首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
使用1980 2010年水平分辨率为25 km的遥感积雪深度资料和0.5°×0.5°降水观测资料分析了青藏高原(下称高原)冬春(12月至翌年5月)积雪异常和中国东部夏季(6 8月)降水的关系,然后通过区域气候模式Reg CM4.1在高原冬春季、春季积雪异常强迫下的试验结果进行对比,进一步验证了高原积雪异常影响中国东部夏季降水的机理。遥感积雪深度和格点降水资料诊断分析表明高原冬春少雪,中国东部夏季降水从北向南呈"-+-+"分布;冬春多雪,降水从北向南呈"+-+-"分布。数值模拟试验结果表明,高原冬春积雪异常影响中国东部夏季降水异常,高原冬春少雪,中国东部夏季降水从北向南呈"+-"分布,高原春季少雪,中国东部夏季降水从北向南呈"+-+"分布;高原冬春季以及春季多雪情形下,中国东部夏季降水异常呈相反的空间分布。同时,数值模拟结果表明高原冬春或春季少(多)雪,东亚夏季风偏强(弱),中国东部夏季降水异常。  相似文献   

2.
使用1980 2010年水平分辨率为25 km的遥感积雪深度资料和0.5°×0.5°降水观测资料分析了青藏高原(下称高原)冬春(12月至翌年5月)积雪异常和中国东部夏季(6 8月)降水的关系,然后通过区域气候模式Reg CM4.1在高原冬春季、春季积雪异常强迫下的试验结果进行对比,进一步验证了高原积雪异常影响中国东部夏季降水的机理。遥感积雪深度和格点降水资料诊断分析表明高原冬春少雪,中国东部夏季降水从北向南呈"-+-+"分布;冬春多雪,降水从北向南呈"+-+-"分布。数值模拟试验结果表明,高原冬春积雪异常影响中国东部夏季降水异常,高原冬春少雪,中国东部夏季降水从北向南呈"+-"分布,高原春季少雪,中国东部夏季降水从北向南呈"+-+"分布;高原冬春季以及春季多雪情形下,中国东部夏季降水异常呈相反的空间分布。同时,数值模拟结果表明高原冬春或春季少(多)雪,东亚夏季风偏强(弱),中国东部夏季降水异常。  相似文献   

3.
吴统文  钱正安 《气象学报》2000,58(5):570-581
为了进一步分析青藏高原(下称高原)冬春积雪异常与中国东部地区夏季降水的关系,利用1957~1994年高原地区的实测雪深、1951~1994年6~8月中国东部地区226个均匀分布测站的实测月降水量,以及美国国家环境监测中心/国家大气研究中心(NCEP/NCAR)1958~1994年1~12月的再分析格点值资料,对比分析了高原冬、春季多、少雪年后期中国东部地区夏季(6~8月)降水分布和环流的平均特征,也分析了高原积雪影响的机理.分析结果表明:1) 平均来说,多雪年夏季长江及江南北部降水可偏多1~2成,华北和华南的降水则偏少1~3成;少雪年夏季江淮流域及湘、黔地区少雨,华北和华南多雨.2)高原冬、春积雪不仅影响了后期高原的热状况,而且影响了后期东亚大气环流的季节变化和南亚与东亚的夏季风环流.  相似文献   

4.
杨凯  胡田田  王澄海 《大气科学》2017,41(2):345-356
青藏高原冬、春积雪有着显著的南、北空间差异,本文利用通用地球系统模式(CESM)设计了增加高原南、北冬、春积雪的敏感性试验,结果表明:当高原南部冬、春积雪异常偏多,长江及其以北地区夏季降水偏多,华南大部分地区夏季降水偏少;而当高原北部冬、春积雪异常偏多,华北及东北地区夏季降水偏多,长江下游南部地区夏季降水偏少,雨带更偏北。青藏高原南、北部冬、春积雪异常影响中国东部夏季降水的物理机制的分析结果表明,高原不同区域(南部和北部)冬、春积雪异常引起的非绝热加热异常效应都可持续到夏季,且北部积雪异常持续时间更长。高原南部和北部积雪异常偏多均会减弱高原北侧上空大气的水平温度梯度,进而减弱高原北侧西风急流的位置及强度,进而影响下游出口区处急流的强度和位置,且高原北部积雪异常偏多的影响更大。当高原南部积雪异常偏多,急流出口区的西风急流加强且偏南;而高原北部积雪异常偏多,出口区的西风急流减弱且偏北。相应地,对流层中层500 hPa西太平洋副热带高压减弱,低层850 hPa异常反气旋环流,影响中国东部地区水汽输送,从而影响了中国东部地区夏季雨带的变化。当高原南部积雪异常偏多,异常反气旋性环流位于东海附近,有利于更多水汽输送至长江流域,华南水汽输送减少;当高原北部积雪异常偏多,异常反气旋性环流相对偏北,更有利于华北及东北水汽输送,雨带偏北。  相似文献   

