首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The use of marine high‐resolution geophysical profiling data, seafloor soil samples, and accepted land‐based methods of analysis have provided a means of assessing the regional geotechnical conditions and relative slope stability of the portion of the Gulf of Alaska Continental Margin known as the Kodiak Shelf. Eight distinct types of soils were recognized in the study; the seafloor distribution of these indicates a complex geotechnical setting. Each soil unit was interpreted as having a distinct suite of geotechnical properties and potential foundation engineering problems. Seven categories of relative slope stability were defined and mapped. These categories range from “highest stability”; to “lowest stability,”; and are based on the degree of slope of the seafloor, type of soil underlying the slope, and evidence of mass movement. The results of the analysis indicate that the highest potential for soil failure exists on (1) the slopes forming boundaries between the submarine banks and the broad sea valleys, and (2) the upper portion of the continental slope, where evidence of past slope failure is common. Also of concern are gently sloping areas near the edges of submarine banks where evidence of possible tension cracks and slow downhill creep was found.  相似文献   

2.
The devastating 2004 tsunamis that hit the southwestern coast of Thailand pose a serious threat to people along the coastal zone. A major aim for the tsunami hazard prediction is better prediction of the next tsunamis and their impacts. In this paper, we present the first implications of recent slope failure events of the Andaman outer shelf and upper slope based on a new detailed bathymetric data and subbottom profiler records acquired during two cruises of the MASS project in 2006 and 2007. Mo...  相似文献   

3.
Coccoliths collected by sediment traps deployed on the slope of the Bay of Biscay (northeastern Atlantic), from June 1990 to August 1991, were examined to determine their contribution to the transport of carbonate on a mid-latitude continental margin. They also were used as tracers of particle transfer processes on this slope. Two traps located at 1900 m, respectively at 2300 (Mooring Site 1) and 3000 m (Mooring Site 2) water depths provided high-resolution (4–7 days) time-series samples covering a 14-month period at MS2 and a 3-month period at MS1. Coccoliths from 28 species were identified over the course of the experiment, among which Emiliania huxleyi was always dominant (relative abundance range: 59–93%). Total coccoliths number fluxes were high but variable, ranging from 390×106 to 1610×106 coccoliths m−2 day−1 at MS1, and from 58×106 to 1500×106 coccoliths m−2 day−1 at MS2. The time-weighted mean flux, calculated for the whole experiment at MS2, was 499×106 coccoliths m−2 day−1. Estimate of coccoliths minimal contribution to total carbonate flux at 1900 m depth averaged 12%, which represented a weighted mean flux of 7.3 mg m−2 day−1 (2.7 g m−2 yr−1). Lateral transport of coccoliths resuspended from shelf and/or upper slope sediments seems to be the dominant transfer process to depth on this northeastern Atlantic slope. Nevertheless, the clear seasonal succession observed in the species composition implies that the deposition/resuspension/transport sequence is rapid (presumably less than a few months). Several short and unsmoothed signals directly issued from coccoliths bloom events also were recorded in our traps, a result that indicates rapid settling rates. The overall coccolith sedimentation processes appear as being quite diversified, but quantitative and qualitative analyses of aggregates collected by the traps suggest that they are important carriers of coccoliths in this margin environment.  相似文献   

4.
Abstract

Potential sediment mass movement was analyzed at ten locations on the continental slope off Peru and northern Chile, using samples obtained from up to 3 m below the seafloor. Shear strength parameters were obtained from consolidated‐undrained triaxial compression tests. Sediment behavior in these tests reflects the influence of organic matter, which is concentrated in the slope deposits by coastal upwelling. High water content of the organic‐rich sediments and the high de‐formability of organic matter contribute to the prevalent ductile behavior. Aggregation of clays by organic matter is apparently responsible for the high friction angles, up to 44°, displayed by the slope deposits. Sediment stability was assessed using infinite slope analyses. These analyses indicate that gravitational forces alone are not sufficient to cause sediment failure at any of the slope locations. Sediment accumulation on the slope is not rapid enough to generate excess pore pressure and reduce the resistance to gravitational sliding. Effects of earthquakes on slope stability were evaluated by modeling earthquake‐induced inertia forces as static forces and estimating pore pressures developed during cyclic loading. This analysis shows that sediments of the lower slope off Peru possess the highest susceptibility to failure during earthquakes. Earthquake accelerations on the order of 0.2 gravity are sufficient to trigger slumping at all ten slope locations. Indirect evidence suggests that creep and mass flows initiated at shallower water depths are factors that might contribute to sediment failure on the slope.  相似文献   

