首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 475 毫秒
1.
罗潇  李国平 《气象科学》2019,39(2):226-236
利用NCEP FNL(1°×1°)全球分析资料,采用动能梯度的定义和扰动动能方程,对2014年8月25—27日初生于青海省东南部之后东移到四川省中部产生天气影响过程的高原切变线进行了能量诊断分析。结果表明:在高原切变线发生发展时,切变线的位置和强的地转偏差及动能梯度大值区相对应,动能梯度模值的水平、垂直分布和相应的散度分布一致,可以反映切变线的基本结构特征;引入动能梯度有助于从能量变化视角来理解高原切变线的发展演变。扰动动能大值区的分布和切变线的走向一致,在切变线发展初期,扰动动能明显增大。扰动动能平流项和正压转换项的值都比较小,不足以反映切变线演变过程中的能量变化,而斜压转换项和扰动位势平流项是扰动动能收支的主导项;在切变线成熟阶段,扰动有效位能向扰动动能的转换最大,斜压转换项是高原切变线发展过程中能量转换的重要途径,有利于切变线上的上升运动加强。扰动动能趋势项可以较好预示切变线的发展态势,扰动非地转位势通量及其散度对高原切变线的生消及移动具有较好的指示意义。  相似文献   

2.
利用日本气象厅葵花-8卫星亮温资料、欧洲中心ERA5(the fifth generation of European Centre for Medium-Range Weather Forecasts Reanalysis)再分析资料,根据时间尺度分解的局地能量诊断方法,本文从能量学多个角度研究了2016年6月5日00时(协调世界时,下同)至6日15时(持续40小时)一次东移并引发强降水的高原对流云团,得到了以下主要结论。本次事件中,高原东移对流云团在不同阶段的主要影响系统有所不同。移出高原前,其主要受高原涡和高原短波槽的共同影响,随着云团移出高原,高原涡消亡,而高原短波槽则随时间发展加强,成为东移云团的最主要影响系统。高原东移对流云团具有显著的深对流特征,自西向东引发了一系列的降水,移出高原后,其对流重心显著降低,降水达到最强。不同阶段高原东移对流云团的能量转换特征显著不同。云团位于高原上时(第一阶段),背景场通过动能的降尺度能量级串为造成强降水的扰动流直接提供能量,这是此阶段扰动流动能维持的主要方式;云团移出高原过程中(第二阶段),降水凝结潜热明显增强,由此制造的扰动有效位能也显著增强。在垂直运动配合下,扰动有效位能斜压释放所制造的动能是本阶段造成强降水扰动流动能维持的最主要能量来源;云团移出高原后(第三阶段),背景场对造成强降水扰动流的影响再次增强,但是不同于第一阶段的直接影响方式,该阶段背景场的作用是以一种间接的影响方式出现。其首先通过有效位能的降尺度级串将背景场的有效位能转换为扰动流的有效位能,然后通过扰动有效位能的斜压能量释放为扰动流的动能维持不断地提供能量。此外,本阶段内还出现了扰动流向背景场动能的升尺度级串供给(即扰动流的反馈),但其强度不足以对背景场的演变产生显著影响。  相似文献   

3.
“96.8”暴雨过程的尺度分离动能方程的诊断   总被引:11,自引:0,他引:11  
用尺度分离的动能平衡方程,对1996年8月3~5日华北地区台风暴雨过程雨区内的动能制造和转换进行诊断。结果表明:动能在暴雨发展过程逐渐减小,动能转换项也是逐渐减小的。暴雨发生前,尺度相互作用制造项GKMS起最重要的作用,大尺度动能制造项次之,中尺度动能制造项消耗少量的动能;暴雨发生时,尺度相互作用和天气尺度运动仍制造动能,只是比发生前明显减少,中尺度运动由消耗动能转变为制造动能,动能转换主要来源于低层且数值明显减少;暴雨发生后,动能制造项数值仍为正,此时天气尺度动能制造最重要,但数值比前两阶段小,动能的转换主要出现于高层。可见,此次暴雨过程总动能的制造项一直为正,主要出现于高层,只是其制造量逐渐减小;动能转换是从低层向高层进行的,水平转换项起主要作用,是一种尺度减小的动能转换过程。  相似文献   

