首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier–Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were validated against experimental data obtained in wind-tunnel studies before the model was applied to study the detailed turbulence, temperature, and pollutant dispersion characteristics in the street canyon of aspect ratio 1. The effects of different Richardson numbers (Ri) were investigated. The ground heating significantly enhanced mean flow, turbulence, and pollutant flux inside the street canyon, but weakened the shear at the roof level. The mean flow was observed to be no longer isolated from the free stream and fresh air could be entrained into the street canyon at the roof-level leeward corner. Weighed against higher temperature, the ground heating facilitated pollutant removal from the street canyon.  相似文献   

2.
The applicability of the one-way nesting technique for numerical simulations of the heterogeneous atmospheric boundary layer using the large-eddy simulation (LES) framework of the Weather Research and Forecasting model is investigated. The focus of this study is on LES of offshore convective boundary layers. Simulations were carried out using two subgrid-scale models (linear and non-linear) with two different closures [diagnostic and prognostic subgrid-scale turbulent kinetic energy (TKE) equations]. We found that the non-linear backscatter and anisotropy model with a prognostic subgrid-scale TKE equation is capable of providing similar results when performing one-way nested LES to a stand-alone domain having the same grid resolution but using periodic lateral boundary conditions. A good agreement is obtained in terms of velocity shear and turbulent fluxes, while velocity variances are overestimated. A streamwise fetch of 14 km is needed following each domain transition in order for the solution to reach quasi-stationary results and for the velocity spectra to generate proper energy content at high wavelengths, however, a pile-up of energy is observed at the low-wavelength portion of the spectrum on the first nested domain. The inclusion of a second nest with higher resolution allows the solution to reach effective grid spacing well within the Kolmogorov inertial subrange of turbulence and develop an appropriate energy cascade that eliminates most of the pile-up of energy at low wavelengths. Consequently, the overestimation of velocity variances is substantially reduced and a considerably better agreement with respect to the stand-alone domain results is achieved.  相似文献   

3.
A Lagrangian stochastic (LS) model, which is embedded into a parallelised large-eddy simulation (LES) model, is used for dispersion and footprint evaluations. For the first time an online coupling between LES and LS models is applied. The new model reproduces concentration patterns, which were obtained in prior studies, provided that subgrid-scale turbulence is included in the LS model. Comparisons with prior studies show that the model evaluates footprints successfully. Streamwise dispersion leads to footprint maxima that are situated less far upstream than previously reported. Negative flux footprints are detected in the convective boundary layer (CBL). The wide range of applicability of the model is shown by applying it under neutral and stable stratification. It is pointed out that the turning of the wind direction with height leads to a considerable dependency of source areas on height. First results of an application to a heterogeneously heated CBL are presented, which emphasize that footprints are severely affected by the inhomogeneity.  相似文献   

4.
从湍流经典理论到大气湍流非平衡态热力学理论   总被引:2,自引:0,他引:2  
湍流是日常生活中一种普遍的自然现象,也是经典物理学仍未完全解决的难题。湍流更是大气运动的最基本特征。本文系统地回顾了大气湍流经典理论发展简史,进一步详细介绍了大气湍流非平衡态热力学理论。大气湍流非平衡态热力学理论在熵平衡方程中引入动力过程,进而统一推导出大气湍流输送的Fourier定律、Flick定律和Newton定律,证明了Dufour效应、Soret效应、可逆动力过程与热力不可逆湍流输送过程之间的交叉耦合效应,以及湍流强度定理。这些定律和定理中得到了观测的事实验证,同时它们的唯象系数也由观测资料所确定。湍流强度定理揭示,湍流发展的宏观原因是速度和温度的剪切效应,Reynolds湍流和Rayleigh-Bénard湍流共存于大气湍流中。热力过程和动力过程间耦合效应现象的发现突破了传统湍流输送理论,即Fourier定律、Flick定律和Newton定律的观点——一个宏观量的输送通量等价于这个宏观量的梯度湍流输送通量。热力和动力过程间的耦合原理认为,一个宏观量的输送通量包括这个量的梯度湍流输送通量和速度耦合输送通量两部分。因此,能量和物质的垂直输送通量除了相应物理量梯度造成的湍流输送外,还应包括垂直速度耦合效应,即辐散或辐合运动造成的耦合效应。在一个很宽的尺度范围内,地表面的空间特征是非均匀的。下垫面非均匀性造成的对流运动将引起大气的辐散或辐合运动。这可能是导致地表能量收支不平衡的重要原因之一。垂直速度对垂直湍流输送的交叉耦合效应为非均匀下垫面大气边界层理论的发展,并为克服地表能量收支不平衡问题及非均匀下垫面大气边界层参数化遇到的困难提供了可能的线索。  相似文献   

