首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
青藏高原横切变线(简称切变线)是引发青藏高原夏季暴雨的主要天气系统之一。本文基于欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,简称ECMWF)提供的ERA-5再分析资料,选取14个生成于6~8月、生命史为38小时且引发高原暴雨的切变线个例进行合成分析,探究动力和热力作用对夏季切变线生成和强度演变的影响。结果表明:(1)500 hPa切变线生成于伊朗高压和西太平洋副热带高压两高之间的鞍形场中,处于580 dagpm闭合低值中心和272 K高温中心内,比湿大值区的北侧;200 hPa南亚高压北部边缘、西风急流入口区南侧。(2)切变线强度表现出明显的日变化特征,在当地时间(LT=UTC+6h)23时最强,13时最弱。(3)涡度收支诊断表明,青藏高原上空高低层散度变化对切变线强度变化具有指示意义,500 hPa涡度最大值(最小值)出现时间滞后于辐合作用最大值(最小值)3小时。(4)切变线演变过程中,切变线发展时位涡随之增大。位涡收支诊断表明,青藏高原上空的水汽和非绝热加热对切变线的生成和发展演变起到重要作用。当边界层感热加热增强时,低层辐合增强,上升运动增强,在充足的水汽配合下,凝结潜热释放使非绝热加热中心抬高至大气中层,从而有利于切变线生成及发展。  相似文献   

2.
A diagnostic study is made on the diurnal variation in the occurrence frequency of the Tibetan Plateau vortices (TPVs) in four local time (LT) periods of a day (06–12 LT, 12–18 LT, 18–00 LT, 00–06 LT) using the data from May to September in 2006–2008. The occurrence frequency of the TPVs shows a robust diurnal variation with its maximum from evening to midnight (18–00 LT) and minimum from early morning to noon (06–12 LT). The physical processes in association with the diurnal variation of the TPVs are revealed. Both large-scale circulations and condensational latent heat induced by the precipitation system have important effect on the diurnal variation of the TPVs’ occurrence. In the evening at 18 LT, there are strongest convergence at 500 hPa and divergence at 200 hPa. Meanwhile, the largest water vapor is transported to the main body of the Tibetan Plateau, and the stratification is unstable, which are conducive to the strongest convection and condensational latent heat release accompanied with the largest precipitation system. All these conditions are responsible for the maximum occurrence of the TPVs in 18–00 LT. On the contrary, at 06 LT the weakest convergence at 500 hPa and divergence at 200 hPa as well as the stable stratification result in little latent heat release, and the minimum occurrence of the TPVs is observed in 06–12 LT.  相似文献   

3.
青藏高原抬升加热气候效应研究的新进展   总被引:30,自引:4,他引:26  
对近4年来关于青藏高原加热影响气候的研究进行回顾.首先介绍利用位涡方程和热力适应理论,揭示;夏季高原上空低层气旋式及高层反气旋式环流结构稳定维持的动力学机理.结果表明高原加热作用造成的低层正涡源是低层气旋式环流得以稳定维持的重要原因.而边界层摩擦产生的负位涡是平衡正位涡的主要因素.高原加热还在高原上空形成负位涡,它影响着盛夏的大气环流,是青藏高原上空强大而稳定的反气旋环流得以维持的重要因素.在春夏过渡季节青藏高原非绝热加热对大气环流季节变化以及亚洲季风爆发的影响力方面,进一步确认了感热加热在过渡季节早期(5月中旬以前)环:流演变中的重要作用.青藏高原非绝热加热的时间演变引起了海陆热力差异对比的变化,使副热带高压带首先在孟加拉湾东部断裂,亚洲季风因而在孟加拉湾爆发.结果还表明,用纬向风垂直差异的时空分布能更准确地表示季节变化的区域差异.在青藏高原非绝热加热与北半球环流系统年际变化的联系方面,发现夏季青藏高原的加热强(弱)的年份,高原感热加热气泵(SHAP)高(低)效工作,使高原加热对周边地区低层暖湿空气的抽吸效应和对高层大气向周边地区的排放作用加强(减弱),高原及邻近地区的上升运动,下层辐合和上层辐散均增强(减弱),从而影响着高原和周边地区的环流以及亚洲季风区大尺度环流系统.而且高原的加热强迫还能够激发产生一支沿亚欧大陆东部海岸向东北方向传播的Rossby波列,其频散效应可影响到更远的东太平洋以至北美地区的大气环流.研究还表明,盛夏的南亚高压存在"青藏高压型"和"伊朗高压型"的双模态,它们与高原加热状态有关,且显著地与亚洲季风区的气候分布密切联系.  相似文献   