4.
薛建康  丁一汇 《大气科学》1993,17(5):592-603
本文选了两例西太平洋赤道辐合区中同时有3个台风发生发展的多台风过程,采用滤波法分离出大尺度场和台风尺度场,并建立了完整的包括大尺度平均动能、扰动动能,台风尺度的平均动能、扰动动能收支方程,最后做了各种动能收支计算.结果发现:对于这种条件下台风尺度扰动的发展,大尺度动能转换的贡献不足20%,其发展动能主要是从比台风尺度小的短波尺度中获得.也就是说,在热带短波是台风尺度和大尺度的动能源.  相似文献   

5.
沙莎  沈新勇  李小凡 《大气科学》2018,42(5):1119-1132
本文利用中国自动站与CMORPH(Climate Prediction Center Morphing technique for the production of global precipitation estimates)融合的逐时降水量0.1°网格数据集资料挑选出一次典型的梅雨锋暴雨个例,运用WRF中小尺度模式进行模拟,对模拟得到的高分辨率结果进行Barnes滤波,最后将滤波结果代入动能和位能方程中,目的是定量地分析各个尺度能量的变化以及它们之间的相互作用对暴雨强度的影响。研究发现:模式模拟的降水过程和强度与实况较为吻合,推导的能量方程适用于这次暴雨过程。三种尺度能量之间的相互作用包含了各种跨尺度能量的相互作用。在整个暴雨过程中,跨尺度之间的斜压能量转换包括位能向动能的能量转换和动能向位能的能量转换。同尺度之间的斜压能量转换总是单向的,且量值较大,动能的强度主要靠位能向动能的能量转换来维持。斜压能量转换的多少影响着暴雨的强弱。大尺度斜压能量转换在中高层比较强,中尺度斜压能量转换在低层较强,尤以β中小尺度系统变化最为显著,β中小尺度系统扰动是影响暴雨强度的关键系统。风切变的大小影响各尺度动能之间的能量转换。温度或位温梯度的大小影响各尺度位能之间的能量转换。位能与动能之间的能量转换主要与各尺度垂直速度和温度的垂直分布有关,暖空气上升冷空气下沉是各个尺度位能向动能转换的主要过程。  相似文献   

6.
一次中亚低涡中期过程的能量学特征   总被引:3,自引:0,他引:3  
杨莲梅  张庆云 《气象学报》2014,72(1):182-190
中亚低涡是中期时间尺度(4天以上)的对流层深厚切断低压系统,也是造成新疆暴雨(雪)、持续低温天气的重要影响系统之一,对其形成、维持和减弱的能量特征还不十分清楚。利用美国国家环境预报中心/国家大气研究中心(NCEP/NCAR)2.5°×2.5°逐日再分析资料和有限区域能量循环方程,对1996年7月10—20日造成新疆区域两次暴雨过程的中亚低涡系统进行分析,以揭示低涡持续活动11天的能量循环和转换特征。分析结果表明,中亚低涡活动具有明显的阶段性能量学特征。这次低涡发展和减弱过程处于斜压不稳定状态,扰动动能来源于扰动位能的转换和区域开放边界扰动动能的输入,且两者作用相当,它们使得低涡快速发展,同时区域内部非绝热加热制造的一部分扰动有效位能向外输出,在减弱期扰动有效位能向外输出大于扰动位能的转换和区域开放边界扰动动能的输入,因此低涡逐渐减弱。低涡成熟期处于正压不稳定状态,系统内部的能量转换很小,扰动动能来自于外界扰动位能输入,支出项为向开放边界的扰动动能输出。低涡过程各个时期纬向平均动能向扰动动能的转换都很小,即正压不稳定造成的能量转换较弱。低涡活动过程中,在对流层中、高层扰动动能很强,表明中亚低涡是主要在对流层中、高层活动的天气尺度系统,低涡内部的能量转换及其与外界的能量输送主要发生在中、高层,扰动位能和扰动动能的变化很好地反映低涡的强度变化和发展阶段,且能量的垂直输送对低涡系统的发展也有一定促进作用。  相似文献   