5.
In large-eddy simulations (LES) of the atmospheric boundary layer (ABL), near-surface models are often used to supplement subgrid-scale (SGS) turbulent stresses when a major fraction of the energetic scales within the surface layer cannot be resolved with the temporal and spatial resolution at hand. In this study, we investigate the performance of both dynamic and non-dynamic eddy viscosity models coupled with near-surface models in simulations of a neutrally stratified ABL. Two near-surface models that are commonly used in LES of the atmospheric boundary layer are considered. Additionally, a hybrid Reynolds- averaged/LES eddy viscosity model is presented, which uses Prandtl’s mixing length model in the vicinity of the surface, and blends in with the dynamic Smagorinsky model away from the surface. Present simulations show that significant portions of the modelled turbulent stresses are generated by the near-surface models, and they play a dominant role in capturing the expected logarithmic wind profile. Visualizations of the instantaneous vorticity field reveal that flow structures in the vicinity of the surface depend on the choice of the near-surface model. Among the three near-surface models studied, the hybrid eddy viscosity model gives the closest agreement with the logarithmic wind profile in the surface layer. It is also observed that high levels of resolved turbulence stresses can be maintained with the so-called canopy stress model while producing good agreement with the logarithmic wind profile.  相似文献   

6.
Characteristics of intermittent turbulence events in the stably stratified nocturnal boundary layer are investigated with data collected in the CASES-99 tower array of 300-m radius. The array consists of a central 60-m tower with eddy covariance measurements at eight levels and six satellite towers with eddy covariance measurements at 5 m. A significant increase in the magnitude of vertical wind velocity () and spectral information are used to define the onset of an intermittent turbulence event. Normally, only a subset of 5 m-levels in the tower network experience an intermittent turbulence event concurrent with one at the 5 m-level on the main tower. This behaviour reveals the small horizontal extent of most events. Intermittent turbulence events at the main tower 5-m level are normally confined to a layer much thinner than the 60-m tower height. The turbulent kinetic energy budget is evaluated for intermittent turbulence events observed at the 5-m level on the main tower. Generally, the onset of an intermittent turbulence event is not closely related to the reduction of the gradient Richardson number below 0.25, the critical Richardson number of turbulence generation for linear instability. Possible explanations including the influence of advected turbulence patches are discussed.  相似文献   

7.
Large-eddy simulation (LES), coupled with a wind-turbine model, is used to investigate the characteristics of a wind-turbine wake in a neutral turbulent boundary-layer flow. The tuning-free Lagrangian scale-dependent dynamic subgrid-scale (SGS) model is used for the parametrisation of the SGS stresses. The turbine-induced forces (e.g., thrust, lift and drag) are parametrised using two models: (a) the ‘standard’ actuator-disk model (ADM-NR), which calculates only the thrust force and distributes it uniformly over the rotor area; and (b) the actuator-disk model with rotation (ADM-R), which uses the blade-element theory to calculate the lift and drag forces (that produce both thrust and rotation), and distribute them over the rotor disk based on the local blade and flow characteristics. Simulation results are compared to high-resolution measurements collected with hot-wire anemometry in the wake of a miniature wind turbine at the St. Anthony Falls Laboratory atmospheric boundary-layer wind tunnel. In general, the characteristics of the wakes simulated with the proposed LES framework are in good agreement with the measurements in the far-wake region. The ADM-R yields improved predictions compared with the ADM-NR in the near-wake region, where including turbine-induced flow rotation and accounting for the non-uniformity of the turbine-induced forces appear to be important. Our results also show that the Lagrangian scale-dependent dynamic SGS model is able to account, without any tuning, for the effects of local shear and flow anisotropy on the distribution of the SGS model coefficient.  相似文献   

