首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mediterranean warming is especially due to summer season   总被引:2,自引:2,他引:0  
We created a new homogenized daily minimum and maximum temperature data set (1955–2007) for the central Mediterranean area of Tuscany (Italy). Yearly and seasonal long-term trends of some climatic and extreme climatic indices were investigated. The results highlighted a positive trend for mean temperature of about 0.9°C per 50 years with a slightly more pronounced increase in maximum temperature. Seasonal analysis revealed a by far much greater increase in summer (June, July, August) and spring (March, April, May) temperature in respect of autumn and winter, this finding consistent with most recent Mediterranean evidences. Warm extremes showed an overall tendency to increase, while a slight not significant decrease trend was found in regard to frost days and cold extremes. Comparisons with different patterns of Mediterranean warming confirmed the magnitude of recent very fast rise in temperature, especially during summer. This change could be due to last decades modifications of general circulation patterns and land–temperature, land–precipitation positive feedback processes dependent from soil moisture. All these results confirm that the Mediterranean is a region especially responsive and thus very vulnerable to climate change.  相似文献   

2.
Changes in daily climate extremes in the arid area of northwestern China   总被引:3,自引:0,他引:3  
There has been a paucity of information on trends in daily climate and climate extremes, especially for the arid region. We analyzed the changes in the indices of climate extremes, on the basis of daily maximum and minimum air temperature and precipitation at 59 meteorological stations in the arid region of northwest China over the period 1960–2003. Twelve indices of extreme temperature and six indices of extreme precipitation are examined. Temperature extremes show a warming trend with a large proportion of stations having statistically significant trends for all temperature indices. The regional occurrence of extreme cool days and nights has decreased by ?0.93 and ?2.36 days/decade, respectively. Over the same period, the occurrence of extreme warm days and nights has increased by 1.25 and 2.10 days/decade, respectively. The number of frost days and ice days shows a statistically significant decrease at the rate of ?3.24 and ?2.75 days/decade, respectively. The extreme temperature indices also show the increasing trend, with larger values for the index describing variations in the lowest minimum temperature. The trends of Min Tmin (Tmax) and Max Tmin (Tmax) are 0.85 (0.61) and 0.32 (0.17)?°C/decade. Most precipitation indices exhibit increasing trends across the region. On average, regional maximum 1-day precipitation, annual total wet-day precipitation, and number of heavy precipitation days and very wet days show insignificant increases. Insignificant decreasing trends are also found for consecutive dry days. The rank-sum statistic value of most temperature indices exhibits consistent or statistically significant trends across the region. The regional medians after 1986 of Min Tmin (Tmax), Max Tmin (Tmax), warm days (nights), and warm spell duration indicator show statistically more larger than medians before 1986, but the frost days, ice days, cool days (nights), and diurnal temperature range reversed. The medians of precipitation indices show insignificant change except for consecutive dry days before and after 1986.  相似文献   

3.
Changes in rainfall extremes pose a serious and additional threat to water resources planning and management, natural and artificial oasis stability, and sustainable development in the fragile ecosystems of arid inland river basins. In this study, the trend and temporal variation of extreme precipitation are analyzed using daily precipitation datasets at 11 stations over the arid inland Heihe River basin in Northwest China from 1960 to 2011. Eight indices of extreme precipitation are studied. The results show statistically significant and large-magnitude increasing and decreasing trends for most indices, primarily in the Qilian Mountains and eastern Hexi Corridor. More frequent and intense rainfall extremes have occurred in the southern part of the desert area than in the northern portion. In general, the temporal variation in precipitation extremes has changed throughout the basin. Wet day precipitation and heavy precipitation days show statistically significant linear increasing trends and step changes in the Qilian Mountains and Hexi Corridor. Consecutive dry days have decreased obviously in the region in most years after approximately the late 1980s, but meanwhile very long dry spells have increased, especially in the Hexi Corridor. The probability density function indicates that very long wet spells have increased in the Qilian Mountains. The East Asian summer monsoon index and western Pacific subtropical high intensity index possess strong and significant negative and positive correlations with rainfall extremes, respectively. Changes in land surface characteristics and the increase in water vapor in the wet season have also contributed to the changes in precipitation extremes over the river basin.  相似文献   

