首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of fluctuating daily surface fluxes on the time-mean oceanic circulation is studied using an empirical flux model. The model produces fluctuating fluxes resulting from atmospheric variability and includes oceanic feedbacks on the fluxes. Numerical experiments were carried out by driving an ocean general circulation model with three different versions of the empirical model. It is found that fluctuating daily fluxes lead to an increase in the meridional overturning circulation (MOC) of the Atlantic of about 1 Sv and a decrease in the Antarctic circumpolar current (ACC) of about 32 Sv. The changes are approximately 7% of the MOC and 16% of the ACC obtained without fluctuating daily fluxes. The fluctuating fluxes change the intensity and the depth of vertical mixing. This, in turn, changes the density field and thus the circulation. Fluctuating buoyancy fluxes change the vertical mixing in a non-linear way: they tend to increase the convective mixing in mostly stable regions and to decrease the convective mixing in mostly unstable regions. The ACC changes are related to the enhanced mixing in the subtropical and the mid-latitude Southern Ocean and reduced mixing in the high-latitude Southern Ocean. The enhanced mixing is related to an increase in the frequency and the depth of convective events. As these events bring more dense water downward, the mixing changes lead to a reduction in meridional gradient of the depth-integrated density in the Southern Ocean and hence the strength of the ACC. The MOC changes are related to more subtle density changes. It is found that the vertical mixing in a latitudinal strip in the northern North Atlantic is more strongly enhanced due to fluctuating fluxes than the mixing in a latitudinal strip in the South Atlantic. This leads to an increase in the density difference between the two strips, which can be responsible for the increase in the Atlantic MOC.  相似文献   

2.
Libin Ma  Bin Wang  Jian Cao 《Climate Dynamics》2020,54(9):4075-4093
Deep convection in polar oceans plays a critical role in the variability of global climate. In this study, we investigate potential impacts of atmosphere–sea ice–ocean interaction on deep convection in the Southern Ocean (SO) of a climate system model (CSM) by changing sea ice–ocean stress. Sea ice–ocean stress plays a vital role in the horizontal momentum exchange between sea ice and the ocean, and can be parameterized as a function of the turning angle between sea ice and ocean velocity. Observations have shown that the turning angle is closely linked to the sea-ice intrinsic properties, including speed and roughness, and it varies spatially. However, a fixed turning angle, i.e., zero turning angle, is prescribed in most of the state-of-the-art CSMs. Thus, sensitivities of SO deep convection to zero and non-zero turning angles are discussed in this study. We show that the use of a non-zero turning angle weakens open–ocean deep convection and intensifies continental shelf slope convection. Our analyses reveal that a non-zero turning angle first induces offshore movement of sea ice transporting to the open SO, which leads to sea ice decrease in the SO coastal region and increase in the open SO. In the SO coastal region, the enhanced sea-ice divergence intensifies the formation of denser surface water descending along continental shelf by enhanced salt flux and reduced freshwater flux, combined with enhanced Ekman pumping and weakened stratification, contributing to the occurrence and intensification of continental shelf slope convection. On the other hand, the increased sea ice in the open SO weakens the westerlies, enhances sea-level pressure, and increases freshwater flux, whilst oceanic cyclonic circulation slows down, sea surface temperature and sea surface salinity decrease in the open SO response to the atmospheric changes. Thus, weakened cyclonic circulation, along with enhanced freshwater flux, reduced deep–ocean heat content, and increased stability of sea water, dampens the open–ocean deep convection in the SO, which in turn cools the sea surface temperature, increases sea-level pressure, and finally increases sea-ice concentration, providing a positive feedback. In the CSM, the use of a non-zero turning angle has the capability to reduce the SO warm bias. These results highlight the importance of an accurate representation of sea ice–ocean coupling processes in a CSM.  相似文献   

