首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Eulerian–Lagrangian method (ELM) is employed for the simulation of wave propagation in the present research. The wave action conservation equation, instead of the wave energy balance equation, is used. The wave action is conservative and the action flux remains constant along the wave rays. The ELM correctly accounts for this physical characteristic of wave propagation and integrates the wave action spectrum along the wave rays. Thus, the total derivative for wave action spectrum may be introduced into the numerical scheme and the complicated partial differential wave action balance equation is simplified into an ordinary differential equation. A number of test cases on wave propagation are carried out and show that the present method is stable, accurate and efficient. The results are compared with analytical solutions and/or other computed results. It is shown that the ELM is superior to the first-order upwind method in accuracy, stability and efficiency and may better reflect the complicated dynamics due to the complicated bathymetry features in shallow water areas.  相似文献   

2.
Propagation of a solitary wave over rigid porous beds   总被引:1,自引:0,他引:1  
The unsteady two-dimensional Navier–Stokes equations and Navier–Stokes type model equations for porous flows were solved numerically to simulate the propagation of a solitary wave over porous beds. The free surface boundary conditions and the interfacial boundary conditions between the water region and the porous bed are in complete form. The incoming waves were generated using a piston type wavemaker set up in the computational domain. Accuracy of the numerical model was verified by comparing the numerical results with the theoretical solutions. The main characteristics of the flow fields in both the water region and the porous bed were discussed by specifying the velocity fields. Behaviors of boundary layer flows in both fluid and porous bed regions were also revealed. Effects of different parameters on the wave height attenuation were studied and discussed. The results of this numerical model indicate that for the investigated incident wave as the ratio of the porous bed depth to the fluid depth exceeds 10, any further increase of the porous bed depth has no effect on wave height attenuation.  相似文献   

3.
X.T. Zhang  B.C. Khoo  J. Lou 《Ocean Engineering》2007,34(10):1449-1458
A numerical approach based on desingularized boundary element method and mixed Eulerian–Lagrangian formulation [Zhang et al., 2006. Wave propagation in a fully nonlinear numerical wave tank: a desingularized method. Ocean Engineering 33, 2310–2331] is extended to solve the water wave propagation over arbitrary topography in a three-dimensional wave tank. A robust damping layer applicable for regular and irregular incident waves is employed to minimize the outgoing wave reflection back into the wave tank. Numerical results on the propagation of regular and irregular incident waves over the flat bottom and linear incident waves over an elliptical shoal show good concurrence with the corresponding analytical solutions and experimental data.  相似文献   

4.
James M. Kaihatu   《Ocean Modelling》2009,26(3-4):190-205
The effect of ambient currents on nearshore nonlinear wave–wave energy transfer in random waves is studied with the use of a nonlinear frequency domain wave–current interaction model. We focus on the phenomenon of wave recurrence as a classical nonlinear phenomenon whose characteristics are well established for systems truncated to small numbers of frequency modes. The model used for this study is first extended to enhance accuracy; comparisons of permanent form solutions to analytical forms confirm the model accuracy. Application of the model to a highly truncated system confirmed the model’s consistency with published results for both positive (following) and negative (adverse) currents. Propagation of random wave spectra over a flat bottom was performed with the model, with the intent of determining the prevalence of recurrence between the spectral peak and its harmonics. For spectra of moderate Ursell number, it was found that positive currents extended the length scale of recurrence relative to the case with no currents; conversely, negative currents reduced the recurrence lengths. However, beyond a propagation distance of ≈40 wavelengths of the spectral peak, recurrence becomes almost completely damped as the spectra becomes broad and the spectral energies equilibrate. For spectra of high Ursell number, in contrast, recurrence is almost immediately damped, suggesting that the nonlinearity is sufficient to allow immediate spectral broadening and equilibration and overwhelming any preferential interactions among the spectral peak and its harmonics, regardless of current magnitude or direction.  相似文献   