4.
A complete picture of changes in climate extremes has been presented for Shanxi Province, China using data from all 61 available stations. The results reveal large spatial coherence of trends for the majority of extremes, especially for temperature extremes. Significant and symmetric increasing trends of the annual mean maximum and mean minimum temperatures (TXam, TNam) are detected over the past 50 years. Significant positive trends are detected for warm days and nights (TX90p, TN90p), the highest and lowest maximum and minimum temperatures (TXx, TXn, TNx, TNn), and the growing season length (GSL). Significant negative trends are revealed for cold days and nights (TX10p, TN10p) and frost days (FD). Significant decreases are found in the number of heavy precipitation days (R10mm) and wet day precipitation (PRCPTOT). Although Shanxi and the northern half of North China Plain (NNCP) have been grouped into the North China region and assessed together in previous studies for China, the changes in climate extremes in the NNCP have some pronounced differences in comparison with Shanxi. Noticeably, the increase of the TNam is at a rate nearly three times that of the TXam during 1959–2008 over the NNCP. The warming for the nighttime indices TN90p, TN10p, TNx, and TNn is stronger, but the warming for the daytime indices TX10p, TX90p, and TXx is weaker in the NNCP. There is no significant decrease for R10mm and PRCPTOT in the NNCP.  相似文献   

5.
Trend analysis of temperature parameters in Iran   总被引:1,自引:1,他引:0  
In this study, long-term annual and monthly trends in mean maximum, mean minimum and mean temperature are investigated at 35 synoptic stations in Iran. The statistical significance of trends is assessed by the Mann–Kendall test. Most stations, especially those in western and eastern parts of country, had significant positive trends in monthly temperature time series in summer season. However, the maximum number of stations with the positive trend were observed in April (30 stations), and then in August (29 stations) while the negative trends were seen in February (16 stations) and March (15 stations). On annual scale, most stations in western and southern parts of Iran had significant positive trend. Overall, about 71%, 66% and about 40% of stations had statistically significant trends in mean annual temperature, mean annual minimum temperature and in mean annual maximum temperature, respectively. These results, however, indicate that the climate in Iran is growing warmer, especially in summer.  相似文献   

6.
Summary The present study is an analysis of the observed extreme temperature and precipitation trends over Yangtze from 1960 to 2002 on the basis of the daily data from 108 meteorological stations. The intention is to identify whether or not the frequency or intensity of extreme events has increased with climate warming over Yangtze River basin in the last 40 years. Both the Mann-Kendall (MK) trend test and simple linear regression were utilized to detect monotonic trends in annual and seasonal extremes. Trend tests reveal that the annual and seasonal mean maximum and minimum temperature trend is characterized by a positive trend and that the strongest trend is found in the winter mean minimum in the Yangtze. However, the observed significant trend on the upper Yangtze reaches is less than that found on the middle and lower Yangtze reaches and for the mean maximum is much less than that of the mean minimum. From the basin-wide point of view, significant increasing trends are observed in 1-day extreme temperature in summer and winter minimum, but there is no significant trend for 1-day maximum temperature. Moreover, the number of cold days ≤0 °C and ≤10 °C shows significant decrease, while the number of hot days (daily value ≥35 °C) shows only a minor decrease. The upward trends found in the winter minimum temperature in both the mean and the extreme value provide evidence of the warming-up of winter and of the weakening of temperature extremes in the Yangtze in last few decades. The monsoon climate implies that precipitation amount peaks in summer as does the occurrence of heavy rainfall events. While the trend test has revealed a significant trend in summer rainfall, no statistically significant change was observed in heavy rain intensity. The 1-day, 3-day and 7-day extremes show only a minor increase from a basin-wide point of view. However, a significant positive trend was found for the number of rainstorm days (daily rainfall ≥50 mm). The increase of rainstorm frequency, rather than intensity, on the middle and lower reaches contributes most to the positive trend in summer precipitation in the Yangtze.  相似文献   