8.
Turbulent statistics of neutrally stratified shear-driven flow within and above a sparse forest canopy are presented from a large-eddy simulation (LES) and compared with those from observations within and above a deciduous forest with similar height and foliage density. First- and second-order moments from the LES agree with observations quite well. Third-order moments from the LES have the same sign and similar vertical patterns as those from the observations, but the LES yields smaller magnitudes of such higher-order moments. Turbulent spectra and cospectra from the LES agree well with observations above the forest. However, at the highest frequencies, the LES spectra have steeper slopes than observations. Quadrant and conditional analyses of the LES resolved-scale flow fields also agree with observations. For example, both LES and observation find that sweeps are more important than ejections for the transport of momentum within the forest, while inward and outward interaction contributions are both small, except near the forest floor. The intermittency of the transport of momentum and scalar increases with depth into the forest. Finally, ramp structures in the time series of a passive scalar at multiple levels within and above the forest show similar features to those measured from field towers. Two-dimensional (height-time cross-section) contours of the passive scalar and wind vectors show sweeps and ejections, and the characteristics of the static pressure perturbation near the ground resemble those deduced from field tower-based measurements. In spite of the limited grid resolution (2 m × 2 m × 2 m) and domain size (192 m × 192 m × 60 m) used in this LES, we demonstrate that the LES is capable of resolving the most important characteristics of the turbulent flow within and above a forest canopy.  相似文献   

9.
Field experimental data in the atmospheric surface layer are analyzed using toolsfrom statistical geometry. The data consist of velocity measurements from sonicanemometer arrays. In the context of large eddy simulations (LES), these arrayspermit the spatial filtering needed to separate large from small scales. Time seriesof various quantities relevant to LES are evaluated from the data. Results show thatthe preferred filtered fluid deformation is axisymmetric extension and the preferredsubgrid stress state is axisymmetric contraction. The filtered fluctuating vorticityshows preferred alignments with the mean vorticity, with the streamwise direction,and with the intermediate strain-rate eigenvector. The alignment between eigenvectorsof the subgrid-scale stress and filtered strain rate is used to test eddy viscosity andmixed model formulations. In qualitative agreement with prior laboratory measurements at much lower Reynolds numbers, a bimodal distribution is observed, which can be reduced to good alignment with eddy viscosity closure using the mixed model.  相似文献   

10.
We investigate dispersion in the evening-transition boundary layer using large-eddy simulation (LES). In the LES, a particle model traces pollutant paths using a combination of the resolved flow velocities and a random displacement model to represent subgrid-scale motions. The LES is forced with both a sudden switch-off of the surface heat flux and also a more gradual observed evolution. The LES shows ‘lofting’ of plumes from near-surface releases in the pre-transition convective boundary layer; it also shows the subsequent ‘trapping’ of releases in the post-transition near-surface stable boundary layer and residual layer above. Given the paucity of observations for pollution dispersion in evening transitions, the LES proves a useful reference. We then use the LES to test and improve a one-dimensional Lagrangian Stochastic Model (LSM) such as is often used in practical dispersion studies. The LSM used here includes both time-varying and skewed turbulence statistics. It is forced with the vertical velocity variance, skewness and dissipation from the LES for particle releases at various heights and times in the evening transition. The LSM plume spreads are significantly larger than those from the LES in the post-transition stable boundary-layer trapping regime. The forcing from the LES was thus insufficient to constrain the plume evolution, and inclusion of the significant stratification effects was required. In the so-called modified LSM, a correction to the vertical velocity variance was included to represent the effect of stable stratification and the consequent presence of wave-like motions. The modified LSM shows improved trapping of particles in the post-transition stable boundary layer.  相似文献   