4.
高原低涡是夏季青藏高原(简称高原)及其下游地区的主要降水系统。本文利用ERA5逐小时再分析资料、FY-2E卫星云顶亮温逐小时数据和TRMM 3 h降水资料,对2013年7月19~21日活动于高原的一次低涡过程进行了诊断分析。此低涡在高原期间的活动时间长达56 h,将其分为初生、发展及移出高原前三个阶段,着重分析了高原大气热源在低涡不同阶段的关键作用和机理。结果表明:此低涡在发展过程中表现为阶段性增强的特征,位势涡度倾向方程诊断发现非绝热加热的垂直梯度是造成低涡发展增强的主要因素,即非绝热加热极值所在高度的下方和上方分别有正的和负的位涡制造,从而加强了低层的气旋和高层的反气旋。进一步分析可知大气热源在低涡发展过程中也表现出阶段性增强的特征,最大值出现在正午时段,且在低涡移出高原前阶段最强。低涡的生成与地面暖中心有关,这归因于地表感热加热的作用;而低涡的后续发展则主要依赖于凝结潜热加热,加热高度位于对流层中层,这主要是由垂直运动将低层的水汽集中到中层,产生水汽凝结所致。  相似文献   

5.
Dynamic and Numerical Study of Waves in the Tibetan Plateau Vortex   总被引:3,自引:0,他引:3  
In terms of its dynamics, The Tibetan Plateau Vortex (TPV) is assumed to be a vortex in the botmdary layer forced by diabatic heating and friction. In order to analyze the basic characteristics of waves in the vortex, the governing equations for the vortex were established in column coordinates with the balance of gradient wind. Based on this, the type of mixed waves and their dispersion characteristics were deduced by solving the linear model. Two numerical simulations with triple-nested domains--one idealized large-eddy simulation and one of a TPV that took place on 14 August 2006---were also carried out. The aim of the simulations was to validate the mixed wave deduced from the governing equations. The high-resolution model output data were analyzed and the results showed that the tangential flow field of the TPV in the form of center heating was cyclonic and convergent in the lower levels and anticyclonic and divergent in the upper levels. The simulations also showed that the vorticity of the vortex is uneven and might have shear flow along the radial direction. The changing vorticity causes the formation and spreading of vortex Rossby (VR) waves, and divergence will cause changes to the n~otion of the excitation and evolution of inertial gravity (IG) waves. Therefore, the vortex may contain what we call mixed :inertial gravity-vortex Rossby (IG-VR) waves. It is suggested that some strongly developed TPVs should be studied in the future, because of their effects on weather in downstream areas.  相似文献   