5.
利用NCEP 1950—2004年逐日再分析资料,采用倒算法,对青藏高原大气热源的长期变化进行了计算,结果发现,青藏高原及附近地区上空大气春夏季热源在过去50年里,尤其是最近20年,表现为持续减弱的趋势。而1960—2004年青藏高原50站的冬春雪深却出现了增加,尤其是春季雪深在1977年出现了由少到多的突变。用SVD方法对高原积雪和高原大气热源关系的分析表明,二者存在非常显著的反相关关系,即高原冬春积雪偏多,高原大气春夏季热源偏弱。高原大气春夏季热源和中国160站降水的SVD分析表明,高原大气春夏季热源和夏季长江中下游降水呈反相关,与华南和华北降水呈正相关;而高原冬春积雪和中国160站降水的SVD分析显示,高原冬春积雪和夏季长江流域降水呈显著正相关,与华南和华北降水呈反相关。在年代际尺度上,青藏高原大气热源和冬春积雪与中国东部降水型的年代际变化(南涝北旱)有很好的相关。最后讨论了青藏高原大气热源影响中国东部降水的机制。青藏高原春夏季热源减弱,使得海陆热力差异减小,致使东亚夏季风强度减弱,输送到华北的水汽减少,而到达长江流域的水汽却增加;同时,高原热源减弱,使得副热带高压偏西,夏季雨带在长江流域维持更长时间。导致近20年来长江流域降水偏多,华北偏少,形成"南涝北旱"雨型。高原冬春积雪的增加,降低了地表温度,减弱了地面热源,并进而使得青藏高原及附近地区大气热源减弱。  相似文献   

6.
李延  陈斌  徐祥德 《大气科学》2023,(4):1231-1246
基于多种大气再分析和降水资料、青藏高原台站、卫星观测等高原冬春积雪资料,采用合成分析、相关分析、回归分析等多种数理统计以及理想数值模拟试验等方法,分析了青藏高原冬春积雪异常与中国东部夏季降水频次和强度变化的关联及可能原因。分析表明:(1)基于站点观测的高原积雪年际变化特征显著,大气再分析数据、卫星反演资料分析呈现出一致性变化趋势。(2)高原积雪异常对中国夏季降水频次与强度分布的影响具有显著的空间差异。高原冬春积雪偏多,使得我国华北、长江中下游地区夏季降水发生频次增加,但华北中雨和小雨类型的增加占比较大,而长江中下游地区则主要表现为大雨和暴雨发生频次增加的贡献。(3)积雪异常偏多年,高原热源作用减弱,500 hPa位势呈现清晰的“负—正—负”异常波列结构,西风急流位置偏南并加强,副高脊线偏南。在上述环流条件下,西北太平洋异常反气旋北侧的气旋性环流使得水汽输送停滞在长江中下游流域,伴随大气垂直运动增强,导致该区域强降水的强度增强、频次偏多;华北地区受“鞍型”场环流结构控制,虽然较小量级降水频次增加,但水汽输送较弱,降水强度变化不显著。上述研究结果,可为高原积雪异常相关的中国夏季降水变化及其...  相似文献   

7.
左志燕  张人禾 《大气科学》2012,36(1):185-194
利用降水观测资料, 研究了1979~2004年中国春季 (3~5月) 标准化累积降水异常的时空特征及其与前冬、 春热带太平洋海面温度和春季欧亚大陆积雪的关系。中国春季标准化累积降水量EOF第一模态最大变率位于中国东部中纬度地区, 主要反映了中国东部中纬度地区春季降水的变化特征。同时, 中国东部春季降水异常具有南、 北反相变化的特征。当长江以南大部分地区的降水偏少时, 长江以北地区的降水偏多。春季降水异常具有显著的年际变化, 但在1980年代末出现年代际转型, 即年际变化的振幅明显增大变强、 周期变长。从华北到长江流域中纬度地区的春季降水异常特征与前冬热带太平洋海面温度有密切的关系。当前冬、 春热带东太平洋海温偏暖, 西太平洋海温偏冷时, 中国东部从华北到长江流域中纬度地区的春季降水偏多, 反之亦然。虽然当春季欧亚大陆楚科奇半岛和青藏高原积雪偏多, 贝加尔湖到中国东北地区的积雪偏少时, 对应着中国东部从华北到长江流域中纬度地区的降水偏多, 但当去掉ENSO信号后, 这种关系并不显著。说明EOF第一模态所反映的中国东部从华北到长江流域中纬度地区春季降水与欧亚大陆积雪的相关关系可能是前冬热带太平洋海面温度异常的一个体现。  相似文献   