5.
On the modeling of wave propagation on non-uniform currents and depth   总被引:1,自引:0,他引:1  
By transforming two different time-dependent hyperbolic mild slope equations with dissipation term for wave propagation on non-uniform currents into wave-action conservation equation and eikonal equation, respectively, shown are the different effects of dissipation term on the eikonal equation in the two different mild slope equations. The performances of intrinsic frequency and wave number are also discussed. Thus the suitable mathematical model is chosen in which the wave number vector and intrinsic frequency are expressed both more rigorously and completely. By using the perturbation method, an extended evolution equation, which is of time-dependent parabolic type, is developed from the time-dependent hyperbolic mild slope equation which exists in the suitable mathematical model, and solved by using the alternating direction implicit (ADI) method. Presented is the numerical model for wave propagation and transformation on non-uniform currents in water of slowly varying topography. From the comparisons of the numerical solutions with the theoretical solutions of two examples of wave propagation, respectively, the results show that the numerical solutions are in good agreement with the exact ones. Calculating the interactions between incident wave and current on a sloping beach [Arthur, R.S., 1950. Refraction of shallow water waves. The combined effects of currents and underwater topography. EOS Transactions, August 31, 549–552], the differences of wave number vector between refraction and combined refraction–diffraction of waves are discussed quantitatively, while the effects of different methods of calculating wave number vector on numerical results are shown.  相似文献   

6.
Physical modeling of untrenched submarine pipeline instability   总被引:1,自引:0,他引:1  
F. P. Gao  X. Y. Gu  D. S. Jeng   《Ocean Engineering》2003,30(10):1283-1304
Wave-induced instability of untrenched pipeline on sandy seabed is a ‘wave–soil–pipeline’ coupling dynamic problem. To explore the mechanism of the pipeline instability, the hydrodynamic loading with U-shaped oscillatory flow tunnel is adopted, which is quite different from the previous experiment system. Based on dimensional analysis, the critical conditions for pipeline instability are investigated by altering pipeline submerged weight, diameter, soil parameters, etc. Based on the experimental results, different linear relationships between Froude number (Fr) and non-dimensional pipeline weight (G) are obtained for two constraint conditions. Moreover, the effects of loading history on the pipeline stability are also studied. Unlike previous experiments, sand scouring during the process of pipe’s losing stability is detected in the present experiments. In addition, the experiment results are compared with the previous experiments, based on Wake II model for the calculation of wave-induced forces upon pipeline. It shows that the results of two kinds of experiments are comparable, but the present experiments provide better physical insight of the wave–soil–pipeline coupling effects.  相似文献   

7.
X.T. Zhang  B.C. Khoo  J. Lou 《Ocean Engineering》2006,33(17-18):2310-2331
The problem of wave propagation in a fully nonlinear numerical wave tank is studied using desingularized boundary integral equation method coupled with mixed Eulerian–Lagrangian formulation. The present method is employed to solve the potential flow boundary value problem at each time step. The fourth-order predictor–corrector Adams–Bashforth–Moulton scheme is used for the time-stepping integration of the free surface boundary conditions. A damping layer near the end-wall of wave tank is added to absorb the outgoing waves with as little wave reflection back into the wave tank as possible. The saw-tooth instability is overcome via a five-point Chebyshev smoothing scheme. The model is applied to several wave propagations including solitary, irregular and random incident waves.  相似文献   

8.
Conventional spectral wave models, which are used to determine wave conditions in coastal regions, can account for all relevant processes of generation, dissipation and propagation, except diffraction. To accommodate diffraction in such models, a phase-decoupled refraction–diffraction approximation is suggested. It is expressed in terms of the directional turning rate of the individual wave components in the two-dimensional wave spectrum. The approximation is based on the mild-slope equation for refraction–diffraction, omitting phase information. It does therefore not permit coherent wave fields in the computational domain (harbours with standing-wave patterns are excluded). The third-generation wave model SWAN (Simulating WAves Nearshore) was used for the numerical implementation based on a straightforward finite-difference scheme. Computational results in extreme diffraction-prone cases agree reasonably well with observations, analytical solutions and solutions of conventional refraction–diffraction models. It is shown that the agreement would improve further if singularities in the wave field (e.g., at the tips of breakwaters) could be properly accounted for. The implementation of this phase-decoupled refraction–diffraction approximation in SWAN shows that diffraction of random, short-crested waves, based on the mild-slope equation can be combined with the processes of refraction, shoaling, generation, dissipation and wave–wave interactions in spectral wave models.  相似文献   

9.
The paper considers the effects of wave age and air stability on the whitecap coverage at sea. This is made by using the logarithmic mean wind velocity profile including a stability function as well as adopting a recent wave age dependent sea surface roughness formula. The results are valid for wind waves in local equilibrium with the steady wind. Examples of results demonstrate clear effects of wave age and air stability on the whitecap coverage. Comparisons are also made with field measurements by Sugihara et al. [Sugihara, Y., et al., 2007. Variation of whitecap coverage with wave-field conditions. J. Mar. Syst. 66, 47–60], representing unstable air stability conditions. Although the data basis is limited, the wave age independent Charnock sea roughness based predictions capture the main features of the observed whitecap coverage, suggesting a stronger dependence on air stability than on wave age in the data.  相似文献   

