为正值的暖水区,感热通量和潜热通量都是一个正的通量分布的极值区,并有风速极大值区域存在;在台风右侧相应的冷却区,则存在着负的通量异常和风速极小值区域。  相似文献   

8.
张志伟 《海洋通报》2019,38(5):562-568
基于数字台风网、欧洲中心ERA-Interim、美国国家海洋与大气局以及中国Argo实时资料中心的资料研究了西北太平洋上层海洋对台风"奥鹿"的响应。研究结果表明,当"奥鹿"移动速度在2 m/s以下时,强风应力产生的Ekman泵是上层海洋响应的主要机制,移动速度越慢,Ekman抽吸速率(EPV)越大,海表温度(SST)降温持续时间短,冷尾迹出现在台风中心位置处。当"奥鹿"移动速度达到6 m/s以上时,持续风应力驱动的惯性泵是主导机制,SST降温持续时间长,冷尾迹出现在台风路径的右侧。惯性泵比Ekman泵持续的时间长,但Ekman泵影响深度比惯性泵大得多。在"奥鹿"经过西北太平洋时,混合层深度(MLD)变浅并伴随着"冷抽吸"作用的出现。上层海洋中"冷抽吸"现象较"热泵"现象影响深度深,持续时间长,在"奥鹿"过境后可持续20天以上。  相似文献   

9.
北太平洋海表温度及各贡献因子的变化   总被引:2,自引:0,他引:2  
刘珊  王辉  姜华  金啟华 《海洋学报》2013,35(1):63-75
采用1958年1月至2007年12月SODA海洋上层温度的月平均资料,基于海温变化方程和统计分析方法,分析了北太平洋海表面温度(SST)异常特征及各局地因子贡献比例的变化。结果表明,伴随着1976/1977风场最强中心位置的南北移动,形成了两个北太平洋SST年际-年代际变化的异常中心:一个是位于30°N附近的副热带海盆内区,SST异常主要受风应力强度的主导;一个是位于40°N附近的副热带和副极地环流交汇区,SST异常主要受风应力旋度的位置即风场位置的影响。在副热带海盆内区,最强降温发生在1978-1982年,SST异常的主要局地贡献因子为海表热通量和经向平流,二者所占比例和约为50%~60%,均为同相增温或降温作用,余项所占比例约为20%~50%。在副热带和副极地环流交汇区,海盆内区和西部边界区的SST异常的跃变时间同为1975年,但是内区的垂直混合项的跃变时间早于西部5年左右。SST异常的主要贡献因子为海表热通量和经向平流,但在1983-1988年海温强降温期间,经向平流项贡献大于海表热通量项的贡献。两个区域的垂直混合项均为降温贡献,虽然量值小却显示出很强的年代际变化信号。平流项中经向平流最大,垂直平流最小。  相似文献   

10.
本文基于FVCOM-SWAVE耦合模型,以双台风"苏拉"和"达维"的台风过程为例,研究了台风过程中海浪和海温的变化,通过与高度计和Argo资料的对比,发现耦合模型能较准确的模拟出有效波高和海表面温度。由于双台风风场相互作用,风场结构和最大风速位置发生改变,影响着有效波高的分布,台风"苏拉"产生的最大有效波高位于台风后侧。海表面温度的降低与风场、浪场分布密切相关,强风强浪处的降温现象更明显,"苏拉"产生的降温区域位于路径附近,"达维"产生的降温区域位于路径右侧。台风对海表面温度的降低与初始的混合层厚度、温跃层强度存在相关性,具体表现为初始的混合层越薄、温跃层强度越大,降温越明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号