3.
随着全球气候变暖,冰架崩解事件的发生愈益频繁.冰架崩解产生的冰山是南极冰盖-冰架-海洋系统中活跃的组成部分,冰山的运动特征和时空分布对南大洋洋流循环、海洋生态以及水文系统有着非常重要的影响.因此利用卫星遥感监测冰山运动与变化信息,探究冰山崩解和消融过程,研究南极冰山分布,以及冰山和周围海洋环境之间的相互作用机制,是理解南极冰山变化与全球气候变化之间关系的关键.本文利用覆盖全南极海岸线的ENVISAT ASAR影像,基于简译软件的面向对象的多尺度图像分割算法实现了全南极近岸海域冰山对象的提取.利用2006年8月63期ENVISAT ASAR影像提取了32 267座面积大于0.06 km2的冰山,统计了冰山空间分布特征,研究发现南极小型冰山在全南极淡水输入中扮演着重要的作用.  相似文献   

4.
Summary The transient response of the Southern Hemisphere to climate change is examined using an intermediate complexity climate model. Unlike previous studies, the Southern Ocean response on the centennial to multi-centennial time-scale is assessed in some detail. It is shown that changes in atmospheric CO2-concentrations lead to an increase in the strength of the Antarctic Circumpolar Current (ACC) by ∼20 Sv by 2750 for an atmospheric CO2-concentration of 750 ppm. This increase is predominantly the result of an enhanced steric height gradient. The increase in the strength of the ACC induces changes in its steering around topographic features. This change in ACC pathway causes increased surface flow of colder waters into some regions (reducing the rate of warming) and increased surface flow of warmer waters into others (increasing the rate of warming). This meridional shifting of the ACC causes changes in atmospheric temperature in the Southern Hemisphere to be nonuniform. It is also shown that the strength and location of the Antarctic Bottom Water (AABW) overturning cell is affected by increased atmospheric CO2. For a CO2-concentration scenario increasing gradually to 750 ppm, AABW production initially decreases, then recovers and eventually increases. New production zones form, which extend AABW production all the way from the Weddell Sea eastward into the Ross Sea. These new production zones are the result of increased areas of atmosphere-ocean interactions, due to decreased sea-ice coverage, although the overturned waters are now warmer and fresher due to climate change. A new production zone of Antarctic Intermediate water is also established in the Southeast Pacific Ocean, poleward of its present-day location.  相似文献   

5.
A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.  相似文献   

6.
A global, flux-corrected climate model is employed to predict the surface wind stress and associated wind-driven oceanic circulation for climate states corresponding to a doubling and quadrupling of the atmospheric CO2 concentration in a simple 1% per year CO2 increase scenario. The model indicates that in response to CO2 increase, the position of zero wind stress curl in the mid-latitudes of the Southern Hemisphere shifts poleward. In addition, the wind stress intensifies significantly in the mid-latitudes of the Southern Hemisphere. As a result, the rate of water circulation in the subpolar meridional overturning cell in the Southern Ocean increases by about 6 Sv (1 Sv=106 m3 s−1) for doubled CO2 and by 12 Sv for quadrupled CO2, implying an increase of deep water upwelling south of the circumpolar flow and an increase of Ekman pumping north of it. In addition, the changes in the wind stress and wind stress curl translate into changes in the horizontal mass transport, leading to a poleward expansion of the subtropical gyres in both hemispheres, and to strengthening of the Antarctic Circumpolar Current. Finally, the intensified near-surface winds over the Southern Ocean result in a substantial increase of mechanical energy supply to the ocean general circulation.  相似文献   