7.
中国南海夏季风强、弱年多尺度相互作用能量学特征   总被引:1,自引:0,他引:1  
杨悦  徐邦琪  何金海 《气象学报》2016,74(4):556-571
中国南海夏季风为东亚季风的主要系统之一,其具有多重尺度特征,除季节平均环流场外,低频(季节内振荡)和高频(天气尺度)扰动也十分活跃,各尺度系统存在明显的年际变化。该研究使用ERA-Interim和NCEP/NCAR两套再分析资料,从季风平均动能(MKE)诊断的角度出发,探讨了1979-2010年中国南海夏季风环流年际变化的能量来源及其和扰动场的相互作用过程。结果表明:中国南海夏季风对流活跃年份,中国南海南部(12°N以南)及中南半岛一带为季风平均动能显著增强区,此与南亚季风区西风急流的增强并向东延伸有关;中国南海北部(12°N以北)及西太平洋为气旋性环流盘踞,季风槽加深。中国南海南部季风平均动能增强的能量源自于扰动动量通量与平均环流的相互作用,强季风年,平均环流失去较少的动能给扰动场(亦即平均环流保留较多的动能)。通过进一步探讨高频(<10 d)及低频(10-90 d)扰动场与平均环流不同分量的(散度、涡度、风垂直切变)相互作用过程,发现季风平均动能的增长主要来自于<10 d扰动与季风平均散度和涡度的相互作用。中国南海北部季风槽区季风平均动能的维持来自于大气热源和平均上升运动的相互作用,但同时有较多的季风平均动能向扰动动能转换,有利于扰动的成长。因此,强季风年,中国南海北部热带气旋生成数目增多,夏季北传的季节内振荡也增强,导致中国南部沿海及华南地区出现较多的灾害天气。   相似文献   

8.
高原涡作为经常给我国带来暴雨等灾害的天气系统,其形成一般认为是通过感热和潜热自下而上激发的,然而,2013年5月下旬发生的一次引发其下游灾害性强降水的高原涡却是由对流层高层天气尺度低涡诱发的。为此,基于新发展的多尺度子空间变换和多尺度能量涡度方法以及ERA5再分析资料对其动力学过程进行了详尽的探讨,先将原始场重构到三个尺度子空间,即背景环流尺度子空间、天气尺度子空间和高频尺度子空间,重构场上首次显示此次过程生成于青藏高原西北侧,其成因为对流层高层基本气流尺度向天气尺度的跨尺度动能正则传输,即正压失稳,并且表现为从高层向下。在发展阶段,其能量最终来源为基本气流向天气尺度的有效位能传输和非绝热加热,然而这些过程只发生于涡旋低层的西侧。进一步分析发现,天气尺度内存在一个能量再分配“路径”:首先,低层西侧获得的有效位能转换为动能,西侧垂直的气压梯度力做功将低层获得动能向高层分配;在高层,水平的气压梯度力做功进而将西侧获得的动能向东侧分配;东侧垂直的气压梯度力做功再将动能向低层分配;至此,低层西侧获得的能量被分配到整个涡旋空间中,使得涡旋能够均匀发展。  相似文献   

9.
沈新勇  沙莎  李小凡 《大气科学》2018,42(5):1109-1118
本文是讨论梅雨锋暴雨过程中多尺度能量相互作用问题的开始部分。为了分析梅雨锋暴雨过程中的多尺度能量相互作用,从z坐标系中的运动方程和热力学方程出发,把基本物理量分成大尺度背景场(>2000 km)、α中尺度(200~2000 km)和β中小尺度系统(< 200 km)分量,利用滞弹性近似,推导了大尺度背景场、α中尺度和β中小尺度系统三个尺度的动能方程和位能方程。能量方程中包含了各尺度动能之间的转换、位能之间的转换以及动能和位能之间的转换。动能方程主要包括各尺度动能之间转换项、动能输送项、水平气压梯度力做功项、垂直方向扰动气压梯度力做功项、浮力做功项、地转偏向力分量做功项以及摩擦力做功项。位能方程主要包括各尺度位能之间转换项、位能输送项、浮力做功项以及非绝热加热做功项。其中浮力做功项为位能和动能之间的能量转换项,是暴雨发生发展过程中比较关键的能量转换项。关于将能量方程用于梅雨锋暴雨过程中并且诊断能量相互作用影响暴雨发展和消亡过程的物理机制等问题,将在以后的研究中给出。  相似文献   

10.
万雪丽 《贵州气象》2005,29(Z1):35-36
从天气学角度出发,对2005年4月28日晚贵阳市区遭受的强雷暴天气进行环境场分析,得出这次强雷暴天气是高原东侧短波槽在低层切变线上扰动生成局地中小尺度气旋形成强烈的对流天气.强雷暴天气产生前地面持续的增温,低层扰动逆温层的存在,使得大气低层积聚大量不稳定能量,同时持续加强的西南暖湿气流为强雷暴天气的发生提供了充足的水汽.  相似文献   