6.
郁淑华  高文良  彭骏 《气象学报》2022,80(6):864-877
利用1998—2018年NCEP/NCAR 全球最终分析数据、大气观测资料、青藏高原低涡切变线年鉴,采用合成方法分析了准平直长路径和多折向路径东移高原低涡的环境场特征,探讨了低涡折向的主导因素。结果表明: 准平直长路径低涡、多折向路径低涡长时间活动的共同环境场特征是有明显影响低涡活动的天气系统, 副热带高压(简称副高)位于高原低涡东南方,高原低涡以北上空伴有东、西段急流;低涡有正涡度平流输入,高原低涡上空为辐散区,高空高位涡下传到低涡。同时,二者环境场特征存在明显差异,多折向路径低涡伴有较强的热带低压活动,是在副高、西风带天气系统、热带低压相互作用的环流背景下,高原涡东移受阻而折向; 准平直长路径低涡是在西风带天气系统为主导的环流背景下向东移动;准平直长路径低涡受冷空气、西南气流与高空锋区的影响比多折向路径低涡强,造成了准平直长路径低涡的正涡度平流、位涡、斜压性、高空辐散比多折向路径低涡强。多折向路径低涡折向的主导因素是环境场条件使低涡在减弱、东移受阻的情况下高空高位涡中心在低涡西部上空,高位涡下传使低涡加强的强正位涡异常区出现在低涡西部,低涡移向低涡加强的区域。   相似文献   

7.
利用NCEP再分析资料对2001年以来移出青藏高原后活动时间长(>48小时)的3次高原低涡在南支气流影响下移出高原的个例,进行了325°K等熵面分析、500hPa水汽输送、涡度平流的诊断分析,得出了南支气流影响高原低涡移出高原的共同特征与差异,给出了南支气流对高原低涡移出高原影响的综合作用的概念模型。丰富了高原低涡东移的认识,为高原低涡洪涝暴雨的预报提供了科学依据。   相似文献   

8.
基于NCEP资料的近30年夏季青藏高原低涡的气候特征   总被引:6,自引:3,他引:3  
基于NCEP/NCAR再分析资料并通过人工识别与天气图对比,本文对1981~2010年夏季高原低涡的气候特征进行了统计分析,对比研究了高原低涡高发年和低发年的大气环流场和低频分量场的特征,主要结果有:(1)近30年来夏季高原低涡平均每年生成32个,低涡发生频数呈现较明显的增多趋势,并具有较强的年际变化特征,低涡频数在2000年和2005年出现显著突变,在2000年由增多趋势转为减少趋势,在2005年又转为增多趋势,同时低涡频数具有显著的准5年、准9年和准15年周期振荡,6月生成的高原低涡呈减少趋势,而7月和8月生成的高原低涡均呈现增多趋势;(2)夏季高原低涡生成源地主要集中在西藏双湖、那曲和青海扎仁克吾一带,其中高原中部涡占50.8%,西部涡占27.0%,东部涡占22.2%,6月、7月和8月生成的高原低涡分别占夏季低涡总数的44.7%、29.9%和25.4%,高原低涡生成时绝大多数为暖性涡,占总数的90.7%。近30年来平均每年夏季有1.3个高影响高原低涡移出高原并在下游大范围地区产生强降水天气;移出的高原低涡以东移为主,占移出高原低涡的56.4%,而东北移和东南移的分别占移出高原低涡的20.1%和20.5%;(3)高原低涡高发年,低层的大气环流场和低频大气环流分量场均表现出较强的水平辐合及偏南气流,高层的青藏高压在高原主体范围内较气候态偏强;高原低涡低发年的情况则与之相反,伊朗高原上空的气旋、青藏高原低槽和高原南侧反气旋的配置对高原低涡的发生具有重要作用。  相似文献   

9.
南支气流对高原低涡移出青藏高原影响的诊断分析   总被引:1,自引:0,他引:1  
利用NCEP再分析资料对2001年以来移出青藏高原后活动时间长(〉48小时)的3次高原低涡在南支气流影响下移出高原的个例,进行了325°K等熵面分析、500hPa水汽输送、涡度平流的诊断分析,得出了南支气流影响高原低涡移出高原的共同特征与差异,给出了南支气流对高原低涡移出高原影响的综合作用的概念模型。丰富了高原低涡东移的认识,为高原低涡洪涝暴雨的预报提供了科学依据。  相似文献   