7.
Oceanic climatology in the coupled model FGOALS-g2: Improvements and biases   总被引:1,自引:0,他引:1  
The present study examines simulated oceanic climatology in the Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2 (FGOALS-g2) forced by historical external forcing data. The oceanic temperatures and circulations in FGOALS-g2 were found to be comparable to those observed, and substantially improved compared to those simulated by the previous version, FGOALS-g1.0. Compared with simulations by FGOALS-g1.0, the shallow mixed layer depths were better captured in the eastern Atlantic and Pacific Ocean in FGOALS-g2. In the high latitudes of the Northern Hemisphere, the cold biases of SST were about 1°C–5°C smaller in FGOALS-g2. The associated sea ice distributions and their seasonal cycles were more realistic in FGOALS-g2. The pattern of Atlantic Meridional Overturning Circulation (AMOC) was better simulated in FGOALS-g2, although its magnitude was larger than that found in observed data. The simulated Antarctic Circumpolar Current (ACC) transport was about 140 Sv through the Drake Passage, which is close to that observed. Moreover, Antarctic Intermediate Water (AAIW) was better captured in FGOALS-g2. However, large SST cold biases (>3°C) were still found to exist around major western boundary currents and in the Barents Sea, which can be explained by excessively strong oceanic cold advection and unresolved processes owing to the coarse resolution. In the Indo-Pacific warm pool, the cold biases were partly related to the excessive loss of heat from the ocean. Along the eastern coast in the Atlantic and Pacific Oceans, the warm biases were due to overestimation of shortwave radiation. In the Indian Ocean and Southern Ocean, the surface fresh biases were mainly due to the biases of precipitation. In the tropical Pacific Ocean, the surface fresh biases (>2 psu) were mainly caused by excessive precipitation and oceanic advection. In the Indo-Pacific Ocean, fresh biases were also found to dominate in the upper 1000 m, except in the northeastern Indian Ocean. There were warm and salty biases (3°C–4°C and 1–2 psu) from the surface to the bottom in the Labrador Sea, which might be due to large amounts of heat transport and excessive evaporation, respectively. For vertical structures, the maximal biases of temperature and salinity were found to be located at depths of >600 m in the Arctic Ocean, and their values exceeded 4°C and 2 psu, respectively.  相似文献   

8.
The bipolar ocean seesaw is a process that explains the competition between deep waters formed in the North Atlantic (NA) and in the Southern Ocean (SO). In this picture, an increase in the rate of formation of one of these water masses is made at the expense of the other. However, recent studies have questioned the effectiveness of this process. Namely, they show that adding freshwater in the SO can reduce deep water formation in the SO as well as in the NA. In this study, we explore the mechanisms and time scales excited by such a SO freshwater release by performing sensitivity experiments where a freshwater input is added abruptly in the ocean, south of 60°S, with different rates and durations. For this purpose, we evaluate the separate effects of wind, temperature and salinity changes, and we put the emphasis on the time evolution of the system. We find three main processes that respond to these freshwater inputs and affect the NA Deep Water (NADW) production: (i) the deep water adjustment, which enhances the NADW cell, (ii) the salinity anomaly spread from the SO, which weakens the NADW cell, and (iii) the increase in the Southern Hemisphere wind stress, which enhances the NADW cell. We show that process (i) affects the Atlantic in a few years, due to an adjustment of the pycnocline depth through oceanic waves in response to the buoyancy perturbation in the SO. The salinity anomalies responsible for the NADW production decrease [process (ii)] invades the NA in around 30 years, while the wind stress from process (iii) increases in around 20 years after the beginning of the freshwater perturbation. Finally, by testing the response of the ocean to a large range of freshwater release fluxes, we show that for fluxes larger than 0.2 Sv, process (ii) dominates over the others and limits NADW production after a few centuries, while for fluxes lower than 0.2 Sv, process (ii) hardly affects the NADW production. On the opposite, the NADW export is increased by processes (i) and (iii) even for fluxes smaller than 0.1 Sv. The climatic impact of the freshwater release in the SO is mainly a cooling of the Southern Hemisphere, of up to 10°C regionally, which increases with freshwater release fluxes for a large range of values.  相似文献   

9.
 In this study we investigate the role of heat, freshwater and momentum fluxes in changing the oceanic climate and thermohaline circulation as a consequence of increasing atmospheric CO2 concentration. Two baseline integrations with a fully coupled ocean atmosphere general circulation model with either fixed or increasing atmospheric CO2 concentrations have been performed. In a set of sensitivity experiments either freshwater (precipitation, evaporation and runoff from the continents) and/or momentum fluxes were no longer simulated, but prescribed according to one of the fully coupled baseline experiments. This approach gives a direct estimate of the contribution from the individual flux components. The direct effect of surface warming and the associated feedbacks in ocean circulation are the dominant processes in weakening the Atlantic thermohaline circulation in our model. The relative contribution of momentum and freshwater fluxes to the total response turned out to be less than 25%, each. Changes in atmospheric water vapour transport lead to enhanced freshwater input into middle and high latitudes, which weakens the overturning. A stronger export of freshwater from the Atlantic drainage basin to the Indian and Pacific ocean, on the other hand, intensifies the Atlantic overturning circulation. In total the modified freshwater fluxes slightly weaken the Atlantic thermohaline circulation. The contribution of the modified momentum fluxes has a similar magnitude, but enhances the formation of North Atlantic deep water. Salinity anomalies in the Atlantic as a consequence of greenhouse warming stem in almost equal parts from changes in net freshwater fluxes and from changes in ocean circulation caused by the surface warming due to atmospheric heat fluxes. Important effects of the momentum fluxes are a poleward shift of the front between Northern Hemisphere subtropical and subpolar gyres and a southward shift in the position of the Antarctic circumpolar current, with a clear signal in sea level. Received: 3 May 1999 / Accepted: 11 December 1999  相似文献   

