首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of this article is to determine the main sources of the variability of large West African river discharges during the years 1951–2000. The analysis is based on river discharge simulations of ORCHIDEE Land-Surface Model forced by NCC (NCEP Corrected by CRU) over this period. In a first part, an analysis of the partitionning of precipitation in the different basins is given. It is first shown that total runoff is more variable and better correlated to precipitation than evapotranspiration over every basin on annual means. Then the more complex link between evapotranspiration and precipitation is investigated through correlation and regression analyses. Over the “dry” (soudano-sahelian) catchments, evapotranspiration is the most variable and mainly correlated to the annual precipitation. Over the “humid” (equatorial) catchment, it is mainly correlated to the season length and does not depend on other characteristics of the precipitation. Over the “intermediate” (guinean) catchments, annual precipitation and season length both play a role, along with the average intensity of rainfall events, and other characteristics such as the number of long breaks in the rainy season. A second part focuses on the way ORCHIDEE reproduces the variability of river discharges for the years 1951–2000. It is shown that relative anomalies are correctly simulated by ORCHIDEE forced by NCC over every catchment without taking into account any land-use change. Moreover, no significant difference is found in the accuracy with which ORCHIDEE simulates the humid (1953–1970) and the dry (1973–1990) periods over two selected catchments. This implies that the impact of land-use changes was much less important than the impact of precipitation changes over the years 1951–2000 in large West African catchments.  相似文献   

2.
The interannual variability of autumn precipitation over South China and its relationship with atmospheric circulation and SST anomalies are examined using the autumn precipitation data of 160 stations in China and the NCEP-NCAR reanalysis dataset from 1951 to 2004. Results indicate a strong interannual variability of autumn precipitation over South China and its positive correlation with the autumn western Pacific subtropical high (WPSH). In the flood years, the WPSH ridge line lies over the south of South China and the strengthened ridge over North Asia triggers cold air to move southward. Furthermore, there exists a significantly anomalous updraft and cyclone with the northward stream strengthened at 850 hPa and a positive anomaly center of meridional moisture transport strengthening the northward warm and humid water transport over South China. These display the reverse feature in drought years. The autumn precipitation interannual variability over South China correlates positively with SST in the western Pacific and North Pacific, whereas a negative correlation occurs in the South Indian Ocean in July. The time of the strongest lag-correlation coefficients between SST and autumn precipitation over South China is about two months, implying that the SST of the three ocean areas in July might be one of the predictors for autumn precipitation interannual variability over South China. Discussion about the linkage among July SSTs in the western Pacific, the autumn WPSH and autumn precipitation over South China suggests that SST anomalies might contribute to autumn precipitation through its close relation to the autumn WPSH.  相似文献   

3.
利用PRMS水文模式系统 ,模拟研究了气候变化对滦河流域丰、枯水年不同季节水资源的影响。结果表明 ,滦河流域蒸发量主要受气温变化的影响 ,受降水量变化的影响相对较小 ;且湿润季节变化绝对值较大 ,干旱季节变化百分率较大。而地表径流量、次地表径流量、地下径流量及河川径流量主要受降水量变化的影响 ,受气温变化的影响相对较小。湿润季节对气候变化的敏感性较高 ,干旱季节敏感性较低。  相似文献   

4.
利用地面观测站点资料研究大范围地区的降水长期变化规律,选取不同的指标会使分析结果出现显著差异。利用中国大陆区域内2139个国家站的逐日降水资料,比较不同数据处理方法得到全国和中国西部、中国东部地区的降水量、降水日数和降水强度的区域平均时间序列,探讨对其变化趋势估算的偏差。研究表明,1951—1957年估算的中国区域平均降水量原始值出现虚假的偏高,使趋势估算出现较大误差;1951—2016年中国西部地区平均降水量距平百分率时间序列的波动幅度显著偏大;区域平均降水量、降水日数和降水强度的距平和标准化距平序列较为可信。全国平均降水量、降水日数的原始值和距平值序列都基本反映了中国东部湿润地区降水的变化,降水量距平百分率的变化主要由西部干燥区域的降水变化构成,降水量标准化距平则可综合反映湿润和干燥地区的降水变化。  相似文献   

