首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Data from July 2006 to June 2008 observed at SACOL(Semi-Arid Climate and Environment Observatory of Lanzhou University,35.946°N,104.137°E,elev.1961 m),a semi-arid site in Northwest China,are used to study seasonal variability of soil moisture,along with surface albedo and other soil thermal parameters, such as heat capacity,thermal conductivity and thermal diffusivity,and their relationships to soil moisture content.The results indicate that surface albedo decreases with increases in soil moisture content,s...  相似文献   

2.
Almost three years of continuous measurements taken between January 2001 and May 2003 at the Gaize (or Gerze) automatic weather station (32.30 °N, 84.06 °E, 4420 m), a cold semi-desert site on the western Tibetan Plateau, have been used to study seasonal and annual variations of surface albedo and soil thermal parameters, such as thermal conductivity, thermal capacity and thermal diffusivity, and their relationship to soil moisture content. Most of these parameters undergo dramatic seasonal and annual variations. Surface albedo decreases with increasing soil moisture content, showing the typical exponential relation between surface albedo and soil moisture. Soil thermal conductivity increases as a power function of soil moisture content. The diffusivity first increases with increasing soil moisture, reaching its maximum at about 0.25 (volume per volume), then slowly decreases. Soil thermal capacity is rather stable for a wide range of soil moisture content.  相似文献   

3.
敦煌荒漠戈壁地区裸土地表反照率参数化研究   总被引:4,自引:1,他引:3  
利用敦煌站观测资料,选取其中观测资料完整且连续性好的7个年份每年5~10月的地表净辐射四分量和土壤湿度资料,分析研究了敦煌荒漠戈壁地区裸土地表反照率与太阳高度角和表层土壤含水量之间的关系,结果表明:地表反照率与太阳高度角呈e指数关系,随太阳高度角的增大而减小,当太阳高度角大于40°时,地表反照率趋于稳定。表层土壤含水量的增大可导致地表反照率的减小,地表反照率与5 cm深土壤湿度呈线性关系。另外,建立了敦煌荒漠戈壁地区裸土地表反照率与太阳高度角和表层土壤含水量之间的双因子参数化公式,提出了一种更加适合该地区的地表反照率参数方案,并且选取2002年6~9月的实测资料对拟合的参数化公式进行模拟验证。本文所提出的地表反照率参数化方案能够很好地再现该地区裸土地表反照率的“U”型日变化特征,可准确地模拟出地表反照率的动态变化趋势。基于此参数化方案计算得到的地表反射辐射与实测值基本一致。  相似文献   

4.
青藏高原湿地土壤冻结、融化期间的陆面过程特征   总被引:4,自引:0,他引:4       下载免费PDF全文
利用青藏高原中部玉树隆宝湿地2015年7月-2016年7月的观测资料,分析了土壤冻结、融化前后土壤温、湿度和地表能量收支特征,结果表明:冻土持续时期为12月至次年4月,深层土壤的冻结较浅层土壤滞后,融化过程快于冻结过程,5-40 cm土壤全部冻结历时51 d,全部融化历时19 d。土壤体积含水量年变化幅度达0.6 m3/m3。冻结过程5-40 cm土壤体积含水量下降,融化过程5-10 cm土壤体积含水量升高。土壤冻结之后,感热通量白天的值升高,潜热通量白天的值降低,净辐射和土壤热通量均降低,土壤热通量日变化幅度增大。土壤融化之后,潜热通量、净辐射和土壤热通量白天的值升高。地表反照率、鲍恩比、土壤热导率和土壤热扩散率冻结后增大融化后减小,土壤热容量冻结后减小融化后增大。  相似文献   

5.
多年冻土区与季节冻土区地表反照率对比观测研究   总被引:3,自引:0,他引:3  
利用多年冻土区唐古拉气象站与季节冻土区那曲毕节气象站2008年辐射、土壤未冻水含量及积雪等数据,对两种冻土类型下垫面上的地表反照率进行分析研究,得出两站地表反照率均呈现冬春季较大,夏秋季较小的规律,并且,积雪使地表反照率形成极大值,最大极值接近0.9。唐古拉站的地表反照率整体上比毕节站大,年平均地表反照率分别为0.38和0.31。地表反照率月较差(每月日平均地表反照率最大值与最小值的差值)冬季毕节站高于唐古拉站,而夏秋季节则相反。晴天,两站地表反照率均呈现"U"形,表现出早晚大、中午小,春、夏、秋、冬各季节典型晴天的地表反照率日平均值唐古拉站分别为0.23、0.20、0.20和0.25,毕节站为0.26、0.21、0.22和0.29。此外,讨论了两站太阳高度角和土壤湿度对地表反照率的影响,得出两站地表反照率随太阳高度角的增大均呈现e指数衰减趋势,土壤湿度与地表反照率呈负相关关系,且降雨对地表反照率的变化影响较大。  相似文献   