11.
利用ECMWF(欧洲中期天气预报中心)月平均比湿资料,通过直接对比湿q进行多年平均计算、气候倾向率分析、EOF分解等,研究了1979-2015年青藏高原(下称高原)地区大气蕴含潜热的时空分布特征及年际、年代际变化特征。结果表明,高原大气蕴含潜热从低层向高层逐渐减少,且夏季蕴含潜热最多,其次为春、秋,且两季分布特征大致相似,冬季蕴含潜热最少,各季大值均集中在高原东南部及南部;蕴含潜热整体呈增长的趋势,夏季增长最快,冬季最慢;高原西部和云贵高原地区大气蕴含潜热均有不同程度的减小,夏季减小最快,冬季减小最慢;EOF分析中,各积分层以及整层[地表到500 hPa积分(第一积分层);500~400 hPa积分(第二积分层);400~300 hPa积分(第三积分层);地表到300 hPa积分(整层)]在第一模态下均大致呈正分布;在第二模态下均呈“正-负”的偶极子分布(其中第一积分层和整层为西南—东北“正-负”分布,其余两层为东—西“正-负”分布),说明蕴含潜热在这两种分布状态中的变化趋势均存在反相关系);在第三模态下均在西北—东南方向为“正-负-正”的分布。各积分层以及整层除第二模态年际变化相对明显外,其他两个模态年际变化均不明显。  相似文献   

12.
采用引入城市水文过程的WRF/SLUCM方案,以北京2010年7月4—6日高温热浪天气为背景,模拟了绿地灌溉、绿洲效应和人为潜热等水文过程对城市气象环境的影响。结果表明:(1)绿地灌溉、绿洲效应和人为潜热等水文过程可导致北京城区13 ∶00(7月4—6日小时平均,下同)潜热通量升高最多约100 W·m^-2 ,02 ∶00升高最多约15 W·m^-2;感热通量13 ∶00降低最多约80 W·m ^-2;02 ∶00降低最多约5 W·m^-2 。(2)城市水文过程可导致城区13 ∶00相对湿度增加最多约4%,02 ∶00约6%;地表气温13 ∶00降低最多约1.2 ℃,02 ∶00约0.4 ℃。(3)城市水文过程对北京城市热岛强度的减弱效果白天明显好于夜间,且在10 ∶00—14 ∶00出现了强度约0.8 ℃的冷岛效应。(4)水文过程会导致北京城区500 m高度以下白天大气温度最多降低0.5 ℃,相对湿度最多增加3%,但夜间影响较小。由于热对流运动的减弱,城区边界层高度降低约200 m;城区1 km高度以上水平风速增大,低层风速减小。  相似文献   

13.
利用1982—2016年MSU/AMSU-A亮温资料,分析了青藏高原地区对流层上层温度的气候趋势及其演变特征,并利用ERA-Interim和NCEP-R2再分析资料的相应高度大气温度资料进行了对比分析。结果表明,青藏高原地区对流层高层卫星亮温资料总体表现为逐渐增暖现象,这与再分析资料的对应层次大气温度变化有很好的相似性。基于集合经验模式分解方法 EEMD的非线性趋势分析表明,青藏高原地区对流层上层亮温的增温首先出现在青藏高原中部,随着时间演变,增温现象逐渐向青藏高原四周扩散,最后在整个青藏高原地区都出现了一致增温现象。相比于NCEP-R2再分析资料而言,ERA-Interim再分析资料300 h Pa大气温度的演变趋势与观测亮温有很好的相似性,只是增温现象是首先在青藏高原附近,随着时间推移,增温现象逐步向周边地区扩张,最终整个青藏高原地区出现了整体升温现象。但是NCEP-R2再分析资料则是与上述两种资料的温度演变特征有很大的差异,其300 h Pa高度大气温度在前20年表现为明显的降温特征,在最近10年才出现了增温,并逐步向周边地区扩张的现象。  相似文献   