10.
The South China Sea (SCS) interocean circulation and its associated heat and freshwater budgets are examined using the results of a variable-grid global ocean model. The ocean model has a 1/6° resolution in the SCS and its adjacent oceans. The model results from 1982 to 2003 show that the western Pacific waters enter the SCS through the Luzon Strait with an annual mean volume transport of 4.80 Sv, of which 1.71 Sv returns to the western Pacific through the Taiwan Strait and East China Sea and 3.09 Sv flows toward the Indian Ocean. The heat in the western Pacific is transported to the SCS with a rate of 0.373 PW (relative to a reference temperature 3.72 °C), while the total heat transport through the outflow straits is 0.432 PW. The net heat transport out of the SCS is thus 0.059 PW, which is balanced by a mean net downward heat flux of 17 W/m2 across the SCS air–sea interface. Therefore, the interocean circulation acts as an “air conditioner”, cooling the SCS and its overlaying atmosphere. The SCS contributes a heat transport of 0.279 PW to the Indian Ocean, of which 0.240 PW is from the Pacific Ocean through the Luzon Strait and 0.039 PW is from the SCS interior gained from the air–sea exchange. The Luzon Strait salt transport is greater than the total salt transport leaving the SCS by 3.97 Gg/s, implying a mean freshwater flux of 0.112 Sv (or 3.54 × 1012 m3/year) from the land discharge and P − E (precipitation minus evaporation). The total annual land discharge to the SCS is estimated to be 1.60 × 1012 m3/year, the total annual P − E over the SCS is thus 1.94 × 1012 m3/year, equivalent to a mean P − E of 0.55 m/year. The SCS freshwater contribution to the Indian Ocean is 0.096 Sv. The pattern of the SCS interocean circulation in winter differs greatly from that in summer. The SCS branch of the Pacific-to-Indian Ocean throughflow exists in winter, but not in summer. In winter this branching flow starts at the Luzon Strait and extends to the Karimata Strait. In summer the interocean circulation is featured by a north-northeastward current starting at the Karimata Strait and extending to the Taiwan and Luzon Straits, and a subsurface inflow from the Luzon Strait that upwells into the surface layer in the SCS interior to supply the outward transports.  相似文献   

11.
Arctic climate change in 21st century CMIP5 simulations with EC-Earth   总被引:4,自引:2,他引:2  
The Arctic climate change is analyzed in an ensemble of future projection simulations performed with the global coupled climate model EC-Earth2.3. EC-Earth simulates the twentieth century Arctic climate relatively well but the Arctic is about 2 K too cold and the sea ice thickness and extent are overestimated. In the twenty-first century, the results show a continuation and strengthening of the Arctic trends observed over the recent decades, which leads to a dramatically changed Arctic climate, especially in the high emission scenario RCP8.5. The annually averaged Arctic mean near-surface temperature increases by 12 K in RCP8.5, with largest warming in the Barents Sea region. The warming is most pronounced in winter and autumn and in the lower atmosphere. The Arctic winter temperature inversion is reduced in all scenarios and disappears in RCP8.5. The Arctic becomes ice free in September in all RCP8.5 simulations after a rapid reduction event without recovery around year 2060. Taking into account the overestimation of ice in the twentieth century, our model results indicate a likely ice-free Arctic in September around 2040. Sea ice reductions are most pronounced in the Barents Sea in all RCPs, which lead to the most dramatic changes in this region. Here, surface heat fluxes are strongly enhanced and the cloudiness is substantially decreased. The meridional heat flux into the Arctic is reduced in the atmosphere but increases in the ocean. This oceanic increase is dominated by an enhanced heat flux into the Barents Sea, which strongly contributes to the large sea ice reduction and surface-air warming in this region. Increased precipitation and river runoff lead to more freshwater input into the Arctic Ocean. However, most of the additional freshwater is stored in the Arctic Ocean while the total Arctic freshwater export only slightly increases.  相似文献   