6.
土壤质地对中国区域陆面过程模拟的影响   总被引:6,自引:2,他引:4  
利用陆面过程模式(CLM3.5)和中国区域两种土壤质地数据(分别来自第二次中国土壤调查SNSS和联合国粮食农业组织FAO),研究了土壤质地变化对于模式模拟的陆表水热变量的影响。结果显示,土壤质地对土壤水文学变量的影响远大于对土壤热力学变量的影响,尤其是对于饱和土壤含水量和饱和水力传导率的影响。对于模式的输出,土壤质地影响比较明显的有土壤湿度、总径流和土壤渗透等水文学变量以及地表潜热、地表感热和土壤热通量等热力学变量,而影响相对较小的有地面吸收的太阳辐射和地表反照率。同时,发现基于SNSS模拟的土壤湿度与站点观测值更加接近。因此,本研究认为基于SNSS土壤质地数据可以有效地改进模式模拟结果,建议以后在陆面模式试验中尽可能使用以观测为基础的SNSS土壤质地数据。  相似文献   

7.
Using the Simple Biosphere Model (SiB2), soil thermal properties (STP) were examined in a Tibetan prairie during the monsoon period to investigate ground surface temperature prediction. We improved the SiB2 model by incorporating a revised force-restore method (FRM) to take the vertical heterogeneity of soil thermal diffusivity (k) into account. The results indicate that (1) the revised FRM alleviates daytime overestimation and nighttime underestimation in modeled ground surface temperature (Tg), and (2) its role in little rainfall events is significant because the vertical gradient of k increases with increasing surface evaporation. Since the original formula of thermal conductivity (λ) in the SiB2 greatly underestimates soil thermal conductivity, we compared five algorithms of λ involving soil moisture to investigate the cause of overestimation during the day and underestimation at night on the basis of the revised FRM. The results show that (1) the five algorithms significantly improve Tg prediction, especially in daytime, and (2) taking one of these five algorithms as an example, the simulated Tg values in the daytime are closer to the field measurements than those in the nighttime. The differences between modeled Tg and field measurements are mostly within the margin of error of ±2 K during 3 August to 4 September 1998.  相似文献   

8.
The relationship of surface albedo with the solar altitude angle and soil moisture is analyzed based on two-year (January 2002 to December 2003) observational data from the AWS (Automatic Weather Station) at MS3478 in the northern Tibetan Plateau during the experimental period of CEOP/CAMP-Tibet (Coordinated Enhanced Observing Period Asia-Australia Monsoon Project on the Tibetan Plateau). As a double-variable (solar altitude angle and soil moisture) function, surface albedo varies inconspicuously with any single factor. By using the method of approximately separating the double-variable function into two, one-factor functions (product and addition), the relationship of albedo with these two factors presents much better. The product and additional empirical formulae of albedo are then preliminarily fitted based on long-term experimental data. By comparison with observed values, it is found that the parameterization formulae fitted by using observational data are mostly reliable and their correlation coefficients are both over 0.6. The empirical formulae of albedo though, for the northern Tibetan Plateau, need to be tested by much more representative observational data with the help of numerical models and the retrieval of remote sensing data. It is practical until it is changed into effective parameterization formulae representing a grid scale in models.  相似文献   

9.
吴艾笙  钟强 《高原气象》1993,12(2):147-155
本文利用1991年“黑河实验”期张掖,化音,沙漠站1月、4月、8月、10月太阳辐射观测资料,分析了晴天总辐射、地表反射率与太阳高度角的关系,得到了不同下垫面、不同季节的地表反射率与太阳高度角的函数关系及各站晴天总辐射与太阳高度角的函数关系的拟合公式,并讨论了这种关系在利用卫星观测资料反演地表反射率中的应用.  相似文献   