5.
Much attention has recently been focused on the effects that climate variability and human activities have had on runoff. In this study, data from the Kaidu River Basin in the arid region of northwest China were analyzed to investigate changes in annual runoff during the period of 1960–2009. The nonparametric Mann–Kendall test and the Mann–Kendall–Sneyers test were used to identify trend and step change point in the annual runoff. It was found that the basin had a significant increasing trend in annual runoff. Step change point in annual runoff was identified in the basin, which occurred in the year around 1993 dividing the long-term runoff series into a natural period (1960–1993) and a human-induced period (1994–2009). Then, the hydrologic sensitivity analysis method was employed to evaluate the effects of climate variability and human activities on mean annual runoff for the human-induced period based on precipitation and potential evapotranspiration. In 1994–2009, climate variability was the main factor that increased runoff with contribution of 90.5 %, while the increasing percentage due to human activities only accounted for 9.5 %, showing that runoff in the Kaidu River Basin is more sensitive to climate variability than human activities. This study quantitatively distinguishes the effects between climate variability and human activities on runoff, which can do duty for a reference for regional water resources assessment and management.  相似文献   

6.
The changes in hydrological processes in the Yellow River basin were simulated by using the Community Land Model(CLM,version 3.5),driven by historical climate data observed from 1951 to 2008.A comparison of modeled soil moisture and runoff with limited observations in the basin suggests a general drying trend in simulated soil moisture,runoff,and precipitation-evaporation balance(P-E) in most areas of the Yellow River basin during the observation period.Furthermore,annual soil moisture,runoff,and P-E averaged over the entire basin have declined by 3.3%,82.2%,and 32.1%,respectively.Significant drying trends in soil moisture appear in the upper and middle reaches of the basin,whereas a significant trend in declining surface runoff and P-E occurred in the middle reaches and the southeastern part of the upper reaches.The overall decreasing water availability is characterized by large spatial and temporal variability.  相似文献   

7.
中国干湿区变化与预估   总被引:3,自引:1,他引:2  
本文采用干湿指数对1962~2011年中国干湿区范围变化进行了集中分析,并利用CMIP5(Coupled Model Intercomparison Project Phase 5)模式对其变化趋势开展了预估研究。结果表明,1962~2011年平均极端干旱区、干旱区、半干旱区、半湿润区和湿润区分别占中国陆地总面积的2.8%、11.7%、22.4%、32.6%和30.5%。期间,中国区域年干湿指数总体上呈现下降趋势,空间上表现为西部湿润化和东部干旱化的特征。显著缩小的是湿润区和极端干旱区,半湿润区、半干旱区和干旱区则显著扩大,这表明中国气候敏感区域在扩张。春季和秋季干湿指数变化趋势的空间分布与年平均的较为一致,冬季西北呈干旱化,夏季东南部地区为湿润化。相对于参考时段1986~2005年,在RCP4.5(Representative Concentration Pathway 4.5)情景下18个气候模式中位数的预估结果中,降水仅在东南南部减少,而潜在蒸散发在全区域增加,由于潜在蒸散发的增量超过了降水的增幅,中国区域将整体趋于干旱化,仅在西北地区呈湿润化特征;未来湿润区、干旱区和极端干旱区缩小,气候敏感性高的半湿润区和半干旱区仍将扩大。  相似文献   

8.
越赤道气流与西北地区东部夏季降水的联系   总被引:7,自引:1,他引:7  
利用1951-2002年NCEP/NCAR再分析月平均气候资料和西北地区东部夏季降水资料,研究了越赤道气流的年际变化及其对西北地区东部夏季降水的影响。结果表明,自1951年以来,越赤道气流总量呈增强趋势,且持续性好;索马里急流是最主要的越赤道气流,且比较稳定,它是影响西北地区东部夏季降水的重要环流因素。  相似文献   

9.
Daily and monthly-based water balance computations are made for areas with climates ranging from humid (Coshocton, Ohio) through Mediterranean (Watsonville, California) and semi-arid (Dodge City, Kansas) to arid conditions (Tucson, Arizona). Monthly procedures lead to an underestimate of observed mean annual runoff by 14% in Coshocton, 59% in Tucson, and an overestimate by 9% in Watsonville. Daily balance calculations increase model accuracy. The improvement in runoff estimates by using the daily method is most significant for arid climates. Daily-monthly departures are greater in the semi-arid and arid areas than in the humid and Mediterranean areas. In terms of mean annual runoff, the difference between monthly estimates and daily estimates is 42.5% in arid Tucson, 58.2% in semi-arid Dodge City, but only 8.9% in humid Coshocton and 5.6% in Mediterranean Watsonville. The daily-monthly departures in soil moisture estimates are generally less than 10% in the humid and Mediterranean climates, but well above 50% in most months in the arid and semi-arid climates. Regression analysis indicates the daily-monthly difference in moisture surplus estimates correlates well with the amount of storm clustering within a month. Monthly computations depart increasingly from daily computations as storm clustering increases. The hydrological impacts of changes in storm clustering are studied by forcing the water balance model with daily precipitation sequences based on hypothetical storm scenarios. Total annual moisture surplus tends to increase with increased storm clustering. In the arid and semi-arid climates, the differences between the most and least clustering scenarios equal 35% up to 60% of surplus water generated by normal storms. They are about 20% in the cases of the humid and Mediterranean climates. These results suggest future potential changes in climatic variability such as storm delivery patterns can have significant impacts on water resource availability.  相似文献   