12.
We use the Earth system model of intermediate complexity LOVECLIM to show the effect of coupling interactive ice sheets on the climate sensitivity of the model on a millennial time scale. We compare the response to a 2×CO2 warming scenario between fully coupled model versions including interactive Greenland and Antarctic ice sheet models and model versions with fixed ice sheets. For this purpose an ensemble of different parameter sets have been defined for LOVECLIM, covering a wide range of the model??s sensitivity to greenhouse warming, while still simulating the present-day climate and the climate evolution over the last millennium within observational uncertainties. Additional freshwater fluxes from the melting ice sheets have a mitigating effect on the model??s temperature response, leading to generally lower climate sensitivities of the fully coupled model versions. The mitigation is effectuated by changes in heat exchange within the ocean and at the sea?Cair interface, driven by freshening of the surface ocean and amplified by sea?Cice-related feedbacks. The strength of the effect depends on the response of the ice sheets to the warming and on the model??s climate sensitivity itself. The effect is relatively strong in model versions with higher climate sensitivity due to the relatively large polar amplification of LOVECLIM. With the ensemble approach in this study we cover a wide range of possible model responses.  相似文献   

13.
The model of Paillard and Parrenin (Earth Planet Sci Lett 227:263–271, 2004) was modified to obtain a closer fit to δ18O and CO2 time series for the last 800 kyr. The model performance can be improved if its CO2 sensitivity to I65 insolation is eliminated and if different response times are assumed for ablation/accumulation of ice. Correlations between simulated and experimental time series for CO2 and ice volume V increase from 0.59 and 0.63 to 0.79 and 0.88, respectively. According to these models, terminations are produced by I65 amplification through CO2-T and T-CO2 feedbacks, in synergy with an extra CO2 contribution from the deep ocean. This contribution is strongly dependent on ice-sheet extent and ice volume (or alternatively, CO2 concentration, which is a good proxy of Antarctic temperature) but is insensitive to Southern Ocean (SO) insolation on 21 February (I60). Change of deep SO state may be the “order parameter” for nonlinear deglacial changes. According to these models, 100 kyr periodicity of glacial cycles arises from the characteristic time of Antarctic ice sheet advance to the continental slope.  相似文献   

14.
Sea ice is an important component in the Earth’s climate system. Coupled climate system models are indispensable tools for the study of sea ice, its internal processes, interaction with other components, and projection of future changes. This paper evaluates the simulation of sea ice by the Flexible Global Ocean-Atmosphere-Land System model Grid-point Version 2 (FGOALS-g2), in the fifth phase of the Coupled Model Inter-comparison Project (CMIP5), with a focus on historical experiments and late 20th century simulation. Through analysis, we find that FGOALS-g2 produces reasonable Arctic and Antarctic sea ice climatology and variability. Sea ice spatial distribution and seasonal change characteristics are well captured. The decrease of Arctic sea ice extent in the late 20th century is reproduced in simulations, although the decrease trend is lower compared with observations. Simulated Antarctic sea ice shows a reasonable distribution and seasonal cycle with high accordance to the amplitude of winter-summer changes. Large improvement is achieved as compared with FGOALS-g1.0 in CMIP3. Diagnosis of atmospheric and oceanic forcing on sea ice reveals several shortcomings and major aspects to improve upon in the future: (1) ocean model improvements to remove the artificial island at the North Pole; (2) higher resolution of the atmosphere model for better simulation of important features such as, among others, the Icelandic Low and westerly wind over the Southern Ocean; and (3) ocean model improvements to accurately receive freshwater input from land, and higher resolution for resolving major water channels in the Canadian Arctic Archipelago.  相似文献   