10.
To improve the simulation of the surface radiation budget and related thermal processes in arid regions, three sophisticated surface albedo schemes designed for such regions were incorporated into the Biosphere- Atmosphere Transfer Scheme (BATS). Two of these schemes are functions of the solar zenith angle (SZA), where the first one has one adjustable parameter defined as SZA1 scheme, and the second one has two empirical parameters defined as SZA2 scheme. The third albedo scheme is a function of solar angle and soil water that were developed based on arid-region observations from the Dunhuang field experiment (DHEX) (defined as DH scheme). We evaluated the performance of the original and newly-incorporated albedo schemes within BATS using the in-situ data from the Oasis System Energy and Water Cycle Field Experiment that was carried out in JinTa, Gansu arid area (JTEX). The results indicate that a control run by the original version of the BATS generates a constant albedo, while the SZA1 and SZA2 schemes basically can reproduce the observed diurnal cycle of surface albedo, although these two schemes still underestimate the albedo when SZA is high in the early morning and late afternoon, and overestimate it when SZA is low during noontime. The SZA2 scheme has a better overall performance than the SZA1 scheme. In addition, BATS with the DH scheme slightly improves the albedo simulation in magnitude as compared to that from the control run, but a diurnal cycle of albedo is not produced by this scheme. The SZA1 and SZA2 schemes significantly increase the surface absorbed solar radiation by nearly 70 W m^-2, which further raises the ground temperature by 6 K and the sensible heat flux by 35 W m^-2. The increased solar radiation, heat flux, and temperature are more consistent with the observations that those from the control run. However, a significant improvement in these three variables is not found in BATS with the DH scheme due to the neglect of the diurnal cycle of albedo. Further analysis indi  相似文献   

11.
五道梁地区的辐射特征   总被引:10,自引:3,他引:10  
本文分析了1986年中美联合考察期间五道梁站的地面辐射平衡的气候学特征。五道梁地区夏季直接太阳辐射强,空气洁净,大气透明度好。太阳辐射在大气中的削弱以分子散射和臭氧吸收为主。总辐射中以散射为主。光谱反射率中太阳短波反射率为0.13,太阳红外反射率为0.25,雪面上二者接近;反射率受土壤湿度影响明显,在太阳高度角较小时,各波段反射率有不同的变化趋势。地表比辐射率约为0.90。地表净辐射和地面热源强度大。太阳紫外辐射大,占总辐射的比例也大。  相似文献   

12.
青藏高原复杂下垫面能量和水分循环季节变化特征分析   总被引:2,自引:2,他引:0  
为深入认识青藏高原能量和水分循环季节变化,利用GSWP(Global Soil Wetness Project)、GLDAS(Global Land Data Assimilation System)、AMSR-E(Advance Microwave Scanning Radiometer-EOS)土壤湿度以及台站观测资料等多种数据,采用滑动t检验初步分析高原下垫面各物理量季节变化特征。结果表明:各物理量季节变化特征明显且联系密切。高原下垫面净短波辐射和感热通量在1月中旬显著开始增加,5~6月达到全年最高值。净长波辐射5月表现为高值,夏季表现为低值。地表潜热通量在1月显著开始增加,在夏季达到全年最高值。表层土壤3月开始输送热量到大气,9月大气开始向土壤表层传递热量;融雪3~5月加快,雪盖减少。降水和1 cm植被含水量在2月显著开始增加,1 cm土壤显著开始加湿,5~6月降水陡增,1 cm土壤湿度表现为峰值。1 cm植被含水量、植被蒸腾、总蒸散与降水在7~8月达全年最高值,1 cm土壤湿度在7月表出现为谷值,9月达全年第二峰值。10月下垫面温度转冷后,雪盖增加,土壤湿度逐渐减小。  相似文献   