5.
The narrow shelf and upper slope immediately above the Gonone canyon head off NE Sardinia represent areas of very low sedimentation rates. Along the sides of the canyon head (1,600 m water depth), the sediment deposits are homogeneous but show alternating light-grey intervals rich in carbonate and dark-grey ones rich in organic matter, possibly related to distal turbidite processes. Deposits older than 50,000 years are already encountered at core depths of 2.50 m, the sedimentation rates varying from 6–21 cm/103 years in the lower parts of two cores and from 1.5–3 cm/103 years in the upper parts. At about 35,000 years BP, both cores show a simultaneous drop in sedimentation rate by a factor of 3, probably in response to local mechanisms of channel avulsion. Lithological, mineralogical and geochemical properties reveal the environmental factors which are responsible for the extremely slow sediment accumulation. The southernmost sector of the coast, and partly also of the shelf, consists of Jurassic limestones which supply only small amounts of fine-grained material transported in suspension. During the last sea-level highstand, the accumulation of the Cedrino River pro-delta remained restricted to the coast, the low siliciclastic sediment yields resulting in poor shelf sediment trapping. The present morphology of the canyon head prevented the occurrence of gravity processes in the deeper part of the canyon system, including the coring sites. Accordingly, deposition was mainly fed by hemipelagic material of planktonic origin, together with only moderate terrigenous inputs. On a wider late Pleistocene timescale, seismic data indicate the occurrence of a coarse-grained, layered turbidite facies, implying a very different architecture of the canyon drainage system probably prior to 60,000 years BP.  相似文献   

6.
Basedonthenonlinearmodeloftwo-dimensionalrandomseawaves,astatiaticaldistributtt崳铮睿铮妫鳎幔觯澹螅酰颍妫幔悖澹螅欤铮穑澹澹幔悖簦簦铮簦瑁澹簦瑁椋颍洌铮颍洌澹颍椋螅洌澹颍椋觯澹洌猓酰螅椋睿纾簦瑁澹澹穑幔睿螅椋铮睿铮妫簦瑁澹悖瑁幔颍幔悖簦澹睿螅簦簦椋悖妫酰睿悖簦簦铮睿幔睿洌洌椋颍澹悖簦悖幔欤悖酰欤幔簦椋铮睿螅铮妫澹幔悖瑁铮颍洌澹颍恚铮恚澹睿簦拢幔螅澹洌铮睿簦瑁澹洌椋螅簦颍椋猓酰簦椋铮睿铮妫鳎幔觯澹螅酰颍妫幔悖澹螅欤铮穑澹洌澹颍椋觯澹洌椋睿簦瑁椋螅穑幔穑澹颍幔鳎瑁椋簦澹悖幔穑悖铮觯澹颍幔纾澹恚铮洌澹欤椋螅穑颍铮穑铮螅澹洌猓酰螅椋睿纾簦瑁澹欤椋恚椋簦螅酰颍妫幔悖澹螅欤铮穑澹幔螅幔悖悖椋簦澹颍椋铮睿铮妫鳎幔觯澹猓颍澹幔耄椋睿纾裕瑁澹鳎瑁椋簦澹悖幔穑悖铮觯澹恚纾澹澹穑颍澹螅螅澹洌猓觯簦瑁澹恚铮洌澹欤洌澹穑澹睿螅铮睿簦瑁颍澹澹穑幔颍幔恚澹簦澹颍螅鳎瑁椋悖瑁悖幔睿猓澹洌澹簦澹颍恚椋睿澹洌椋睿穑颍椋睿悖椋穑欤澹猓簦瑁澹欤椋睿澹幔颍鳎幔觯澹螅穑澹悖簦颍酰恚幔睿洌簦瑁颍澹澹耄椋睿洌螅铮妫鳎幔觯澹鳎幔觯澹椋睿簦澹颍幔悖簦椋铮睿  相似文献   