11.
Particle image velocimetry (PIV) data obtained in a wind-tunnel model of a canopy boundary layer is used to examine the characteristics of mean flow and turbulence. The vector spacing varies between 1.7 and 2.5 times the Kolmogorov scales. Conditional sampling based on quadrants, i.e. based on the signs of velocity fluctuations, reveals fundamental differences in flow structure, especially between sweep and ejection events, which dominate the flow. During sweeps, the downward flow generates a narrow, highly turbulent, shear layer containing multiple small-scale vortices just below canopy height. During ejections, the upward flow expands this shear layer and the associated small-scale flow structures to a broad region located above the canopy. Consequently, during sweeps the turbulent kinetic energy (TKE), Reynolds stresses, as well as production and dissipation rates, have distinct narrow peaks just below canopy height, whereas during ejections these variables have broad maxima well above the canopy. Three methods to estimate the dissipation rate are compared, including spectral fits, measured subgrid-scale (SGS) energy fluxes at different scales, and direct measurements of slightly underresolved instantaneous velocity gradients. The SGS energy flux is 40–60% of the gradient-based (direct) estimates for filter sizes inside the inertial range, while decreasing with scale, as expected, within the dissipation range. The spectral fits are within 5–30% of the direct estimates. The spectral fits exceed the direct estimates near canopy height, but are lower well above and below canopy height. The dissipation rate below canopy height increases with velocity magnitude, i.e. it has the highest values during sweep and quadrant 1 events, and is significantly lower during ejection and quadrant 3 events. Well above the canopy, ejections are the most dissipative. Turbulent transport during sweep events acts as a source below the narrow shear layer within the canopy and as a sink above it. Transport during ejection events is a source only well above the canopy. The residual term in the TKE transport equation, representing mostly the effect of pressure–velocity correlations, is substantial only within the canopy, and is dominated by sweeps.  相似文献   

12.
Micrometeorologists have traditionally used the framework of the ensemble mean, fluctuating decomposition in studying turbulence spectra, Reynolds-flux budgets, surface-exchange relations, and the universal functions of Monin-Obukhov similarity within the constant-flux layer. More recently, the growth in supercomputers and computational fluid dynamics has stimulated micrometeorological applications of large-eddy simulation (LES). LES uses a different framework, one based on the resolvable, subgrid-scale decomposition. This framework shift seems to have weakened the vital and historically strong coupling between experimental and computational work in micrometeorology. A challenge for experimentalists today is to address problems posed in the language of the resolvable, subgrid-scale decomposition. We illustrate by discussing measurement strategies for resolvable-scale turbulence fields and for local surface-exchange coefficients.  相似文献   

13.
Large-Eddy Simulation of Flows over Random Urban-like Obstacles   总被引:2,自引:2,他引:0  
Further to our previous large-eddy simulation (LES) of flow over a staggered array of uniform cubes, a simulation of flow over random urban-like obstacles is presented. To gain a deeper insight into the effects of randomness in the obstacle topology, the current results, e.g. spatially-averaged mean velocity, Reynolds stresses, turbulence kinetic energy and dispersive stresses, are compared with our previous LES data and direct numerical simulation data of flow over uniform cubes. Significantly different features in the turbulence statistics are observed within and immediately above the canopy, although there are some similarities in the spatially-averaged statistics. It is also found that the relatively high pressures on the tallest buildings generate contributions to the total surface drag that are far in excess of their proportionate frontal area within the array. Details of the turbulence characteristics (like the stress anisotropy) are compared with those in regular roughness arrays and attempts to find some generality in the turbulence statistics within the canopy region are discussed.  相似文献   