13.
Trends and scales of observed soil moisture variations in China   总被引:3,自引:0,他引:3  
A new soil moisture dataset from direct gravimetric measurements within the top 50-cm soil layers at 178 soil moisture stations in China covering the period 1981-1998 are used to study the long-term and seasonal trends of soil moisture variations, as well as estimate the temporal and spatial scales of soil moisture for different soil layers. Additional datasets of precipitation and temperature difference between land surface and air (TDSA) are analyzed to gain further insight into the changes of soil moisture. There are increasing trends for the top 10 cm, but decreasing trends for the top 50 cm of soil layers in most regions. Trends in precipitation appear to dominantly influence trends in soil moisture in both cases. Seasonal variation of soil moisture is mainly controlled by precipitation and evaporation, and in some regions can be affected by snow cover in winter. Timescales of soil moisture variation are roughly 1-3 months and increase with soil depth. Further influences of TDSA and precipitation on soil moisture in surface layers, rather than in deeper layers, cause this phenomenon. Seasonal variations of temporal scales for soil moisture are region-dependent and consistent in both layer depths. Spatial scales of soil moisture range from 200-600 km, with topography also having an affect on these. Spatial scales of soil moisture in plains are larger than in mountainous areas. In the former, the spatial scale of soil moisture follows the spatial patterns of precipitation and evaporation, whereas in the latter, the spatial scale is controlled by topography.  相似文献   

14.
The impact of the anomalous thawing of frozen soil in the late spring on the summer precipitation in China and its possible mechanism are analyzed in the context of the frozen soil thawing date data of the 50 meteorological stations in the Tibetan Plateau, and the NCEP/NCAR monthly average reanalysis data.Results show that the thawing dates of the Tibetan Plateau gradually become earlier from 1980 to 1999,which is consistent with the trend of global warming in the 20th century. Because differences in the thermal capacity and conductivity between frozen and unfrozen soils are larger, changes in the freezing/thawing process of soil may change the physical properties of the underlying surface, thus affecting exchanges of sensible and latent heat between the ground surface and air. The thermal state change of the plateau ground surface must lead to the thermal anomalies of the atmosphere over and around the plateau, and then further to the anomalies of the general atmospheric circulation. A possible mechanism for the impact of the thawing of the plateau on summer (July) precipitation may be as follows. When the frozen soil thaws early (late) in the plateau, the thermal capacity of the ground surface is large (small), and the thermal conductivity is small (large), therefore, the thermal exchanges between the ground surface and the air are weak (strong). The small (large) ground surface sensible and latent heat fluxes lead to a weak (strong) South Asian high, a weak (strong) West Pacific subtropical high and a little to south (north) of its normal position. Correspondingly, the ascending motion is strengthened (weakened) and precipitationin creases (decreases) in South China, while in the middle and lower reaches of the Changjiang River, the ascending motion and precipitation show the opposite trend.  相似文献   

15.
This study analyzes mid-21st century projections of daily surface air minimum (Tmin) and maximum (Tmax) temperatures, by season and elevation, over the southern range of the Colorado Rocky Mountains. The projections are from four regional climate models (RCMs) that are part of the North American Regional Climate Change Assessment Program (NARCCAP). All four RCMs project 2°C or higher increases in Tmin and Tmax for all seasons. However, there are much greater (>3°C) increases in Tmax during summer at higher elevations and in Tmin during winter at lower elevations. Tmax increases during summer are associated with drying conditions. The models simulate large reductions in latent heat fluxes and increases in sensible heat fluxes that are, in part, caused by decreases in precipitation and soil moisture. Tmin increases during winter are found to be associated with decreases in surface snow cover, and increases in soil moisture and atmospheric water vapor. The increased moistening of the soil and atmosphere facilitates a greater diurnal retention of the daytime solar energy in the land surface and amplifies the longwave heating of the land surface at night. We hypothesize that the presence of significant surface moisture fluxes can modify the effects of snow-albedo feedback and results in greater wintertime warming at night than during the day.  相似文献   

16.
一个用于气候模式的简单冻土过程参数化方案的建立和检验   总被引:13,自引:0,他引:13  
在NCAR/LSM的基础上,发展了一个简单的冻土过程参数化方案,并使用苏联6个站的水气象观测资料考察了耦合了新方案模式的气候效应。在新方案中,加入了对含冰量的求解和在相变过程中的能量变化;并使用Johanson的方案替代了模式中原有的土壤导热率的参数化方案,考虑了含冰量对土壤水热性质的影响。原模式和改进后模式的模拟结果的比较得到,冻土过程方案能够合理的模拟土壤列中的能量收支及水热性质随含冰量的变化。随着入渗的减少和径流的增加,春季的土壤湿度减小。因此,热通量的分配和土壤温度也产生了相应的变化。  相似文献   