7.
Based on the nonlinear model of two-dimensional random sea waves, a statistical distribution of wave surface slope exact to the third order is derived by using the expansion of the characteristic function and direct calculations of each order moment. Based on the distribution of wave surface slope derived in this paper, a whitecap coverage is proposed by using the limit surface slope as a criterion of wave breaking. The whitecap coverage expressed by the model depends on three parameters which can be determined in principle by the linear wave spectrum and three kinds of wave-wave interaction.  相似文献   

8.
The Yithi submarine canyons,composed of four canyons less than 60 km in length,are located on the narrowest part of the East China Sea(ECS) slope.They extend from the shelf break at 160 m down to water depth of 1 500 m with an average gradient(along the canyon axis) of 3°(<1 000 m) and 0.7°(>1000 m).The sinuosity of the canyons ranges form 1.02 to 1.14 and their pathways extend radially from the shelf break to the axis of the Okinawa Trough.Structural and evolution pattern of the Yithi canyons are mainly controlled by sediment mass-movements and turbidity current and similar with that of the canyons in Ebro continental slope.The whole canyon system consists of three parts:the canyon,the channel and the fan.Slumps and slides often develop in the upper part of canyon where the water depth is less than 1000 m,and the turbidities usually developed on the fan.The scale of turbidites becomes smaller and their inner structures become more regular towards the ends of the canyons.Canyon-fans are often associated with small angle progradational reflection.Most canyon-fans and levees were transversely cut by active normal faults with NEE-SWW trending that are coupled to the modern extension of the Okinawa Trough.According to the age of formation of canyon-fans and sediments incised by canyons,we can infer that the Yithi canyons were formed since the middle the Medio-Pleistocene.  相似文献   

9.
Abstract

The continental margin of northern Sinai and Israel consists of a seaward‐inclined wedge, made up predominantly of foreset beds of mainly Nile‐derived clastics. They overlie seaward‐thickening Messinian (Upper Miocene) evaporites. Detailed bathymetric and seismic surveys reveal large areas of sea floor disturbances off northern Sinai and in several places off Israel, expressed by a complex block topography of the outer continental shelf and slope. These disturbed areas appear to be gigantic, deep‐seated, compound rotational slumps over down‐slope flowing evaporites. Many of the disturbances are above landward lobes of evaporites which fill buried Late Miocene erosion channels of the pre‐Messinian retreat of the sea. Flowage of the evaporites was presumably caused by excessive pore pressures, generated by the Pliocene‐Quaternary overload, in confined layers of the elastics interbedded within the evaporites.  相似文献   

10.
The mesoscale dynamics of the Scottish side of the Faroe–Shetland Channel have been investigated using synoptic in situ and remote sensing observations. A cold core cyclonic eddy, identified from an AVHRR image, had a diameter of about 50 km and surface current speeds of up to 50 cm s-1; it appeared to be attached to the 800 m isobath as it moved north-eastward along the edge of the channel at about 8 cm s-1. Speeds in the slope current were about 50 cm s-1 but increased to 70 cm s-1 where the current was compressed by the eddy. Offshore, over the 1000 m isobath in the cooler water, speeds in the current were slower (ca. 20 cm s-1). North-west of the Shetlands the offshore edge of the slope current was deflected across the channel for a distance of about 70 km from the shelf edge. The speed of drifters in the slope current increased to over 60 cm s-1 as they moved anti-cyclonically around this deflection. CTD profiles suggest that the movement of the surface waters was mirrored in the deep water of the channel. The deflection carried a very large quantity of North Atlantic Water into the central part of the channel; its cause and ultimate fate are not known, although it is likely to have had a significant impact on the dynamics of the channel.  相似文献   

11.
In this study,characteristics of flow field and wave propagation near submerged breakwater on a sloping bed are investigated with numerical model. The governing equations of the vertical twodimensional model are Reynolds Averaged Navier Stokes equations. The Reynolds stress terms are closed by a nonlinear k ε turbulence transportation model. The free surface is traced through the PILC-VOF method. The proposed numerical model is verified with experimental results. The numerical result shows that the wave profile may become more asymmetrical when wave propa-gates over breakwater. When wave crest propagates over breakwater,the anticlockwise vortex may generate. On the contrary,when wave hollow propagates over breakwater,the clockwise vortex may generate. Meanwhile,the influenced zone of vortex created by wave crest is larger than that created by wave hollow. All the maximum values of the turbulent kinetic energy,turbulent dissi-pation and eddy viscosity occur on the top of breakwater. Both the turbulent dissipation and eddy viscosity increase as the turbulent kinetic energy increases. Wave energy may rapidly decrease near the breakwater because turbulent dissipation increases and energy in lower harmonics is transferred into higher harmonics.  相似文献   