14.
对流尺度集合预报是研究飑线等强对流天气的新方向。当前对飑线系统结构的研究主要采用卫星和雷达资料结合高分辨率确定性预报的方法,而本文从集合预报技术的角度分析飑线结构特征。针对2014年7月30日中国江淮地区的一次强飑线过程,利用WRF模式开展了对流尺度集合预报试验,采用概率匹配平均法对集合预报结果进行综合处理,重点考察集合预报对飑线结构特征的模拟能力。结果表明:对流尺度集合预报能够模拟出飑线系统的基本结构特征。集合平均和概率匹配平均法相比控制预报而言,对飑线回波、热力场、动力场和微物理量场结构有明显的改善作用。同时模拟出了飑线系统近地面冷池和环境垂直风切变的相互作用,与RKW理论相一致。概率匹配平均法在回波强度上较集合平均更接近实况,应用于对流尺度集合预报研究极端天气事件具有指示意义。  相似文献   

15.
利用2007—2013年COSMIC(Constellation Observing System for Meteorology,Ionosphere,and Climate)掩星RO(Radio Occutaion)资料和欧洲中期天气预报中心ECM WF(European Centre for M ediumRange Weather Forecasts)分析资料,研究了COSM IC RO探测的大气折射率及其反演的温度和水汽在青藏高原及其周边地区的偏差特征。结果表明,在夏季和秋季,高原,西南季风区和东部平原地区,大气折射率在对流层里均存在系统性的正偏差,其中高原偏差最大,在夏季可达0. 7%。冬季和春季,大气折射率在青藏高原对流层中下部有小的正偏差,而在西南季风区和平原地区对流层中下部有明显的负偏差。温度和水汽是折射率的反演产品,折射率的正偏差对应着温度的负偏差和水汽的正偏差。因此夏季高原地区的温度和相对湿度偏差可达-0. 5℃和7%。同时,夏季在西南季风区对流层顶出现了11%的相对湿度偏差。对流层下层折射率的负偏差和低层大气多路径效应有关,折射率正偏差和大气中的云水有关。对流层顶附近的相对湿度偏差,则是由于ECMWF模式结果不精确所引入的。  相似文献   

16.
利用淮河流域25个分布相对均匀站点的逐日降水资料,借助线性趋势、圆形统计、EOF分析等方法对1960—2014年流域的极端降水发生时间的时空特征进行分析。研究表明:(1)淮河流域极端降水发生时间主要集中在7月中下旬,并表现出明显的年际振荡。流域平均的极端降水发生时间表现出提前趋势,但未达到0. 05显著性水平。发生时间集中程度随年份上升,上升趋势达到了0. 05显著性水平。综合分析表明,流域7月份发生极端降水的可能性增大。(2)流域极端降水发生时间在空间上由西南向东北逐渐推迟,大部分站点发生时间呈微弱提前的趋势,该分布规律与梅雨和台风的影响有关,而提前趋势与20世纪90年代以来我国主雨带的年代际北移有关。(3)流域极端降水发生时间的EOF分析结果显示,第一模态空间典型场呈"西北-东南"反位相分布;第二模态空间典型场呈一致性分布,分别揭示了流域极端降水发生时间在空间上的分异特征和近似一致性分布特征。  相似文献   

17.
城市高温热浪事件严重影响人体健康和生命安全已成共识。利用宁波市2012—2016年中暑病例数据和同期气候数据对宁波市夏半年中暑流行特征及热浪对其的影响作了相关分析。结果表明:2012—2016年,2012年和2013年中暑人数最多,并集中在6—8月,其中7月人数最多占比55. 3%;男性中暑概率明显高于女性,中暑程度主要集中在轻度中暑,31—60岁年龄段中暑人数占比最高,市区中暑人数占比要高于郊区(县);用温湿两要素结合的炎热指数和热浪公式定义宁波热浪过程,发现热浪天数和中暑人数的相关系数高达0. 898,选出7次热浪过程计算热浪中暑的相对危险度,发现除2013年以外其他年份热浪中暑的相对危险度均在10以下,2013年的3次热浪中暑的相对危险度分别为18. 1、21. 6和25. 8,这与2013年热浪出现相对频繁集中有关;同时通过这7次热浪过程的前、后段热浪中暑的相对危险度的比较,并未见明显的热浪滞后效应存在。  相似文献   