14.
Large-eddy Simulations of Flow Over Forested Ridges   总被引:4,自引:4,他引:0  
Large-eddy simulations (LES) of flow over a series of small forested ridges are performed, and compared with numerical simulations using a one-and-a-half order mixing length closure scheme. The qualitative and quantitative similarity between these results provides some confidence in the results of recent analytical and numerical studies of flow over forested hills using first-order mixing length schemes. Time series of model velocities at various locations within the canopy allow the application of various experimental techniques to study the turbulence in the LES. The application of conditional analysis shows that the structure of the turbulence over a forested hill is broadly similar to that over flat ground, with sweeps and ejections dominating. Differences are seen across the hill, particularly associated with regions of mean flow separation and recirculation near the summit and in the lee of the hill. Detailed comparison of derived mixing lengths from the LES with the assumed values used in mixing-length closure schemes show that the mixing length varies with location across the hill and with height in the canopy. This is consistent with previous wind-tunnel measurements, and demonstrates that a constant mixing-length assumption is not strictly valid within the canopy. Despite this, the first-order mixing-length schemes do give similar results both for the mean flow and the turbulence in such situations.  相似文献   

15.
We investigate the impact of observed surface heterogeneities during the LITFASS-2003 experiment on the convective boundary layer (CBL). Large-eddy simulations (LES), driven by observed near-surface sensible and latent heat fluxes, were performed for the diurnal cycle and compare well with observations. As in former studies of idealized one- and two-dimensional heterogeneities, secondary circulations developed that are superimposed on the turbulent field and that partly take over the vertical transport of heat and moisture. The secondary circulation patterns vary between local and roll-like structures, depending on the background wind conditions. For higher background wind speeds, the flow feels an effective surface heat-flux pattern that derives from the original pattern by streamwise averaging. This effective pattern generates a roll-like secondary circulation with roll axes along the mean boundary-layer wind direction. Mainly the upstream surface conditions control the secondary circulation pattern, where the fetch increases with increasing background wind speed. Unlike the entrainment flux that appears to be slightly decreased compared to the homogeneously-heated CBL, the vertical flux of sensible heat appears not to be modified in the mixed layer, while the vertical flux of latent heat shows different responses to secondary circulations. The study illustrates that sufficient time averaging and ensemble averaging is required to separate the heterogeneity-induced signals from the raw LES turbulence data. This might be an important reason why experiments over heterogeneous terrain in the past did not give any clear evidence of heterogeneity-induced effects.  相似文献   

16.
Turbulence measurements taken at a Swedish lake are analyzed. Although the measurements took place over a relatively large lake with several km of undisturbed fetch, the turbulence structure was found to be highly influenced by the surrounding land during daytime. Variance spectra of both horizontal velocity and scalars during both unstable and stable stratification displayed a low frequency peak. The energy at lower frequencies showed a daily variation, increasing in the morning and decreasing in the afternoon. This behaviour is explained by spectral lag, where the low frequency energy due to large eddies that originate from the convective boundary layer above the surrounding land. When the air is advected over the lake the small eddies rapidly equilibrate with the new surface forcing. However, the large eddies remain for an appreciable distance and influence the turbulence in the developing lake boundary layer. The variances of the horizontal velocity and scalars are increased by these large eddies, while the turbulent fluxes are mainly unaffected. The drag coefficient, Stanton number and Dalton number used to parametrize the momentum flux, heat flux and latent heat flux respectively all compare well with current parametrizations developed for open sea conditions. The diurnal cycle of the partial pressure of methane, $p\mathrm{CH}_{4}$ , observed at this site is closely related to the diurnal cycle of the lake-air methane flux. An idealized two-dimensional model simulation of the boundary layer at a lake site indicates that the strong response of $p\mathrm{CH}_{4}$ to the surface methane flux is due to the shallow internal boundary layer that develops above the lake, allowing methane to accumulate in a relatively small volume.  相似文献   