10.
中国干湿状况和干湿气候界限变化研究   总被引:13,自引:2,他引:11  
选取全国616个地面气象台站1975-2004年的地面资料,通过Penman-Monteith公式计算的参考蒸散确定湿润指数(W),按W为0.03、0.2、0.5和1.0把中国分为极干旱、干旱、半干旱、半湿润和湿润5个干湿区,给出了湿润指数的变化趋势和变异状况的地理分布,讨论了湿润指数的年代际变化特征。结果表明:湿润状况显著增加的地区主要为新疆西北部和中国的西南部,干旱化显著的地区主要在青海的东部、甘肃的南部和四川北部;干湿状况变化从中国的东部向西部逐渐增大,中国的西南地区干湿状况最为稳定;20世纪80年代初全国的平均干湿状况发生变化,由干旱趋向湿润,30a来半湿润、湿润地区干湿状况年际变化大,半干旱区和湿润区增多,半湿润区减少。  相似文献   

11.
近50年中国干湿气候界线波动及其成因初探   总被引:24,自引:2,他引:24  
文中在 10a际尺度上详细分析了中国干湿气候界线波动与气候的干湿变化 ,得出 :过去 5 0a中国干湿气候界线波动显著 ,区域差异大 ,呈现出整体移动和东西、南北相异波动的特征。 2 0世纪 6 0~ 70年代中国干湿气候存在一次突变 ,由较湿润变为干旱 ,但各地干旱程度不同。干湿气候界线波动与气候的干湿变化具有显著的年代际特征。在此基础上分析了气候界线波动的可能原因 ,中国干湿气候界线的波动与气候的干湿变化是西太平洋副热带高压强度位置导致的东南季风、孟加拉湾暖流所导致的西南季风以及高原季风、中纬度西风环流等综合作用的结果。中国各地区干湿位相变化不一致 ,区域差异大 ,是不同环流以及环流的不同强弱组合所致。东南季风、西南季风、高原季风、中纬度西风环流、西太平洋副热带高压的年代际变化是过去 5 0a中国干湿气候界线波动与气候干湿变化年代际变化的根本原因。 2 0世纪 6 0~ 70年代的干湿突变 ,是整个北半球大气环流异常的结果  相似文献   

12.
Sensitivity of the Himalayan Hydrology to Land-Use and Climatic Changes   总被引:2,自引:0,他引:2  
Land-use and climatic changes are ofmajor concerns in the Himalayan region because oftheir potential impacts on a predominantlyagriculture-based economy and a regional hydrologydominated by the monsoons. Such concerns are notlimited to any particular basin but exist throughoutthe region including the downstream plains. As arepresentative basin of the Himalayas, the Kosi Basin(54,000 km2) located in the mountainous area ofthe central Himalayan region was selected as a studyarea. We used water balance and distributeddeterministic modeling approaches to analyze thehydrologic sensitivity of the basin to projectedland-use, and potential climate change scenarios.Runoff increase was higher than precipitation increasein all the potential precipitation change scenariosapplying contemporary temperature. The scenario ofcontemporary precipitation and a rise in temperatureof 4 °C caused a decrease in runoff bytwo to eight percent depending upon the areasconsidered and models used. In the absence of climaticchange, the results from a distributed water balancemodel applied in the humid south of the basinindicated a reduction in runoff by 1.3% in thescenario of maximum increase in forest areas below4,000 m.  相似文献   

13.
Xinjiang is located in arid northwestern China where water cycle has accelerated due to increased precipitation and temperature. However, the regional water budget characteristics vary due to the complex topography and spatial heterogeneities of hydroclimatology. This study uses atmospheric forcing constrained by observation from 90 meteorological stations in Xinjiang as input for the optimized Community Land Model version 3.5 (CLM 3.5) to investigate Xinjiang’s regional water budgets from 1951 to 2000 between the northern and southern part divided by the Tianshan Mountain. Results show that precipitation, evapotranspiration and runoff increased in Xinjiang from 1951 to 2000, particularly after the climate shift around 1987, and the net water flux (P-E) gap between North and South Xinjiang was widened. Rapid, intense wetting occurred in North Xinjiang in response to regional climate change, whereas South Xinjiang experienced relatively small changes. North and South Xinjiang exhibited opposite trends in water table depth (WTD), which became shallower in North Xinjiang, particularly after 1987. The WTD in South Xinjiang gradually became deeper. These results suggest that water resources in North Xinjiang are more sensitive to the warmer and wetter climate than South Xinjiang, and the serious water shortage in South Xinjiang did not improve during the second half of the twentieth century.  相似文献   