18.
利用江苏省气象局与美国强风暴实验室联合开发的高精度数值分析及预报系统(Precision Weather Analysis and Forecast System,PWAFS)对雷达资料同化中径向速度资料的两种坐标转换方案进行对比分析。Grid方案将雷达径向速度资料通过最小二乘法从极坐标映射到模式三维网格;Tilt方案将雷达径向速度资料通过双线性插值在水平方向插值至标量水平网格,但在垂直方向不进行插值,保留在雷达仰角对应的高度上。两种方案对反射率资料的处理均是插值到模式三维网格点。Grid方案在近雷达处进行平滑,在远雷达处进行插值,会导致低层数据平滑,Tilt方案减少了雷达径向风观测垂直插值引发的误差,更多的保留了雷达观测的特性。本研究分别通过龙卷、大风及梅雨锋暴雨个例对这两种方案的同化结果进行对比分析。龙卷个例中Grid方案得到了部分虚假的较大的同化风场,Tilt方案结果清楚展示了龙卷发生位置的回波及流场的精细结构。大风个例中两种方案得到的最大风速值差3 m·s^-1,Tilt方案的结果更接近观测最大风速值,且得到的大风速区分布更符合观测。梅雨锋暴雨个例中Grid方案对东北及西南两个区域的大风速区均未能很好的反映,Tilt方案得到的水平风速大值区范围明显优于Grid方案。在靠近雷达中心的低层,观测资料密集,Tilt方案能够更好的反应实际大气状态。但是因为缺乏其他观测资料进行验证,两种方案的效果还需要利用数值预报或其他方法进行对比。  相似文献   

19.
朱丽  刘蓉  王欣  王作亮  文军  赵阳  谢琰  张堂堂 《高原气象》2019,38(3):484-496
依据近10年黄河源区流域气象台站的降水观测资料,提取夏季降水最强月对应的异常特征,利用拉格朗日粒子扩散模式(Flexible Particle Dispersion Model,FLEXPART),针对目标时段开展大气粒子群(气块)的后向模拟,着重分析了流域内降水正负异常状态下的水汽输送特征及其差异,并评估各水汽源地对流域内三类降水的贡献。结果表明,以“S”型跨赤道输送(“由阿拉伯海至孟加拉湾和印度半岛再由青藏高原西南侧进入黄河源区”)和“几”型输送(“由南中国海经长江中下游平原后途径四川盆地再进入黄河源区”)为代表的南支路径是2012年7月黄河源区对应的主要水汽输送路径;而以东、西风急流作用下的两条远距离输送(“由南中国海至孟加拉湾和印度半岛东北部附近后再经由青藏高原西侧或北侧进入黄河源区”以及“由欧洲平原东部和中亚地区进入青藏高原西侧或北侧后到达黄河源区”)为代表的北支路径是2015年7月黄河源区对应的主要水汽输送路径。在对气块后向模拟追踪的同时,对其运动过程中的比湿变化进行了对应经纬度网格的空间平均,变化特征显示出喜马拉雅山南麓、四川盆地周边、孟加拉湾和青藏高原北侧是黄河源区流域降水对应的潜在水汽源地。由定量评估贡献率的结果可知:青藏高原北侧的广大干旱及半干旱草原地区是2015年7月黄河源区降水的最主要水汽来源,其贡献率高达52.9%;而在2012年,三个主要源地的贡献率差异远不及2015年显著;无论对应何种类型的降水,青藏高原西南部和北侧提供了黄河源区主要可供降水的外来水汽。  相似文献   

20.
利用2008年、2010年和2012年藏北高原那曲地区MODIS卫星数据和站点大气湍流观测数据,分别应用Massman反演模型和一种确定地表粗糙度的独立方法,计算并分析地表粗糙度的时空变化特征并对反演模型进行验证,分析Z0m存在着明显的季节性变化特征。2—8月伴随冰雪消融与植被生长,Z0m逐渐增大,站点Z0m最大可达4~5 cm。9月至次年2月由于高原季风的衰退期等原因,Z0m逐渐减小,站点Z0m减小至1~2 cm。异常年份的降雪是Z0m明显低于常年的主要原因。依据Z0m的由小到大可以将下垫面分为冰雪类、稀疏草地类、茂盛草地类、城镇类4类,其中茂盛草地类和稀疏草地类分别占区域62. 49%和33. 74%,为主要类别,其Z0m年变化分别在2~6 cm和1~4 cm之间。两种计算方法得出的结论相关性较好,由于平均滑动作用,反演资料较实测计算结果偏小。整体而言,利用卫星数据反演算法计算的Z0m是可行的,并可应用于改进陆面模式参数,提高模式模拟的准确性,能更好的揭示区域的热通量交换。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号