17.
As part of the EUropean Cloud REsolving Modelling (EUCREM) model intercomparison project we compared the properties and development of stratocumulus as revealed by actual observations and as derived from two types of models, namely three-dimensional Large Eddy Simulations (LES) and one-dimensional Single Column Models (SCMs). The turbulence, microphysical and radiation properties were obtained from observations made in solid stratocumulus during the third flight of the first 'Lagrangian' experiment of the Atlantic Stratocumulus Transition Experiment (ASTEX). The goal of the intercomparison was to study the turbulence and microphysical properties of a stratocumulus layer with specified initial and boundary conditions.The LES models predict an entrainment velocity which is significantly larger than estimated from observations. Because the observed value contains a large experimental uncertainty no definitive conclusions can be drawn from this. The LES modelled buoyancy flux agrees rather well with the observed values, which indicates that the intensity of the convection is modelled correctly. From LES it was concluded that the inclusion of drizzle had a small influence (about 10%) on the buoyancy flux. All SCMs predict a solid stratocumulus layer with the correct liquid water profile. However, the buoyancy flux profile is poorly represented in these models. From the comparison with observations it is clear that there is considerable uncertainty in the parametrization of drizzle in both SCM and LES.  相似文献   

18.
The sensitivity of large-eddy simulation (LES) to the representation of subgrid-scale (SGS) processes is explored for the case of the convective boundary layer (CBL) developing over surfaces with varying degrees of spatial heterogeneity. Three representations of SGS processes are explored: the traditional constant Smagorinsky–Lilly model and two other dynamic models with Lagrangian averaging approaches to calculate the Smagorinsky coefficient (C S ) and SGS Prandtl number (Pr). With initial data based roughly on the observed meteorology, simulations of daytime CBL growth are performed over surfaces with characteristics (i.e. fluxes and roughness) ranging from homogeneous, to striped heterogeneity, to a realistic representation of heterogeneity as derived from a recent field study. In both idealized tests and the realistic case, SGS sensitivities are mostly manifest near the surface and entrainment zone. However, unlike simulations over complex domains or under neutral or stable conditions, these differences for the CBL simulation, where large eddies dominate, are not significant enough to distinguish the performance of the different SGS models, irrespective of surface heterogeneity.  相似文献   

19.
Large-eddy simulation (LES) of a stable atmospheric boundary layer is performed using recently developed dynamic subgrid-scale (SGS) models. These models not only calculate the Smagorinsky coefficient and SGS Prandtl number dynamically based on the smallest resolved motions in the flow, they also allow for scale dependence of those coefficients. This dynamic calculation requires statistical averaging for numerical stability. Here, we evaluate three commonly used averaging schemes in stable atmospheric boundary-layer simulations: averaging over horizontal planes, over adjacent grid points, and following fluid particle trajectories. Particular attention is focused on assessing the effect of the different averaging methods on resolved flow statistics and SGS model coefficients. Our results indicate that averaging schemes that allow the coefficients to fluctuate locally give results that are in better agreement with boundary-layer similarity theory and previous LES studies. Even among models that are local, the averaging method is found to affect model coefficient probability density function distributions and turbulent spectra of the resolved velocity and temperature fields. Overall, averaging along fluid pathlines is found to produce the best combination of self consistent model coefficients, first- and second-order flow statistics and insensitivity to grid resolution.  相似文献   

20.
We present a comparative study of the conventional stationary wind speed model and a newly proposed non-stationary wind speed model using field measurements. The concept of, and the differences between, the two wind models are briefly reviewed. Wind data recorded by a field measurement system for wind turbulence parameters (FMS-WTP) of 1-year duration are analyzed using the two wind models. Comparisons were made between the wind characteristics obtained from the two models, including hourly mean wind speed, turbulence intensity, the wind spectrum, integral length scale, root coherence function and probability density function. The effects of wind types (monsoon or typhoon), statistical properties (stationary or non-stationary), and surface roughness (open-sea fetch or overland fetch) on wind characteristics are discussed. The comparative study demonstrates that the non-stationary wind model appears to be more appropriate than the conventional stationary wind speed model for characterizing turbulent winds of one-hour duration over complex terrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号