14.
赵天保  从靖 《大气科学》2018,42(2):311-322
本文基于气候系统模式CESM4.0长期积分试验,分析评估了工业革命前(1850年)及当前(2000年)两种辐射强迫作用(分别为太阳活动和温室气体)对中国北方干旱半干旱区降水的影响。结果表明,模拟结果与观测之间尽管存在一定的偏差,但仍能再现降水气候态的空间分布以及季节变化特征;两种辐射强迫下的降水长期变化均无明显趋势,但二者的差异却呈现出70~100年的准周期振荡;由人类活动引起的当前辐射强迫作用对降水的多年际变率幅度有一定影响,造成极端强降水事件出现的概率增多,而由太阳活动引起的辐射强迫作用主要对降水多年代际周期具有一定的调制作用。进一步分析表明,两种辐射强迫下中国北方干旱半干旱区降水年多年代际变率的主要模态基本一致,但人类活动引起的辐射强迫作用会影响降水多年代际变率与热带海温异常的相互作用的强度,从而改变降水多年代际变率的幅度。  相似文献   

15.
近30年安徽省地表干湿时空变化及对农业影响   总被引:5,自引:2,他引:5       下载免费PDF全文
采用FAO Penman-Monteith模型, 并利用安徽省辐射观测资料对其净辐射项进行修正, 计算近30年安徽省的参考作物蒸散量。用此计算值和相应时段的降水量计算干燥度 (Ia), 并进行了基于干燥度指标不同时间尺度的区域地表干湿状况变化分析。分析表明:1971—2000年安徽省年干燥度平均值Ia=1的等值线为湿润区和半湿润区的分界线, 该分界线与1000 mm的年雨量线有很好的一致性, 同时也具有清晰的农业意义。20世纪70—90年代Ia=1的等值线南北波动, 其波动区域正是安徽省江淮分水岭易旱区。在此基础上分析了半湿润区、波动区域和湿润区降水量、参考作物蒸散量和干燥度年代际、年际和半年际的变化趋势及变异率以及逐月干旱频率及其对农业的影响。  相似文献   

16.
中国区域1961~2010年降水集中指数(PCI)的变化及月分配特征   总被引:5,自引:0,他引:5  
段亚雯  朱克云  马柱国  杨庆 《大气科学》2014,38(6):1124-1136
降水的年内变化(月分配和季节变化)对农作物生长、水资源利用及管理具有重要意义,同时也是增暖背景下水循环发生变化的关键过程之一。降水集中指数(PCI,Precipitation Concentration Index)能较好的表征降水的年内集中程度,被广泛应用于相关研究。本文利用中国583个站点1961~2010年的逐月降水和气温观测资料,对中国及各典型区域的PCI进行了计算分析,研究了PCI的气候特征、变化趋势、降水月分配变化及PCI与气温季节较差的关系。结果表明,我国PCI的气候态呈现出由东南向西北逐渐递增的空间分布格局。湿润区PCI在11~17之间,年内降水较为均匀;半湿润区PCI为17~24;半干旱区PCI在24~27之间;而干旱区PCI则由27至47不等,降水集中程度较高。除华南地区外,1961~2010年间全国大部分地区PCI均呈现显著的下降趋势,并于1980年前后发生跃变,降水集中程度大幅降低,其中西北西部地区PCI 下降速率最大,为-2.47 (10 a-1)。华南地区PCI的变化则具有明显的阶段性特征,2003年以前呈弱的下降趋势,但2003年PCI发生突变,降水集中程度大幅增加。对典型区域的比较发现,干旱半干旱区和青藏高原降水集中程度的降低主要表现在夏季降水占全年总降水量比例的减小;而湿润区PCI和降水月分配的变化则存在明显的区域性差异,其中西南地区8~12月降水占全年降水的比例减少,而长江中下游及华南地区春秋季降水占全年降水的比例减小,冬夏季降水所占比例增大。  相似文献   