10.
A spectral wind wave model SWAN (Simulation WAves Nearshore) that represents the generation, propagation and dissipation of waves was applied to Lake Okeechobee. This model includes the effects of refraction, shoaling, and blocking in wave propagation. It accounts for wave dissipation by whitecapping, bottom friction, and depth-induced wave breaking. The wave–wave interaction effect also is included in this model. Measurements of wind and wave heights were made at different stations and different time periods in Lake Okeechobee. Significant wave height values were computed from the recorded data. The correlation between wind stress and significant wave height also was analyzed. A 6-day simulation using 1989 data was conducted for model calibration. Another 6-day simulation using 1996 data was conducted for model verification. The simulated significant wave heights were found to agree reasonably well with measured significant wave heights for calibration and verification periods. Agreement between observed and simulated values was based on graphical comparisons, mean, absolute and root mean square errors, and correlation coefficient. Comparisons showed that the model reproduced both general observed trends and short term fluctuations.  相似文献   

11.
We present the derivation of the discrete Euler–Lagrange equations for an inverse spectral element ocean model based on the shallow water equations. We show that the discrete Euler–Lagrange equations can be obtained from the continuous Euler–Lagrange equations by using a correct combination of the weak and the strong forms of derivatives in the Galerkin integrals, and by changing the order with which elemental assembly and mass averaging are applied in the forward and in the adjoint systems. Our derivation can be extended to obtain an adjoint for any Galerkin finite element and spectral element system.We begin the derivations using a linear wave equation in one dimension. We then apply our technique to a two-dimensional shallow water ocean model and test it on a classic double-gyre problem. The spectral element forward and adjoint ocean models can be used in a variety of inverse applications, ranging from traditional data assimilation and parameter estimation, to the less traditional model sensitivity and stability analyses, and ensemble prediction. Here the Euler–Lagrange equations are solved by an indirect representer algorithm.  相似文献   

12.
13.
This study employed direct numerical simulation to simulate the fully nonlinear interaction between the water waves, the submerged breakwater, and the seabed under differing wave conditions. In the numerical simulation, the laminar flow condition in the seabed was applied to evaluate the more exact fluid resistance acting on the porous media. Varying incident wave conditions were applied to the flow field resulting from the wave–structure–seabed interaction, and the variation in the pore water pressure beneath the submerged breakwater was investigated along the cross-section of the submerged breakwater. Structural safety and scouring were also considered on the basis of the numerical results for the flow field around the structure and the variation of the pore water pressure.  相似文献   

14.
Jiankang Wu  Bo Chen 《Ocean Engineering》2003,30(15):1899-1913
Based on Green–Naghdi equation this work studies unsteady ship waves in shallow water of varying depth. A moving ship is regarded as a moving pressure disturbance on free surface. The moving pressure is incorporated into the Green–Naghdi equation to formulate forcing of ship waves in shallow water. The frequency dispersion term of the Green–Naghdi equation accounts for the effects of finite water depth on ship waves. A wave equation model and the finite element method (WE/FEM) are adopted to solve the Green–Naghdi equation. The numerical examples of a Series 60 (CB=0.6) ship moving in shallow water are presented. Three-dimensional ship wave profiles and wave resistance are given when the ship moves in shallow water with a bed bump (or a trench). The numerical results indicate that the wave resistance increases first, then decreases, and finally returns to normal value as the ship passes a bed bump. A comparison between the numerical results predicted by the Green–Naghdi equation and the shallow water equations is made. It is found that the wave resistance predicted by the Green–Naghdi equation is larger than that predicted by the shallow water equations in subcritical flow , and the Green–Naghdi equation and the shallow water equations predict almost the same wave resistance when , the frequency dispersion can be neglected in supercritical flows.  相似文献   

15.
This paper describes a simple method for determining the wavelength of small amplitude waves under laboratory conditions where reflected wave components are present both with and without a mean current flow superimposed. It assumes a locally horizontal bed but requires no a priori assumption concerning the form of the dispersion relation with a coexisting current. Synchronous measurements of the water surface recorded along any straight line are analysed to yield Fourier coefficients at each location. It is then shown that for all practical conditions excluding a perfect standing wave, the average rate of change of wave phase in the chosen direction can be related directly to the component of incident wave number in that direction, irrespective of reflection coefficient or relative current strength. The technique has been applied to regular and bichromatic waves in a flume with an absorbing wave generator, and can also be applied in 3-D wave basins where waves and currents intersect at arbitrary angles. In combined wave–current experiments, by assuming the linear dispersion relation, it is also possible to estimate the effective current velocity.  相似文献   