10.
夏季高原大气热源的气候特征以及与高原低涡生成的关系   总被引:4,自引:1,他引:3  
刘云丰  李国平 《大气科学》2016,40(4):864-876
利用NCEP/NCAR再分析资料和基于此再分析资料的高原低涡统计数据集,采用线性趋势、Morlet小波、EOF分解、合成分析等方法,分析了1981~2010年夏季高原大气热源气候特征以及与高原低涡生成的联系。结果表明:夏季高原大气热源平均强度为105 W m-2,随时间有减弱趋势,具有明显的年代际变化,存在显著的准3年周期振荡。高原低涡高发年,高原大气热源强度明显高于气候态,主要表现为高原大气热源的水平分布差异。在低涡高发年,涡度平流的空间分布和大气经向垂直环流结构显示:高原沿东南向西北存在500 hPa正涡度平流带,为高原低涡生成提供了有利的涡度场。同时,高原大气热源异常的水平分布促使高原上空产生上升气流,有助于高原上形成低层辐合、气旋式环流,整层上升运动,高层辐散、反气旋式环流的三维流场,促进高原低涡在低层生成,此时高原主体低空为正涡度区。并且,大气热源在垂直方向的变化也影响低涡的生成。最后,根据本文结果和我们前期的相关研究,从热成风原理和高原大气热力适应理论两方面对高原大气热源与高原低涡生成频数的统计结果给出了机理解释。  相似文献   

11.
Based on the Lagrangian change equation of vertical vorticity deduced from the equation of threedimensional Ertel potential vorticity(PV e),the development and movement of vortex are investigated from the view of potential vorticity and diabatic heating(PV-Q).It is demonstrated that the asymmetric distribution in the vortex of the non-uniform diabatic heating in both vertical and horizontal can lead to the vortex’s development and movement.The theoretical results are used to analyze the development and movement of a Tibetan Plateau(TP) vortex(TPV),which appeared over the TP,then slid down and moved eastward in late July 2008,resulting in heavy rainfall in Sichuan Province and along the middle and lower reaches of the Yangtze River.The relative contributions to the vertical vorticity development of the TPV are decomposed into three parts:the diabatic heating,the change in horizontal component of PV e(defined as PV 2),and the change in static stability θ z.The results show that in most cases,diabatic heating plays a leading role,followed by the change in PV 2,while the change of θ z usually has a negative impact in a stable atmosphere when the atmosphere becomes more stable,and has a positive contribution when the atmosphere approaches neutral stratification.The intensification of the TPV from 0600 to 1200 UTC 22 July 2008 is mainly due to the diabatic heating associated with the precipitation on the eastern side of the TPV when it uplifted on the up-slope of the northeastern edge of the Sichuan basin.The vertical gradient of diabatic heating makes positive(negative) PV e generation below(above) the maximum of diabatic heating;the positive PV e generation not only intensifies the low-level vortex but also enhances the vertical extent of the vortex as it uplifts.The change in PV e due to the horizontal gradient of diabatic heating depends on the vertical shear of horizontal wind that passes through the center of diabatic heating.The horizontal gradient of diabatic heating makes positive(negative) PV e generation on the right(left) side of the vertical shear of horizontal wind.The positive PV e generation on the right side of the vertical shear of horizontal wind not only intensifies the local vertical vorticity but also affects direction of movement of the TPV.These diagnostic results are in good agreement with the theoretic results developed from the PV-Q view.  相似文献   