7.
Summary Circulation types were identified by means of zonal and meridional indices calculated separately over ten different regions of 20° × 20° over the Mediterranean and Europe. Seasonal and annual rainfall totals in four stations Lisbon, Luqa (Malta), Athens and Jerusalem, were compared with circulation types for the period 1873–1991. Correlation coefficients of circulation indices with precipitation, for each station in each season were calculated and mapped.An oscillation in the meridional index during the winter and the spring, between the western and eastern Mediterranean, was detected.Time series analysis of the circulation indices demonstrates a significant reduction in zonality and an increase in meridionality mainly in spring and in summer, over most of the study area.With 9 Figures  相似文献   

8.
In this study, the trends and periodicity in climate extremes are examined in Hunan Province over the period 1960–2013 on the basis of 27 extreme climate indices calculated from daily temperature and precipitation records at 89 meteorological stations. The results show that in the whole province, temperature extremes exhibit a warming trend with more than 50% stations being statistically significant for 7 out of 16 temperature indices, and the nighttime temperature increases faster than the daytime temperature at the annual scale. The changes in most extreme temperature indices show strongly coherent spatial patterns. Moreover, the change rates of almost all temperature indices in north Hunan are greater than those of other regions. However, the statistically significant changes in indices of extreme precipitation are observed at fewer stations than in extreme temperature indices, forming less spatially coherent patterns. Positive trends in indices of extreme precipitation show that the amount and intensity of extreme precipitation events are generally increasing in both annual and seasonal scales, whereas the significant downward trend in consecutive wet days indicates that the precipitation becomes more even over the study period. Analysis of changes in probability distributions of extreme indices for 1960–1986 and 1987–2013 also demonstrates a remarkable shift toward warmer condition and increasing tendency in the amount and intensity of extreme precipitation during the past decades. The variations in extreme climate indices exhibit inconstant frequencies in the wavelet power spectrum. Among the 16 temperature indices, 2 of them show significant 1-year periodic oscillation and 7 of them exhibit significant 4-year cycle during some certain periods. However, significant periodic oscillations can be found in all of the precipitation indices. Wet-day precipitation and three absolute precipitation indices show significant 1-year cycle and other seven provide significant power at the 4-year period, which are mainly found during 1970–1980 and after 1992.  相似文献   

9.
In this paper, change-points in time series of annual extremes in temperature and precipitation in the Zhujiang River Basin are analyzed with the CUSUM test. The data cover the period 1961–2007 for 192 meteorological stations. Annual indicators are analyzed: mean temperature, maximum temperature, warm days, total precipitation, 5-day maximum precipitation, and dry days. Significant change-points (1986/87, 1997/98, 1968/69, and 2003/04) are detected in the time series of most of the indicators. The change-point in 1986/87 is investigated in more detail. Most stations with this change-point in temperature indicators are located in the eastern and coastal areas of the basin. Stations with this change-point in dry days are located in the western area. The means and trends of the temperature indicators increase in the entire basin after 1986/87. The highest magnitudes can be found at the coast and delta. Decreasing (increasing) tendencies in total and 5-day maximum precipitation (dry days) are mostly observed in the western and central regions. The detected change-points can be explained by changes in the indices of the Western Pacific subtropical high and the East Asian summer monsoon as well as by change-points in wind directions. In years when the indices simultaneously increase and decrease (indices taking reverse directions to negative and positive) higher annual temperatures and lower annual precipitation occur in the Zhujiang River Basin. The high station density and data quality are very useful for spatially assessing change-points of climatic extreme events. The relation of the change points to large-scale oscillation can provide valuable data for planning adaptation measures against climate risks, e.g. for flood control, disaster preparedness, and water resource management.  相似文献   