8.
青藏高原冬春雪深分布与中国夏季降水的关系   总被引:2,自引:0,他引:2  
利用SSMR和SSM/I卫星遥感雪深反演资料,通过与高原测站雪深观测资料的对比分析,揭示了高原雪深的时空分布特征,在此基础上对积雪异常年中国夏季降水异常和大气环流进行了对比分析。结果表明,卫星遥感雪深资料可较真实反映出高原积雪的状况,并可反映出高原西部积雪的变化;高原冬、春季积雪EOF分解第1模态具有相同的空间分布,反映了高原冬、春季积雪分布具有相当的一致性,而春季积雪的第2模态则反映高原积雪的东西差异;冬、春季雪深EOF第1模态的时间序列与中国夏季降水的相关分析表明,大致以长江为界,我国东部地区呈现出南涝北旱的分布模态,春季高原东(西)部多(少)雪与东(西)部少(多)雪年的夏季,我国东部降水表现出长江以南(北)地区为大范围的降水偏多(少)。  相似文献   

9.
三江源地区春夏季降水与太平洋海温的关系   总被引:1,自引:1,他引:0  
从预测三江源地区春季、夏季降水趋势的需要出发,利用聚类分析法将三江源地区春、夏季降水场分为3个区域。通过对3个区春、夏季降水指数与前期太平洋海温相关普查,定义了与3个区春、夏季降水指数相关的海温分布型指数。冬季西太平洋海温偏低(偏高),赤道中、东部太平洋海温偏高(偏低)的海温分布型造成三江源1区、3区春季降水减少(增加);冬季赤道太平洋中部、加利福尼亚海域海温偏高(偏低)的海温分布型造成2区、3区夏季降水减少(增加)。对冬季太平洋海温分布型与后期春、夏季500 hPa北半球高度场的相关分析结果表明:当冬季西太平洋海温综合指数高(低)时,春季高度场印度高压、中西伯利亚槽及阿留申低槽加强(减弱),三江源地区春季降水偏少(偏多);而当冬季太平洋中部、加利福尼亚海域海温综合指数高(低)时,夏季高度场伊朗高压、中西伯利亚高脊加强(减弱)及西太平洋副高位置偏南(偏北),夏季降水偏少(偏多)。  相似文献   

10.
冬春亚洲大气环流与华北中部夏季降水的相关分析   总被引:1,自引:0,他引:1  
利用1957~2002年的NCEP/NCAR 500 hPa再分析资料以及同期华北地区夏季降水资料,分析了华北中部夏季降水与前期环流的关系。结果表明:夏季华北中部降水的多少与冬季东亚槽强弱、春季巴尔喀什湖到贝加尔湖的蒙古高原地区高度场呈显著相关。20世纪80年代中期以前冬季东亚槽偏强、春季蒙古高原地区高度值偏低;80年代中期之后冬季东亚槽开始转弱、春季蒙古高原地区高度值偏高。这与华北夏季降水的演变趋势相对应。说明冬季东亚槽的减弱以及春季蒙古高原地区高度值偏高是近年来华北夏季降水减少的原因之一。冬季东亚槽强对应夏季西太平洋副高在日本海地区高度呈偏强趋势,有利华北中部夏季降水偏多;春季蒙古高原地区高度值偏高有利于华北夏季出现西高东低形势,华北中部夏季降水易偏少。  相似文献   