12.
Based on the final analyses data (FNL) of the Global Forecasting System of the NCEP and the obser- vational radiosonde data, the evolution mechanism of an eastward-moving low-level vortex over the Tibetan Plateau in June 2008 was analyzed. The results show that the formation of the vortex was related to the convergence between the northwesterly over the central Tibetan Plateau from the westerly zone and the southerly from the Bay of Bengal at 500 hPa, and also to the divergence associated with the entrance re- gion of the upper westerly jet at 200 hPa. Their dynamic effects were favorable for ascending motion and forming the vortex over the Tibetan Plateau. Furthermore, the effect of the atmospheric heat source (Q1) is discussed based on a transformed potential vorticity (PV) tendency equation. By calculating the PV budgets, we showed that Q1 had a great inffuence on the intensity and moving direction of the vortex. In the developing stage of the vortex, the heating of the vertically integrated Q1 was centered to the east of the vortex center at 500 hPa, increasing PV tendency to the east of the vortex. As a result, the vortex strengthened and moved eastward through the vertically uneven distribution of Q1. In the decaying stage, the horizontally uneven heating of Q1 at 500 hPa weakened the vortex through causing the vortex tubes around the vortex to slant and redistributing the vertical vorticity field.  相似文献   

13.
林志强 《气象学报》2015,(5):925-939
为分析青藏高原低涡活动特征,利用1979—2013年ERA-Interim再分析资料500 hPa高度场,基于气旋客观识别和追踪算法得到青藏高原及其附近地区低涡路径,同时利用客观分析方法对500 hPa温度场进行分析得到低涡的冷暖性质,从而得到一套青藏高原低涡活动的资料。对高原低涡的频次、强度、持续时间、地理位置和移出高原等特征分析结果表明,35年间青藏高原上活动的系统主要为高原低涡,年均约53个,其中,年均6.7个高原低涡移出青藏高原;高原低涡持续时间从少至多呈指数减少,强度和冷暖性质的出现频次均呈正态分布,初生的高原低涡以暖涡居多,占81%。高原低涡发生且强度较大主要在青藏高原的汛期(5—9月),高原低涡源地主要在西藏那曲地区西部和阿里地区北部,消亡地主要位于源地高频中心东侧的唐古拉山地区和青海西部当曲河流域,高原低涡的消亡可能受地形影响。近35年来高原低涡生成频次呈不显著减少趋势(-2个/(10 a));移出高原低涡数(-1.4个/(10 a))和高原低涡移出率(-2.3%/(10 a))均显著减少。   相似文献   

14.
季亮  费建芳 《大气科学》2009,33(6):1297-1308
选取1997年第11号台风“温妮”为研究个例, 通过中尺度模式MM5模拟再现了该台风登陆后经历初期减弱、 变性及变性后再次发展的演变过程。采用Davis et al.(1996) 提出的片段位涡反演方法, 提取具有副热带高压物理意义的位涡扰动, 采用片段位涡反演的方法, 改变模式积分初始时刻台风东部副热带高压强度, 并引入Ertel等熵面位涡收支方程, 深入分析不同强度的副热带高压环流系统在登陆台风结构演变的过程中等熵面位涡的守恒性, 以及守恒性与非守恒性相对作用的大小。研究表明: 台风北上深入内陆的过程中, 高空槽大值位涡源源不断的输送使得对流层低层西北侧位涡增长, 台风中心上空的辐散形势有利于台风强度的再次增强。由于摩擦和非绝热加热的存在, 对流层位涡局地变化主要决定于位涡的水平平流 (守恒项)、 位涡的垂直平流、 加热的垂直微分 (非守恒项) 的分布。台风经历变性及再增强的过程中, 其影响范围内位涡守恒性经历了先减弱后增强的过程, 非守恒项中位涡的垂直平流能较好地描述对流层中层位涡局地变化趋势, 而加热的垂直微分则在对流层低层和高层表现良好。副高强度的加强使台风加速北上, 加快了台风变性速度, 高层位涡的向下输送明显提前且强度增强, 位涡守恒性的破坏、 重建也相应提前, 位涡垂直平流的整层负值减小, 加热垂直微分对对流层低层位涡增长的正贡献加强, 且持续时间更长。  相似文献   