17.
土壤热异常影响地表能量平衡的个例分析和数值模拟   总被引:6,自引:0,他引:6  
The statistical relationship between soil thermal anomaly and short-term climate change is presented based on a typical case study. Furthermore, possible physical mechanisms behind the relationship are revealed through using an off-line land surface model with a reasonable soil thermal forcing at the bottom of the soil layer.In the first experiment, the given heat flux is 5 W m-2 at the bottom of the soil layer (in depth of 6.3 m)for 3 months, while only a positive ground temperature anomaly of 0.06℃ can be found compared to the control run. The anomaly, however, could reach 0.65℃ if the soil thermal conductivity was one order of magnitude larger. It could be even as large as 0.81℃ assuming the heat flux at bottom is 10 W m-2. Meanwhile, an increase of about 10 W m-2 was detected both for heat flux in soil and sensible heat on land surface, which is not neglectable to the short-term climate change. The results show that considerable response in land surface energy budget could be expected when the soil thermal forcing reaches a certain spatial-tem poral scale. Therefore, land surface models should not ignore the upward heat flux from the bottom of the soil layer. Moreover, integration for a longer period of time and coupled land-atmosphere model are also necessary for the better understanding of this issue.  相似文献   

18.
阿尔卑斯山杉林冠层影响辐射传输的个例分析   总被引:3,自引:1,他引:2  
利用瑞士Alptal观测站杉树林冠层上方、下方的辐射观测资料,分析了冠层对短波辐射的减弱及对长波辐射的增幅作用及其季节变化。结果表明,对比较密集的常绿针叶林,冠层对入射短波辐射的透过率随着太阳高度的降低而减小,春季以后趋于稳定;冠层对长波辐射的增幅作用随天气状况而变化,这种增幅作用在晴空条件下最显著,可达1.5倍。在冬季,因为太阳辐射较弱,冠层对长波辐射的增幅作用超过对短波辐射的减弱从而增加地面净辐射。在其它季节,太阳辐射比较强,冠层对短波辐射的减弱超过对长波辐射的增幅作用而减少地面净辐射。地面净辐射与冠层上方气温的变化趋势虽然在有些时段一致,但在伴随降雪过程的降温时段,地面净辐射与气温的变化趋势近乎反相,在积雪融化时段,地面净辐射的增加比气温升高更显著,尤其是在白天。  相似文献   

19.
Measurements of incoming global, diffuse and reflected radiation at a tower site in Lake Ontario are used to evaluate components of surface albedo. Albedo for diffuse radiation lies between 0.074 and 0.082 and a coefficient for backscatter from sub-surface water layers shows little deviation from a mean of 0.017. Direct beam albedo for a calm surface follows the Fresnel law. Waves increase direct-beam albedo particularly at higher solar zenith angles. A pronounced dependence of albedo upon zenith angle for clear skies decreases with increasing cloud amount and becomes undetectable in overcast conditions. On a daily basis, albedo ranged between 0.07 in early July to 0.11 in mid-November. Day-to-day scatter is within ±1% of the mean seasonal trend.  相似文献   

20.
利用1979—2015年ERA-Interim再分析土壤湿度、云量资料,NCEP/NCAR再分析环流资料和CPC土壤湿度资料,分析了东亚中纬度夏季陆面热力异常的时空分布特征及其与前期春季土壤湿度异常的联系,探讨了前期春季土壤湿度影响东亚中纬度夏季陆面增暖的可能途径。结果表明,东亚中纬度夏季土壤表层温度呈全区一致增暖趋势,其中贝加尔湖及以南地区温度变化最剧烈、增暖最迅速,且1990年代中期前后存在一个明显由冷向暖的年代际转变。进一步分析发现,春、夏季西西伯利亚到贝加尔湖北部地区的土壤湿度与夏季贝加尔湖及以南地区的土壤表层温度在年代际和年际尺度上均存在紧密联系:西西伯利亚到贝加尔湖北部地区土壤湿度异常偏高,通常对应贝加尔湖及南部地区夏季土壤表层温度偏高。西西伯利亚到贝加尔湖北部地区春、夏土壤湿度异常可以引起夏季大气环流异常,从而对东亚夏季中纬度陆面热力异常产生影响:春、夏土壤湿度偏高时,贝加尔湖及其南部地区上空位势高度为正异常,对应为反气旋性异常环流,云量减少,有利于东亚中纬度陆面增暖;反之,则对应为气旋性异常环流,不利于陆面增暖。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号