10.
Currently, an important scientific challenge that researchers are facing is to gain a better understanding of climate change at the regional scale, which can be especially challenging in an area with low and highly variable precipitation amounts such as Iran. Trend analysis of the medium-term change using ground station observations of meteorological variables can enhance our knowledge of the dominant processes in an area and contribute to the analysis of future climate projections. Generally, studies focus on the long-term variability of temperature and precipitation and to a lesser extent on other important parameters such as moisture indices. In this study the recent 50-year trends (1955–2005) of precipitation (P), potential evapotranspiration (PET), and aridity index (AI) in monthly time scale were studied over 14 synoptic stations in three large Iran basins using the Mann–Kendall non-parametric test. Additionally, an analysis of the monthly, seasonal and annual trend of each parameter was performed. Results showed no significant trends in the monthly time series. However, PET showed significant, mostly decreasing trends, for the seasonal values, which resulted in a significant negative trend in annual PET at five stations. Significant negative trends in seasonal P values were only found at a number of stations in spring and summer and no station showed significant negative trends in annual P. Due to the varied positive and negative trends in annual P and to a lesser extent PET, almost as many stations with negative as positive trends in annual AI were found, indicating that both drying and wetting trends occurred in Iran. Overall, the northern part of the study area showed an increasing trend in annual AI which meant that the region became wetter, while the south showed decreasing trends in AI.  相似文献   

11.
中国东部的降水区划及备区旱涝变化的特征   总被引:2,自引:0,他引:2  
为了研究我国旱涝发生的规律、成因和预测,事先掌握降水的气候型区和各区降水变化的气候特征是十分必要的。本文利用1951—1986年中国东部140个站的月降水资料,分析了下半年降水相对系数、月际和年际标准差等参量时空变化的特征,并综合应用逐级归并法和成批调整法,对中国东部地区进行了降水气候区的划分。在此基础上,进一步探讨了各区旱涝的频数和长期变化的趋势。  相似文献   

12.
Climate extremes indices are evaluated for the northeast United States and adjacent Canada (Northeast) using gridded observations and twenty-three CMIP5 coupled models. Previous results have demonstrated observed increases in warm and wet extremes and decreases in cold extremes, consistent with changes expected in a warming world. Here, a significant shift is found in the distribution of observed total annual precipitation over 1981-2010. In addition, significant positive trends are seen in all observed wet precipitation indices over 1951-2010. For the Northeast region, CMIP5 models project significant shifts in the distributions of most temperature and precipitation indices by 2041-2070. By the late century, the coldest (driest) future extremes are projected to be warmer (wetter) than the warmest (wettest) extremes at present. The multimodel interquartile range compares well with observations, providing a measure of confidence in the projections in this region. Spatial analysis suggests that the largest increases in heavy precipitation extremes are projected for northern, coastal, and mountainous areas. Results suggest that the projected increase in total annual precipitation is strongly influenced by increases in winter wet extremes. The largest decreases in cold extremes are projected for northern and interior portions of the Northeast, while the largest increases in summer warm extremes are projected for densely populated southern, central, and coastal areas. This study provides a regional analysis and verification of the latest generation of CMIP global models specifically for the Northeast, useful to stakeholders focused on understanding and adapting to climate change and its impacts in the region.  相似文献   

13.
A double-resolution regional experiment on hydrodynamic simulation of climate over the eastern Mediterranean (EM) region was performed using an International Center for Theoretical Physics, Trieste RegCM3 model. The RegCM3 was driven from the lateral boundaries by the data from the ECHAM5/MPI-OM global climate simulation performed at the MPI-M, Hamburg and based on the A1B IPCC scenario of greenhouse gases emission. Two simulation runs for the time period 1960-2060, employing spatial resolutions of 50?km/14?L and 25?km/18?L, are realized. Time variations of the differences in the space distributions of simulated climate parameters are analyzed to evaluate the role of smaller scale effects. Both least-square linear and non-linear trends of several characteristics of the EM climate are evaluated in the study. One of the key findings with regard to linear trends is a notable and statistically significant precipitation drop over the near coastal EM zone during December-February and September-November. Statistically significant positive air temperature trends are projected over the entire EM region during the four seasons. Also projected are increases in air temperature extremes and the relative contribution of convective processes in the Southern Mediterranean coastal zone (ECM) region. A notable sensitivity of projected larger-scale climate change signals to smaller-scale effects is also demonstrated.  相似文献   