15.
The ocean response to surface temperature transients is simulated with the use of the Hamburg large-scale geostrophic (LSG) ocean general circulation model (OGCM). The transition, from the present to a climate corresponding to a doubling of the atmospheric CO2 content, is compared with the reversed transition. For the Atlantic, the time scale for the deep ocean to adjust to the temperature changes was similar for both transitions. In the Pacific, the time scale is shorter for the present to warm transition than for the reverse case, a result of increased production of Antarctic bottom water (AABW) during the warm climate. While the transition from cold to warm climate shows no secular variability, the reversed transition generates considerable variability on time scales of 300–400 years. For the warm climate, oscillations with periods of 45 years are found in the Southern Ocean. Results of principal oscillation pattern (POP) analysis indicate that these oscillations are due to interaction between convection in the Southern Ocean and advected salinity anomalies in the Antarctic Circumpolar Current (ACC) and the Southern Pacific Ocean. Received: 19 September 1995 / Accepted: 15 March 1996  相似文献   

16.
The ocean and sea ice in both polar regions are important reservoirs of freshwater within the climate system. While the response of these reservoirs to future climate change has been studied intensively, the sensitivity of the polar freshwater balance to natural forcing variations during preindustrial times has received less attention. Using an ensemble of transient simulations from 1500 to 2100 AD we put present-day and future states of the polar freshwater balance in the context of low frequency variability of the past five centuries. This is done by focusing on different multi-decadal periods of characteristic external forcing. In the Arctic, freshwater is shifted from the ocean to sea ice during the Maunder Minimum while the total amount of freshwater within the Arctic domain remains unchanged. In contrast, the subsequent Dalton Minimum does not leave an imprint on the slow-reacting reservoirs of the ocean and sea ice, but triggers a drop in the import of freshwater through the atmosphere. During the twentieth and twenty-first century the build-up of freshwater in the Arctic Ocean leads to a strengthening of the liquid export. The Arctic freshwater balance is shifted towards being a large source of freshwater to the North Atlantic ocean. The Antarctic freshwater cycle, on the other hand, appears to be insensitive to preindustrial variations in external forcing. In line with the rising temperature during the industrial era the freshwater budget becomes increasingly unbalanced and strengthens the high latitude’s Southern Ocean as a source of liquid freshwater to lower latitude oceans.  相似文献   

17.
Anthropogenic climate change will continue long after anthropogenic CO2 emissions cease. Atmospheric CO2, global warming and ocean circulation will approach equilibrium on the millennial timescale, whereas thermal expansion of the ocean, ice sheet melt and their contributions to sea level rise are unlikely to be complete. Atmospheric CO2 in year 3000 depends non-linearly on the total amount of CO2 emitted and is very likely to exceed the present level of ∼380 ppmv. CO2 is doubled for ∼2500 GtC emitted, quadrupled if all ∼5000 GtC of conventional fossil fuel resources are emitted, and increases by a factor of ∼32 if a further 20,000 GtC of exotic fossil fuel resources are emitted. Global warming in year 3000 will also depend on climate sensitivity to doubling CO2, which is most probably ∼3 C but highly uncertain. Thermal expansion will contribute 0.5–2 m to millennial sea level rise for each doubling of CO2. The Greenland ice sheet could melt completely within the millennium under > 8×CO2, adding a further ∼7 m to sea level. The rate of melt depends on the magnitude of forcing above a regional warming threshold of 1–3 C. The West Antarctic ice sheet could be threatened by 4–10 C local warming, and its potential contribution to millennial sea level rise exceeds current maximum estimates of ∼1 m. The fate of the ocean thermohaline circulation may depend on the rate as well as the magnitude of forcing.  相似文献   

18.
We investigate the sensitivity of simulations of the last glacial inception (LGI) with respect to initial (size of the Greenland ice sheet) and surface (state of ocean/vegetation) conditions and two different CO2 reconstructions. Utilizing the CLIMBER-2 Earth system model, we obtain the following results: (a) ice-sheet expansion in North America at the end of the Eemian can be reduced or even completely suppressed when pre-industrial or Eemian ocean/vegetation is prescribed. (b) A warmer surrounding ocean and, in particular, a large Laurentide ice sheet reduce the size of the Greenland ice sheet before and during the LGI. (c) A changing ocean contributes much stronger to the expansion of the Laurentide ice sheet when we apply the CO2 reconstruction according to Barnola et al. (Nature 329:408–414, 1987) instead of Petit et al. (Nature 399:429–436, 1999). (d) In the fully coupled model, the CO2 reconstruction used has only a small impact on the simulated ice sheets but it does impact the course of the climatic variables. (e) For the Greenland ice sheet, two equilibrium states exist under the insolation and CO2 forcing at 128,000 years before present (128 kyear BP); the one with an ice sheet reduced by about one quarter as compared to its simulated pre-industrial size and the other with nearly no inland ice in Greenland. (f) Even the extreme assumption of no ice sheet in Greenland at the beginning of our transient simulations does not alter the simulated expansion of northern hemispheric ice sheets at the LGI.  相似文献   