11.
广西春夏季旱涝的等级划分及时空分布特征分析   总被引:4,自引:2,他引:2  
利用广西80多个站点1961~2006年的逐月降水资料,采用Z指数定义方法,对广西春夏季的旱涝进行等级划分.利用经验正交函数(EOF)分析方法对春夏季旱涝等级的时空分布进行研究,给出了四个旱涝典型场的分布特征.分析结果表明:全区性偏涝或偏旱是春夏季早涝分布的最主要型态;春季和夏季的前4种分布形态都通过了显著性检验,两个季度的第一、第二分布形态都是全区一致型和南北反向型;春季近5年时间系数多为正值,说明近年来全区春季表现为偏旱;1990年以后,夏季第一特征向量时间系数只有3年为正值,其余均为负值,说明近16年广西夏季降水较多,以偏涝为主,年代际变化也较明显.  相似文献   

12.
Wavelet analysis is used to study the interannual and interdecadal variations of rainfall in China and atmospheric circulation factors, including the key atmospheric oscillations, W, C, E patterns and subtropical high. Regression analysis and correlation analysis are both used to study the relationship of atmospheric circulation factors and China rainfall on different time scale and spatial scale. The results are as follows: (1) The variations of atmospheric circulation and rainfall in China are characterized by interannual and interdecadal scales. The variations of atmospheric circulation and rainfall are composed of interannual and interdecadal variations. It is necessary to separate those two time scales when climate changes and forecast are studied. (2) The variations of China rainfall are due to the interaction of multi-factors rather than single factors. The marked factors which influence the interannual and interdecadal variations are various. Subtropical high is one of the marked factors which influence interannual variations of rainfall, while AO, NAO, and NPO are one of the marked factors which influence interdecadal variations of rainfall. (3) The longer the time scale is, and the larger the spatial scale is, and the more remarkable the relationships between atmospheric circulation and rainfall are.  相似文献   

13.
围绕全球变化研究国家重大研究计划项目“亚洲区域海—陆—气相互作用机理及其在全球变化中的作用”预定的总体研究内容和科学目标,项目执行两年多以来,取得了一系列阶段性科研成果.关于气候动力学方面,项目揭示了热带印度洋—西太平洋暖池的海温变化是全球热带气候年代际变化的重要驱动力,是全球尺度副热带干旱的重要调控器;发现热带东太平洋海温存在冷舌模态,它是一个海气耦合模态,阐明在全球变暖背景下其对ENSO型态变异的作用及影响东亚气候的机理;揭示了青藏高原热力强迫的异常特征及其气候效应;提出了水平非均匀基流中行星波传播的理论,研究了其在不同东亚夏季风背景下的传播特征.关于气候预测方法方面,提出了若干有物理基础的气候预测方法,如尺度分离的降尺度预测新方法、基于北大西洋涛动(NAO)-ENSO的东亚夏季风预测模型、基于南半球环状模的东亚气候预测模型等,为业务部门提供了重要参考.关于观测方面,项目在亚洲区域海气补充观测和海洋资料同化方面也取得突出进展,成功进行了南海18°N断面海洋综合观测,为形成我国第一条南海断面长期海气观测打下了基础.在国际合作方面,项目还继续推动和领导了“亚洲季风年”(AMY2007-2012)与“东亚气候模拟”国际计划,提升了我国在该领域的国际地位.  相似文献   

14.
湖南主汛期旱涝与大气环流及春季海温的关系   总被引:1,自引:0,他引:1       下载免费PDF全文
罗伯良  张超 《高原气象》2010,29(5):1322-1330
利用1960-2006年NCEP/NCAR逐月再分析资料、NOAA月平均海表温度资料和湖南月降水资料等,在计算分析湖南主汛期旱涝变化特征的基础上,对湖南主汛期旱涝大气环流及其与春季海温的关系进行了分析。结果表明,湖南主汛期洪涝指数增大趋势显著,1990年代以来处于洪涝多发期。洪涝指数具有20年、9年和3~4年的周期;干旱指数存在22年、10年和2~4年周期。湖南主汛期旱涝与西太平洋副热带高压、中高纬度环流、南亚高压、低层流场、水汽输送等持续异常有关。当西太平洋副热带高压面积偏大,强度偏强,脊线偏南,西伸脊点偏西,鄂霍次克海地区多阻塞活动,南亚高压主体位置较常年偏西,来自南海的水汽输送较常年强,低层湖南大部分地区处于辐合气流控制之下,湖南主汛期易洪涝;反之,当西太平洋副热带高压面积偏小,强度偏弱,脊线偏北,西伸脊点偏东,鄂霍次克海地区少阻塞活动,南亚高压主体位置较常年偏东,来自南海的水汽输送较常年弱,低层湖南大部分地区为辐散气流控制,湖南主汛期易干旱。春季印度洋、赤道中东太平洋和黑潮海温是湖南主汛期旱涝变化的重要短期气候预测信号,春季印度洋和赤道中东太平洋海温偏高(低)有利于湖南主汛期降水偏多(少),黑潮海温偏低湖南主汛期易少雨干旱。  相似文献   