15.
An extreme rainfall event occurred over the middle and lower reaches of the Yangtze Basin(MLY) during the end of June 2016, which was attributable to a Tibetan Plateau(TP) Vortex(TPV) in conjunction with a Southwest China Vortex(SWCV). The physical mechanism for this event was investigated from Potential Vorticity(PV) and omega perspectives based on MERRA-2 reanalysis data. The cyclogenesis of the TPV over the northwestern TP along with the lowertropospheric SWCV was found to involve a midtropospheric large-scale flow reconfiguration across western and eastern China with the formation of a high-amplitude Rossby wave. Subsequently, the eastward-moving TPV coalesced vertically with the SWCV over the eastern Sichuan Basin due to the positive vertical gradient of the TPV-related PV advection,leading the lower-tropospheric jet associated with moisture transport to intensify greatly and converge over the downstream MLY. The merged TPV-SWCV specially facilitated the upper-tropospheric isentropic-gliding ascending motion over the MLY. With the TPV-embedded mid-tropospheric trough migrating continuously eastward, the almost stagnant SWCV was re-separated from the overlying TPV, forming a more eastward-tilted high-PV configuration to trigger stronger ascending motion including isentropic-gliding, isentropic-displacement, and diabatic heating-related ascending components over the MLY. This led to more intense rainfall. Quantitative PV diagnoses demonstrate that both the coalescence and subsequent re-separation processes of the TPV with the SWCV were largely dominated by horizontal PV advection and PV generation due to vertically nonuniform diabatic heating, as well as the feedback of condensation latent heating on the isentropicdisplacement vertical velocity.  相似文献   

16.
青藏高原加热与亚洲环流季节变化和夏季风爆发   总被引:13,自引:1,他引:13       下载免费PDF全文
刘新  吴国雄  刘屹岷  刘平 《大气科学》2002,26(6):781-793
利用逐日NCEP/NCAR再分析资料分析了春夏过渡季节青减高原非绝热加热和大气环流季节变化以及亚洲季风爆发的关系.结果表明,过渡季节的早期(5月中旬以前)青藏高原总非绝热加热与感热加热的时间演变曲线趋势一致,感热加热在过渡季节早期的环流演变中有很重要的作用.青藏高原非绝热加热的时间演变与北半球环流的季节变化和亚洲夏季风爆发有很好的相关.在过渡季节里,青藏高原非绝热加热的变化引起了海-陆热力差异对比的变化,给亚洲夏季风的爆发建立了有利的背景环境,对亚洲夏季风爆发有明显的影响.结果还表明,用各区域纬向风垂直差异的时空分布能更准确地表示季节变化的区域差异.  相似文献   

17.
2016年6月28日至7月1日在我国副热带地区发生了一次青藏高原低涡形成、发展及东传引发长江中下游地区暴雨天气的过程。本文利用MERRA2(Modern-Era Retrospective analysis for Research and Applications)再分析资料和TRMM(Tropical Rainfall Measurement Mission)降水资料对该过程进行位涡诊断分析。结果表明,夏季青藏高原地表加热具有强烈的日变化。高原地表加热由白天感热加热源到夜间辐射冷却源的转变直接影响高原上空非绝热加热率的垂直梯度,使高原近地层白天有位涡耗散,夜间有位涡制造,呈现明显的昼夜循环。当夜间的位涡制造异常强,以至不为白天的耗散所抵消时,通常位涡制造的昼夜循环被破坏,高原低涡形成,低涡周围随之出现降水。当低涡中心移动至高原东部时,中心附近伴随有强烈的降水,显著的凝结潜热加热使位涡中心增强,高原低涡进一步发展。随着低涡系统继续向东移出高原,长江中下游地区中高层出现位涡平流随高度增加的大尺度动力背景,上升运动发展,最终导致强降水发生。  相似文献   