16.
The apparent bed roughness, the roughness value experienced by a mean flow outside the wave-boundary layer, is deduced from the physical bed roughness and the wave–current interaction mechanism. Both the physical bed roughness and the wave–current interaction are described by a (combination of) model(s). Modelling of the apparent bed roughness leads to realistic results, however, the final results are rather sensitive to the particular choice of these models. Four bed form models and two wave–current interaction models were implemented in a 1-DV flow model to calculate near-bed velocities. A comparison between measured and predicted velocities shows that reasonable results can be obtained in this way. A constant bed roughness of 0.1 m, however, leads to even better results at this site during all conditions. This can be explained by the reversed influence of the form roughness and the wave–current interaction on the apparent bed roughness value for varying wave conditions.  相似文献   

17.
A three-dimensional modeling of multidirectional random-wave diffraction by a group of rectangular submarine pits is presented in this paper. The fluid domain is divided into N interior regions representing the pit area and an overall exterior region separated by the imaginary pit boundaries. In the interior region, the analytical expressions of the Fourier series expansion for velocity potentials in the pit regions have been derived with the unknown coefficients determined from a series of Green's function based boundary integral equations. The boundary integral approach has also been applied to obtain the velocity potential and free-surface elevation in the exterior region. The Pierson–Moskowitz (P–M) frequency spectrum was selected for the random wave simulation using the superposition of solutions of a finite number of decomposed wave components. Numerical results for the cases of regular waves and random waves are presented to examine the influences of the pit geometry and incident wave condition on the overall wave field. The general diffraction pattern of alternate bands of increase and decrease of relative wave height in front of the pit system can be observed. It is found that, in the shadow region, the relative wave height is reduced. As the number of pit increases, the effectiveness of reducing the relative wave height behind the multiple-pit system increases. However, the relative wave height within the pit area and in front of the leading pit shows increasing trend. It is noticed that under the random-wave condition, the level of increase and decrease of the relative wave height due to the existence of submarine pits is less pronounced than that observed from results in regular-wave condition.  相似文献   

18.
In this paper, a superposition of two periodic wave profiles in a finite water depth was investigated. This paper is focused on the improvement of a wave profile on the linear superposition of two waves. This improvement was realized by introducing an iterative method, which was based on a fixed point approach. Application of the fixed point approach to the wave superposition made it possible to obtain a wave profile of wave–wave interaction. The improved result of the wave profile was in good agreement with that of the nonlinear perturbation solution of the second order. It was interesting that the improved result revealed the higher-order nonlinear frequencies for two interacting Stokes waves while Dalzell's solution by a perturbation method could not predict them.  相似文献   

19.
The problem of diffraction of a unidirectional incident wave group by a bottom-seated cylinder is considered. We assume the amplitude of the incoming wave to be small in comparison with other linear scales of the problem, and develop the corresponding second-order perturbation theory. We use the Fourier transform to treat time variation and separate spatial variables when solving the non-homogeneous second-order problem. The resulting set of non-homogeneous Bessel equations is solved numerically.Solutions for various types of incoming wave spectrum are obtained including the Gaussian spectrum and the Pierson–Moskowitz spectrum. To validate the method, problems with gradually decreasing bandwidth of Gaussian spectrum are solved and it is shown that the corresponding solution approaches that for the monochromatic case. The Pierson–Moskowitz spectrum with a set of realistic physical parameters is used as an example of extreme wave interaction with an offshore structure. The corresponding first- and second-order solutions are obtained and the effect of non-linearity on the solution is discussed with the emphasis on the growth of maximum free-surface elevation on the cylinder’s surface and generation of high frequency free radiated waves.  相似文献   

20.
The design of submarines has continually evolved to improve survivability. Explosions may induce local damage as well as global collapse to a submarine. Therefore, it is important to realistically estimate the possible damage conditions due to underwater explosions in the design stage. The present study applied the Arbitrary Lagrangian–Eulerian (ALE) technique, a fluid–structure interaction approach, to simulate an underwater explosion and investigate the survival capability of a damaged submarine liquefied oxygen tank. The Lagrangian–Eulerian coupling algorithm, the equations of state for explosives and seawater, and the simple calculation method for explosive loading were also reviewed. It is shown that underwater explosion analysis using the ALE technique can accurately evaluate structural damage after attack. This procedure could be applied quantitatively to real structural design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号