12.
Concentrations of dissolved sulfate and sulfur isotopic ratios of dissolved sulfide in surface sediments of the Peru shelf and upper slope indicate that the sediments can be divided into two depth intervals based on the dominant biogeochemical reactions. Although rates of bacterial sulfate reduction are high throughout Peru surface sediments, chemistry of the upper interval (<10–20 cm) is dominated by chemoautotrophic oxidation of dissolved sulfide and elemental sulfur, while the lower interval (>10–20 cm) is dominated by dissimilatory sulfate reduction. In three of the four cores examined here, pore water concentrations of sulfate in the top 10 cm of the sediment are significantly higher than those of the overlying seawater. Peak sulfate concentrations in pore water (37–53 mmol/l) are ∼1.3–1.9 times that of seawater sulfate and are located 1–6 cm below the sediment/water interface (SWI). The excess sulfate is most likely produced by oxidation of elemental sulfur coupled to reduction of nitrate, a reaction mediated by a facultative chemoautotrophic sulfide-oxidizing bacterium, Thioploca spp. Numerical simulations demonstrate that the anomalously high concentrations of dissolved sulfate can be produced by steady-state or non-steady-state processes involving high rates of bacterial oxidation of elemental sulfur. If bacterial sulfur oxidation is a transient phenomenon, then it is probably triggered by seasonal or El Niño-induced changes in water-column chemistry of the Peru undercurrent.  相似文献   

13.
Geomorphological features (derived from 16,000 lkm of echo‐sounding and bathymetric data) and deep‐seated tectonic structures of the continental margin off NW India are presented. The shelf break over the entire region occurs between 80 to 154 m water depth, and adjacent to Saurashtra and Bombay High the depth and orientation of the shelf edge show marked variations. The boundary of the slope is shallower in the northern portion (about 1450 m in the vicinity of the Indus) than in the southern region (2900 m off Bombay).

The steep slope off the Gulf of Kachchh has relatively smooth physiography due to higher input of fluvial sediment and burial of structures. The gentler slope off Saurashtra and the Bombay High area has numerous complex features, the most prominent among them being benches at depths of 180–230 m (width 2–10 km) and 650–780 m and a series of bathymetric highs and lows. Slope breaks are also observed between 400 and 600 m off Bombay and between 560 and 960 m off Saurashtra. These features are surface manifestations of the anticlinal features extending along the shelf in this region. Unevenness (order of 100–300 m) due to slumping is also observed at the base of the slope.

Based on the correlation between tectonic structures of this area and these subphysiographic features, extension of the Saurashtra Anticline onto the slope, a new strike slip fault (the southern boundary fault of Narmada graben) and an along‐shelf anticlinal structure off Saurashtra are delineated.  相似文献   

14.
High‐resolution vertical and lateral gradients and variations in sediment mass physical properties were derived from measurements in box cores, on the scale of millimeters, tens of centimeters, and kilometers from typical, relatively broad areas of the northern California continental slope in the Cape Mendocino area at water depths from 380 to 940 m. Such data are important as a control on comparisons of different sediment suites, as well as providing limits for realistic flux calculations of dissolved inorganic and biochemical species and pollutants. The sediments studied have relatively constant organic carbon contents (OC ? 1.75 wt%) and bulk mineralogy. They range from silty sands (~45% sand, 40% silt) to clayey silts (~63% silt, ~35% clay) and are extensively bioturbated. Physical property variations between subcores (~25 to 35 cm in length), taken from the same box core, increase with increasing clay content. For coarse‐grained sediments, mean down‐core differences in physical property values between related subcores are small, averaging 3.6% for water content, 4% for porosity, 0.026 Mg/m3 for wet bulk density, and 0.1 for void ratio. Subcore variations for fine‐grained sediments are generally significantly larger, averaging 9.8% for water content, 1.52% for porosity, 0.027 Mg/m3 for wet bulk density, and 0.3 for void ratio (box core 125). Millimeter variations of physical properties from horizontal 12‐cm‐long subcores indicate a maximum range of lateral variation of 18.2% for water content, 8% for porosity, 0.14 Mg/m3 for wet bulk density, and0.6 for void ratio.  相似文献   