14.
Changes in precipitation exert an enormous impact on human life, and it is of vital importance to study regular patterns of meteorological and hydrological events. In order to explore the changing spatial and temporal patterns of precipitation amounts, precipitation extremes and precipitation concentration in Jiangxi province in southeast China between 1960 and 2008, several precipitation indices series were analysed using the Mann–Kendall test in this study. Our results indicate remarkable differences among the stations with negative and positive precipitation trends at the annual, seasonal and monthly scales, significant increasing trends are mainly found during January, August, winter and summer, while significant decreasing trends mostly are observed during October and autumn. For precipitation extremes, most precipitation indices suggest that both the intensity and the days of extreme precipitation are increasing; the mean precipitation amount, especially, on a wet day shows a significant positive trend. When it comes to precipitation concentration, the monthly rainfall heterogeneity shows an insignificant downward trend, while the contribution of the days with greatest rainfall displays an insignificant upward trend. Furthermore, the long-range persistence is detected for changing process of precipitation amount, extreme precipitation and precipitation concentration using the Rescaled Range Analysis.  相似文献   

15.
The variability of extreme summer precipitation over Circum-Bohai-Sea region during 1961?C2008 was investigated based on the daily precipitation data of 63 meteorological stations using the linear regression method, the non-parametric Mann?CKendall test, and the continuous wavelet transform method. The results showed that there were large spatial differences in the trends of extreme summer precipitation indices. Decreasing trends were found in summer total precipitation, extreme precipitation frequency, intensity and proportion, the maximum consecutive wet days (CWD), and the maximum 1- and 5-day precipitation, and the largest decrease was observed in the central coast area (except CWD), although the trends were not statistically significant at the 5% level at most places. Inversely, the maximum consecutive dry days exhibited non-significant increasing trends. Additionally, the significant 2?C4-year periods were detected for eight indices, showing the significant interannual variability of extreme summer precipitation. Overall, the results of this study indicated that in the last 48?years, there was severe water stress over Circum-Bohai-Sea region, especially in the central coast area, which exerted negative effects on economic development and natural ecosystems.  相似文献   

16.
Indices for extreme events in projections of anthropogenic climate change   总被引:3,自引:2,他引:1  
Indices for temperature and precipitation extremes are calculated on the basis of the global climate model ECHAM5/MPI-OM simulations of the twentieth century and SRES A1B and B1 emission scenarios for the twenty-first century. For model evaluation, the simulated indices representing the present climate were compared with indices based on observational data. This comparison shows that the model is able to realistically capture the observed climatological large-scale patterns of temperature and precipitation indices, although the quality of the simulations depends on the index and region under consideration. In the climate projections for the twenty-first century, all considered temperature-based indices, minimum Tmin, maximum Tmax, and the frequency of tropical nights, show a significant increase worldwide. Similarly, extreme precipitation, as represented by the maximum 5-day precipitation and the 95th percentile of precipitation, is projected to increase significantly in most regions of the world, especially in those that are relatively wet already under present climate conditions. Analogously, dry spells increase particularly in those regions that are characterized by dry conditions in present-day climate. Future changes in the indices exhibit distinct regional and seasonal patterns as identified exemplarily in three European regions.  相似文献   

17.
《大气与海洋》2013,51(2):243-256
Abstract

Trends and variations in daily temperature and precipitation indices in southern Québec are examined for the period 1960–2005. The indices are based on daily temperature and daily precipitation which have been recently adjusted at 53 climatological stations. The adjustments were made for site relocation, changes in observing programs, known instrument changes and measurement program deficiencies. The results show that the surface air temperature has increased in southern Québec over 1960–2005. Significant warming is evident in the western, southern and central parts of the province but the increasing trends become smaller toward the east. The warming is greater during the winter although many significant increasing trends are found in the summer. The analysis of the temperature extremes strongly indicates the occurrence of more nights with extreme high temperatures in all seasons. The temperature indices also suggest an increase in the number of thaw/frost days during the winter (days with maximum temperature above 0°C and minimum temperature below 0°C), a decrease in the length of the frost season, an increase in the length of the growing season, a decrease in heating degree days and an increase in cooling degree days. The precipitation indices show an increase in the annual total rainfall although many stations indicate decreasing trends during the summer. The number of days with rain has increased over the region whereas the number of days with snow and the total snow amounts have decreased over the past 46 years.  相似文献   