15.
2009-07—09铜仁地区出现了大范围持续性的高温干旱天气,给铜仁地区农业生产和人民生活带来较大的影响。该文对此次高温干旱的成因从环流形势、物理量场进行诊断分析。  相似文献   

16.
Subregional occurrence of fires in Siberian forests and seasonal variations in heat and moisture supply are analyzed. Instrumental data on wildfires registered through satellite monitoring data for the period of 1996–2016 are used. The dynamics of the weather fire danger index (PV-1) and intraseasonal anomalies of the Selyaninov’s hydrothermal coefficient (HTC) defining fire occurrence variation are revealed using meteorological data series for the Siberian subregions. The statistical regularities of the dynamics of the weather fire danger index are summarized for subregions. The separated scenarios are formalized by model functions. The projections of the probability of the scenarios’ implementation, the fire return period, and the respective relative burned area are determined.  相似文献   

17.
开封、洛阳市近47a气温降水变化异同分析   总被引:3,自引:0,他引:3  
利用开封、洛阳市1961-2007年气温、降水气象要素资料,采用数理统计原理,对两市的气温、降水变化及两市气温、降水变化的异同进行了分析,结果表明:两市47 a平均气温都呈明显波动上升趋势,气温逐年变化较大,开封市的年平均气温及变化幅度高于洛阳市;春秋冬各季的平均气温都呈明显的上升趋势,开封市上升幅度略高于洛阳市;夏季平均气温都呈下降的趋势,洛阳市下降的幅度比开封市明显.降水量开封市比洛阳市偏多,开封市呈上升的趋势,洛阳市呈下降的趋势,两市春秋两季平均降水量都呈下降趋势,洛阳市比开封市下降明显;夏冬两季平均降水量都呈上升趋势,开封市上升幅度高于洛阳市.  相似文献   

18.
四川地区云和空中水资源分布与演变   总被引:6,自引:3,他引:3  
王维佳 《气象科技》2010,38(1):58-65
利用1971~2000年台站云降水资料和NCEP再分析资料,分析了四川地区云和空中水资源的分布与演变。研究发现:四川地区平均总云量为7.2成,低云量4.7成,全年阴天日数193.5天,降水日数154.0天,小到中雨日147.1天;全年大气可降水量为181.7kg.m-2。云有明显的季节变化特征,总云量夏季最高,春季次之,冬季最低,低云量夏季最高,秋季次之,冬季最低。大气可降水量夏季最大,秋季次之,冬季最少。云和小到中雨日的空间分布具有明显的地域性,且夏季分布与全年分布显著不同。在高原上,总云和低云、降水日、小到中雨日呈相反的变化趋势,总云在平均状态附近波动略有减少,而低云、降水日、小到中雨日在平均状态附近波动略有增加;在盆地内,云和降水日的演变趋势相同,总云量、低云量、降水日、小到中雨日都在线性减少。30年来四川地区大气可降水量线性变化则略有增多。  相似文献   

19.
The analysis of time series of the Linke turbidity factors is performed for the atmosphere mass m = 2 (T 2) and atmospheric aerosol optical thickness for the wavelength λ0 = 0.55 μm (AOT) from the data of 14 actinometrical stations of Central Siberia and Trans-Baikal territory. It is shown that over the period from 1976 to 2006, the increased atmospheric transparency is observed in the region. Quantitative estimates of changes in multiyear mean annual variations of T 2 and AOT at different periods of averaging and for different time periods are derived.  相似文献   

20.
近年来云降水物理和人工影响天气研究进展   总被引:17,自引:5,他引:12  
雷恒池  洪延超  赵震 《大气科学》2008,32(4):967-974
回顾和总结了中国科学院大气物理研究所近5年(2003~2007年)的云降水物理和人工影响天气研究,内容涉及云和降水物理研究、云和降水数值模拟研究、人工影响天气研究和云化学研究等诸多领域。随着国家和社会对人工影响天气需求的日益增加,云降水物理仍是重要的研究方向,会随着观测和理论研究的发展而取得突破性进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号