19.
 This work concerns an analysis of inter-basin and inter-layer exchanges in the component ocean part of the coupled ECHAM4/OPYC3 general circulation model, aimed at documenting the simulation of North Atlantic Deep Water (NADW) and related thermohaline circulations in the Indian and Pacific Oceans. The modeled NADW is formed mainly in the Greenland– Iceland–Norwegian Seas through a composite effect of deep convection and downward cross-isopycnal transport. The modeled deep-layer outflow of NADW can reach 16 Sv near 30 °S in the South Atlantic, with the corresponding upper-layer return flow mainly coming from the “cold water path” through Drake Passage. Less than 4 Sv of the Agulhas “leakage” water contributes to the replacement of NADW along the “warm water path”. In the South Atlantic Ocean, the model shows that some intermediate isopycnal layers with potential densities ranging between 27.0 and 27.5 are the major water source that compensate the NADW return flow and enhance the Circumpolar Deep Water (CDW) flowing from the Atlantic into Indian Ocean. The modeled thermohaline circulations in the Indian and Pacific Oceans indicate that the Indian Ocean may play the major role in converting deep water into intermediate water. About 16 Sv of the CDW-originating deep water enters the Indian Ocean northward of 31 °S, of which more than 13 Sv “upwell” mainly near the continental boundaries of Africa, South Asia and Australia through inter-layer exchanges and return to the Antarctic Circumpolar Current (ACC) as intermediate-layer water. As a contrast, only 4 Sv of Pacific intermediate water is connected to “upwelling” flow southward across 31 °S while the magnitude of northward deep flow across 31 °S in the Pacific Ocean is significantly greater than that in the Indian Ocean. The model suggests that a large portion of the deep waters entering the Pacific Ocean (about 14 Sv) “upwells” continually into some upper layers through the thermocline, and becomes the source of the Indonesian throughflow. Uncertainties in these results may be related to the incomplete adjustment of the model’s isopycnal layers and the sensitivity of the Indonesian throughflow to the model’s geography and topography. Received: 12 August 1997/Accepted: 12 March 1998  相似文献   

20.
The OSU global coupled atmosphere-ocean general circulation model has been used to investigate a 2xCO2-induced climate change. A previous analysis of the simulated 2xCO2–1xCO2 temperature differences showed that the CO2-induced warming penetrated into the ocean and thereby caused a delay in the equilibration of the climate system with an estimatede-folding time of 50–75 years. The objective of the present study is to determine by what pathways and through which physical processes the simulated ocean general circulation produces the penetration of the CO2-induced warming into the ocean.A global-mean oceanic heat budget analysis shows that the ocean gains heat at a rate of 3 W/m2 due to the CO2 doubling, and that this heat penetrates downward into the ocean predominantly through the reduction in the convective overturning. A zonal-mean oceanic heat budget analysis shows that the surface warming increases from the tropics toward the midlatitudes of both hemispheres and gradually penetrated into the deeper ocean, with a greater penetration in the subtropics and midlatitudes than in the equatorial region. The zonal-mean heat budget analysis also shows that the CO2-induced warming of the ocean occurs predominantly through the down-ward transport of heat, with the meridional heat flux being only of secondary importance. In the tropics the penetration of the CO2-induced heating is minimized by the upwelling of cold water. In the subtropics the heating is transported down-ward more readily by the downwelling existing there. In the high latitudes the suppressed convection plays the dominant role in the downward penetration of the CO2-induced heating. The latter result should be considered as tentative, however, as the ocean component of the coupled model employed a prescribed surface salinity field and did not include the mechanism of brine rejection when sea water freezes into sea ice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号