18.
In order to investigate the formation of the negative vorticity region over the northeast side of the Qinghai Xizang (Tibetan) Plateau,four sets of numerical experiments have been performed in this paper with a quasigeostrophic barotropical model considering large-scale topography,diabatic heating and dissipation.The diabatic heating in the model contains a constant forcing and timevarying forcing.The time-varying characters are determined by the continuous evolution of the sensible heat flux at Damxung Station (30°29'N,91°06'E) from 31 May to 4 June 1998.Results suggest that there are three types of processes significantly contributing to the formation of the negative vorticity region over the northeast side of the Qinghai Xizang Plateau,and they are the advection of the anticyclonic vortex at the upstream by the basic flow,the energy dispersion of the cyclonic vortex over the south side of the Plateau,and the strengthening of anticyclonic systems produced by the thermal forcing of the Plateau.  相似文献   

19.
亚——非季风区非绝热加热与夏季环流关系的诊断研究   总被引:4,自引:0,他引:4  
基于热力适应理论,本文利用 NCEP/ NCAR再分析资料对撒哈拉沙漠、青藏高原和孟加拉湾地区的非绝热加热与夏季环流进行了诊断研究。在非洲撒哈拉沙漠地区,以感热输送为主的加热仅局限于近地面层,边界层以上的大气则以辐射冷却占优势。因而除了边界层内存在着浅薄的正涡度和微弱的上升运动以外,整个对流层几乎都维持负涡度并盛行下沉运动。对于青藏高原地区,强大的表面感热通量引起的垂直扩散是近地面大气加热的主要分量,与大尺度上升运动相关的凝结潜热对低层大气的加热也有一定的贡献。长波辐射造成的对流层中、上层大气的冷却则主要由深对流潜热释放来补偿。夏季高原地区总非绝热加热是正值,且最大加热率出现在边界层内。低空大气辐合产生正涡度,而中、高层大气辐散伴有较强的负涡度。因而高原盛行上升运动,最大上升运动位于近地面层。夏季孟加拉湾地区的深对流凝结潜热释放远大于长波辐的冷却作用,因而整个对流层几乎都保持较强的非绝热加热。400hPa层附近的最大加热率引起300-400hPa最强的上升运动。对流层上层是负涡度区,而中、低层为正涡度区。结果还表明,垂直和水平辐散环流与大气的热源和热汇区密切相联:在高层,辐散气流从热源区流向热汇区;在低层则相  相似文献   

20.
This study examines the features and dynamical processes of subseasonal zonal oscillation of the western Pacific subtropical high (WPSH) during early summer, by performing a multivariate empirical orthogonal function (MVEOF) analysis on daily winds and a diagnosis on potential vorticity (PV) at 500 hPa for the period 1979–2016. The first MV-EOF mode is characterized by an anticyclonic anomaly occupying southeastern China to subtropical western North Pacific regions. It has a period of 10–25 days and represents zonal shift of the WPSH. When the WPSH stretches more westward, the South Asian high (SAH) extends more eastward. Above-normal precipitation is observed over the Yangtze–Huaihe River (YHR) basin. Suppressed convection with anomalous descending motion is located over the subtropical western North Pacific. The relative zonal movement of the SAH and the WPSH helps to establish an anomalous local vertical circulation of ascending motion with upper-level divergence over the YHR basin and descending motion with upper-level convergence over the subtropical western Pacific. The above local vertical circulation provides a dynamic condition for persistent rainfall over the YHR basin. An enhanced southwest flow over the WPSH’s western edge transports more moisture to eastern China, providing a necessary water vapor condition for the persistent rainfall over the YHR basin. A potential vorticity diagnosis reveals that anomalous diabatic heating is a main source for PV generation. The anomalous cooling over the subtropical western Pacific produces a local negative PV center at 500 hPa. The anomalous heating over the YHR basin generates a local positive PV center. The above south–north dipolar structure of PV anomaly along with the climatological southerly flow leads to northward advection of negative PV. These two processes are conducive to the WPSH’s westward extension. The vertical advection process is unfavorable to the westward extension but contributes to the eastward retreat of the WPSH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号