15.
An unstable rock volume of more than 50 million m3 has been detected in the Åkerneset rock slope in the narrow fjord, Storfjorden, Møre & Romsdal County, Western Norway. If large portions of the volume are released as a whole, the rockslide will generate a tsunami that may be devastating to several settlements and numerous visiting tourists along the fjord. The threat is analysed by a multidisciplinary approach spanning from rock-slope stability via rockslide and wave mechanics to hazard zoning and risk assessment.The rockslide tsunami hazard and the tsunami early-warning system related to the two unstable rock slopes at Åkerneset and Hegguraksla in the complex fjord system are managed by Åknes/Tafjord Beredskap IKS (previously the Åknes/Tafjord project). The present paper focuses on the tsunami analyses performed for this company to better understand the effects of rockslide-generated tsunamis from Åkerneset and Hegguraksla. Two- and three-dimensional site-specific laboratory experiments are conducted to study the generation, propagation, and run-up of the wave for several potential rockslide scenarios from Åkerneset. Furthermore, the two models GloBouss and DpWaves are applied for numerical simulations of the generation/propagation phase and a third model MOST is applied for numerical simulations of the near-shore propagation and inundation of the wave in selected locations. Strong emphasis is put on verification, validation, and sensitivity of the numerical models. The best match between the numerical simulations and the laboratory experiments is found for the larger scenarios with the linear dispersive solution for the propagation phase; the corresponding calculated run-up values are remarkably similar to the ones observed during the laboratory experiments.During the risk assessment it was found that the rockslide tsunami hazard (probability of impact) is higher than accepted by the Norwegian Planning and Building Act. This should at that time prevent any further development in all the exposed areas of the entire fjord system. The Act is today altered to open for specified further development in the various hazard zones. The results of the tsunami analyses are applied in risk management in terms of hazard map production and land-use planning. Two failure scenarios for each of the two unstable rock slopes are designed for the hazard zoning. The larger and less probable scenarios (1 in 5000 years) are applied for evacuation zones and routes, while the smaller and more probable scenarios (larger than 1 in 1000 years) are applied for location and design of less critical facilities accepted in the inundation zone.  相似文献   

16.
Data from Aanderaa RCM-8 current meters, deployed on the continental slope of the Faeroe–Shetland Channel between depths of 471 and 1000 m, show intermittent spike-like reductions in current speed of ∼20–40%. The spikes have a duration of only one data value, corresponding to the unusually short sampling period of 1 min. Associated with the spikes are concurrent deflections in the current direction records, with a mean value of 7° and in a predominantly clockwise sense. The spikes furthermore occur only when the current direction has a poleward long-slope component when the shallow water is to the right. We reject instrumental deficiency as the cause of the spikes, and find that the negative bias is caused by the cosine response of the mechanical current meter when misaligned with the mean flow. The misalignment is due to turbulence generated by instabilities in the bottom boundary layer (BBL) caused by the downslope Ekman transport of buoyancy. The veering in current direction between 8 and 47 m above the seabed and the hourly averaged current direction are consistent with such a mechanism, whilst the intermittency is explained by the bursting phenomenon in a BBL. Both the quasi-period of ∼600 s and the duration of the spikes are in accordance with previous fieldwork and laboratory experiments and, in conjunction with a thickening of the boundary layer induced by the downwelling Ekman transport, explain the predominance of the spikes at heights of 34 and 47 m. Oblique internal wave reflection also plays a potential role in generating turbulence at the upper interface of the BBL higher up the slope where the stratification is comparatively strong, but the Ekman transport represents the dominant mechanism. Our findings cause concern for the reliability of data from traditional rotor- and vane-type current meters sampling at lower rates in turbulent near-bed regions where the turbulent properties of the flow will be averaged out in the sampling process, potentially causing an underreading of the true current speed.  相似文献   