17.
《大气与海洋》2012,50(4):295-306
ABSTRACT

Summer precipitation in the northern China monsoon region (NCMR; 35°–55°N, 108°–135°E) shows significant intraseasonal variability. The early-summer (June) and late-summer (July–August) precipitation patterns show clear differences in their formation mechanisms and the systems that affect them. We used empirical orthogonal function (EOF) analysis to investigate the two leading modes of July–August precipitation over the NCMR and their associated atmospheric circulation anomalies using linear regression. The results show that the first (EOF1) and second (EOF2) modes correspond to a pan-NCMR precipitation variation pattern and a precipitation oscillation pattern between North China (NC) and Northeast China (NEC), respectively. These two modes account for 22.1% and 10.1% of the total variance, respectively. The associated principal components (PCs) both have significant interannual variability with a period of 2–4 years. In addition, PC1 has significant interdecadal variability with a period of 20–30 years. Further analysis suggests that EOF1 and EOF2 clearly have a different relationship with the summer monsoon circulation system. In the positive phase of PC1, the East Asian subtropical westerly jet stream (EAWJS) shows a northward trend with higher intensity than normal the blocking high at mid- to high latitudes is inactive; and the western Pacific subtropical high (WPSH) is located to the north of its normal position. The NCMR is controlled by stronger southerly winds, which cause the convergence of water vapour, favouring more precipitation in this region and vice versa. In the positive phase of PC2, the EAWJS swings to the south of Lake Baikal. Significant positive height anomalies exist from western NC to NEC. Significant negative height anomalies occur to the subtropical northwestern Pacific. This indicates that the cold vortex in Northeast China is inactive, the WPSH tends to be weaker and located to the south of its normal position, and NEC (NC) is dominated by anomalous northeasterly (southeasterly) winds. The convergence (divergence) of water vapour in NC (NEC) favours more (less) precipitation in NC (NEC) and vice versa. Therefore, EOF1 is related to the large-scale circulation anomalies over East Asia and the northwest Pacific in July and August, whereas EOF2 is more closely related to the anomalies in the regional circulation over the NCMR and the subtropical northwestern Pacific.  相似文献   

18.
本文利用中国气象局提供的华南65个站点的逐日观测以及NCEP再分析数据,对华南夏季降水的年代际转变及其集中强降水的环流特点进行了分析,主要结论如下:华南降水在1991/1992有明显的年代际变化,相关的大气环流场也发生了显著的转变。东亚上空的副热带西风急流减弱偏北,西北太平洋副热带高压位置偏西,华南上空低层辐合、高层辐散、垂直运动以及水汽输送的辐合也发生了明显变化。年代际上降水偏多时,西北太平洋和印度洋的水汽输送比平均情况更强。当集中强降水事件发生时,增加的水汽输送主要源于西北太平洋和中国南海。进一步分析表明1991/1992年之后印度洋的水汽输送增加,但是西北太平洋的水汽输送减少。这一发现很好的说明了自1991/1992年以来华南集中强降水事件的重要变化。  相似文献   

19.
1951—2008年吉林市气候变化特征   总被引:4,自引:0,他引:4  
应用滑动平均、滑动变异系数等方法对吉林市1951-2008年气温和降水量进行了分析.结果发现:吉林市气温旱上升趋势,平均气温增温速率比全国高0.10℃/10a,但比东北区低0.03℃/10a;降水总体旱减少的趋势,春季降水有增长的趋势,夏季降水目前处于少雨段,秋季降水变化不明显,冬季降雪呈逐渐递增的趋势;降水的变率明显...  相似文献   

20.
Based on observations made during recent decades, reconstructed precipitation for the period A.D. 1736–2000, dry–wet index data for A.D. 500–2000, and a 1000-yr control simulation using the Community Earth System Model with fixed pre-industrial external forcing, the decadal variability of summer precipitation over eastern China is studied. Power spectrum analysis shows that the dominant cycles for the decadal variation of summer precipitation are: 22–24 and quasi-70 yr over the North China Plain; 32–36, 44–48, and quasi-70 yr in the Jiang–Huai area; and 32–36 and 44–48 yr in the Jiang–Nan area. Bandpass decomposition from observation, reconstruction, and simulation reveals that the variability of summer precipitation over the North China Plain, Jiang–Huai area, and Jiang–Nan area, at scales of 20–35, 35–50, and 50–80 yr, is not consistent across the entire millennium. We also find that the warm (cold) phase of the Pacific Decadal Oscillation generally corresponds to dry (wet) conditions over the North China Plain, but wet (dry) conditions in the Jiang–Nan area, from A.D. 1800, when the PDO became strengthened. However, such a correspondence does not exist throughout the entire last millennium. Data–model comparison suggests that these decadal oscillations and their temporal evolution over eastern China, including the decadal shifts in the spatial pattern of the precipitation anomaly observed in the late 1970s, early 1990s, and early 2000s, might result from internal variability of the climate system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号