18.
A procedure for classifying daily summer temperature extremes in northeastern Spain into homogenous regions has been presented and evaluated. This procedure employed daily temperature series from a dense network of 128 weather stations spanning the period from 1960 to 2006. Characteristics of temperature extremes included temperature frequency (e.g., warm days), intensity (e.g., warmest day), and duration (e.g., maximum length of hot spell). Following the results of the principal components analysis and Ward's method of clustering, the study area was divided into four homogenous sub-regions in terms of both the geographic and climatic meanings: the Mediterranean region, the mainland and the Cantabrian region, the moderately elevated areas westward and southward, and the mountainous region. Based on an internal cluster validation measure (Silhouette width), the quality of clustering was evaluated and ensured. The temporal evolution of the long-term (1960–2006) temperature extremes clearly showed a different behavior amongst these sub-regions. The Mediterranean and the highly elevated regions revealed the strongest signals in both daytime and nighttime extremes. For mainland areas, considerable differences in the behavior of the daytime and nighttime temperature extremes were evident. The influence of atmospheric circulation on spatial and temporal variability of temperature extremes was also explored. The variability of summer temperature extremes in NE Spain appears to be mainly driven by the Scandinavian (SCA), the Western Mediterranean Oscillation (WeMO), and the East Atlantic (EA) patterns, with a tendency toward increasing during the positive (negative) phases of the EA (WeMO and SCA) circulation modes. In such a region with complex geography and climate, regionalization of summer temperature extremes can be advantageous for extracting finer-scale information, which may prove useful for the vulnerability assessments and the development of local adaptation strategies in areas such as health, ecosystems and agriculture.  相似文献   

19.
A method of moving precipitation totals is described and applied for the analysis of precipitation extremes in Estonia. Numbers of extremely wet and extremely dry days and other indices of precipitation extremes were calculated using the daily precipitation data measured at 51 stations over Estonia during 1957–2009. Mean regularities of spatial and seasonal distribution were determined. Long-term changes were detected using Sen's method and Mann–Kendall test. The highest risk of heavy precipitation is in the regions of higher mean precipitation on the uplands and on the belt of higher precipitation in the western part of continental Estonia. Wet spells have their sharp maxima in July and August. The highest risk of droughts is observed in the coastal regions of West Estonia. In the coastal area, droughts appear mostly in the first half of summer, while in the eastern Estonia, they are usually observed during the second half of summer. Extreme precipitation events have become more frequent and intense. Statistically significant increasing trends were, first of all, found in the time series of winter extreme precipitation indices. In summer and autumn, trends existed in some indices, but in spring, there were no trends at all. There were no trends in time series of dryness indices in Estonia in 1957–2009.  相似文献   

20.
Extreme climate events in China: IPCC-AR4 model evaluation and projection   总被引:11,自引:1,他引:10  
Observations from 550 surface stations in China during 1961–2000 are used to evaluate the skill of seven global coupled climate models in simulating extreme temperature and precipitation indices. It is found that the models have certain abilities to simulate both the spatial distributions of extreme climate indices and their trends in the observed period. The models’ abilities are higher overall for extreme temperature indices than for extreme precipitation indices. The well-simulated temperature indices are frost days (Fd), heat wave duration index (HWDI) and annual extreme temperature range (ETR). The well-simulated precipitation indices are the fraction of annual precipitation total due to events exceeding the 95th percentile (R95T) and simple daily intensity index (SDII). In a general manner, the multi-model ensemble has the best skill. For the projections of the extreme temperature indices, trends over the twenty-first century and changes at the end of the twenty-first century go into the same direction. Both frost days and annual extreme temperature range show decreasing trends, while growing season length, heat wave duration and warm nights show increasing trends. The increases are especially manifested in the Tibetan Plateau and in Southwest China. For extreme precipitation indices, the end of the twenty-first century is expected to have more frequent and more intense extreme precipitation. This is particularly visible in the middle and lower reaches of the Yangtze River, in the Southeast coastal region, in the west part of Northwest China, and in the Tibetan Plateau. In the meanwhile, accompanying the decrease in the maximum number of consecutive dry days in Northeast and Northwest, drought situation will reduce in these regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号