17.
The reproduction and feeding habits of giant isopods Bathynomus giganteus [range in body length (BL): 43–363 mm] from the continental slope of the Yucatán Peninsula, México, were studied from samples collected at depths of 359–1050 m during three research cruises conducted in winter, spring, and summer of different years. Samples taken in winter and spring yielded a large proportion of mancas and juveniles, as well as high percentages of adult females with functional oostegites and males with appendices masculinae, suggesting a peak in reproductive activity during these seasons. In contrast, the virtual absence in the summer samples of (a) mancas and small juveniles, (b) females with functional oostegites, and (c) small adult males (210–290 mm BL) with appendices masculinae, suggests a low reproductive activity of B. giganteus during summer. Stomach contents analyses were conducted on five life phases (mancas, small juveniles, large juveniles, adult females and adult males) in winter and summer. Mancas and juveniles had fuller stomachs than adults during winter, and all isopods had emptier stomachs during summer than during winter. The diet of B. giganteus was broad, but the most important food categories in all life phases were fish and squid remains, underlining the main scavenging habits of B. giganteus. However, the remaining food categories show that this species is a facultative rather than a strict scavenger and suggest some ontogenetic dietary shifts. These results were further supported by diet (Horn's) overlap indices. In the winter, high diet overlap occurred between all life phases. In the summer, adult males had a low diet overlap with adult females and large juveniles. Adult males also had a low diet overlap between summer and winter. Results from this and other studies suggest that the main reproductive activity of B. giganteus in the Yucatán slope occurs during winter and spring, when the food supply on the upper-slope is highest, particularly for the younger individuals.  相似文献   

18.
Benthic foraminiferal analysis of 29 samples in surface sediments from the southern Okinawa Trough is carried out. The results indicate that benthic foraminiferal abundance decreases rapidly with increasing water depth. Percentage frequencies of agglutinated foraminifera further confirm the modern shallow carbonate lysocline in the southern Okinawa Trough. From continental shelf edge to the bottom of Okinawa Trough, benthic foraminiferal fauna in the surface sediments can be divided into 5 assemblages: (1) Continental shelf break assemblage, dominated by Cibicides pseudoungerianus, corresponds to subsurface water mass of the Kuroshio Current; (2) upper continental slope assemblage, dominated by Cassidulina carinata , Globocassidulina subglobosa, corresponds to intermediate water mass of the Kuroshio Current; (3) intermediate continental slope assemblage, dominated by Uvigerina hispi-da, corresponds to the Okinawa Trough deep water mass above the carbonate lysocline; (4) lower continental slope- trough b  相似文献   

19.
Benthic foraminiferal analysis of 29 samples in surface sediments from the southern Okinawa Trough is carried out.The results indicate that benthic foraminiferal abundance decreases rapidly with increasing water depth.Percentage frequencies of agglutinated foraminifera further confirm the modern shallow carbonate lysocline in the southern Okinawa Trough.From continental shelf edge to the bottom of Okinawa Trough,benthic foraminiferal fauna in the surface sediments can be divided into 5 assemblages:(1) Continental shelf break assemblage,dominated by Cibicides pseudoungerianus,corresponds to subsurface water mass of the Kuroshio Current;(2) upper continental slope assemblage,dominated by Cassidulina carinata,Globocassidulina subglobosa,corresponds to intermediate water mass of the Kuroshio Current;(3) intermediate continental slope assemblage,dominated by Uvigerina hispida,corresponds to the Okinawa Trough deep water mass above the carbonate lysocline.  相似文献   

20.
1Introduction TheBeringSea,locatedinthesub-arcticNorth Pacific,playsanimportantroleininfluencingtheevo- lutionaryprocessoftheglobalclimaticsystembecause itsseasonalseaiceisformedinrelativelowerlatitudes (Takahashi,1999).ItisalsoasinkofatmosphericCO2, whichisoriginatedfromtheeffectivebiologicalpump inthissea.Particulatefluxdatameasuredinthesea overthelast10aindicatethattheorganic/inorganic carbonratiowasalwaysgreaterthan1,whichexplains thattheBeingSeaoccupiesasignificantpositionin theproces…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号