首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
利用1951~2020年中国观测站气温资料、NCEP/NCAR再分析资料和统计方法,分析了不同年代际时间尺度背景下我国冬季气温的季节内变化特征及相联系的大气环流异常。结果表明,1986年前、后为两个年代际时间尺度阶段,各阶段内前冬(12月)与后冬(1~2月)气温异常反位相年的比例均高于同位相年。1986年之前,季节内的优势空间模态为前冬全国冷(暖)转为后冬南方暖(冷)的可能性大,即南方地区季节内变率大;而1986年之后的优势空间模态为前冬北方冷(暖)转为后冬全国明显暖(冷)的可能性大,即北方地区季节内变率大。冬季气温的季节内变化显著受到冬季风系统关键环流季节内变化的影响。对应优势模态的正异常年份,1986年之前,欧亚中高纬地区对流层环流异常信号从前冬到后冬显著性减弱,其中西北太平洋地区对流层中高层的环流调整更明显,副热带高度场增强,热带东风急流北扩,前冬到后冬的环流调整有利于前冬全国大范围偏冷而后冬我国南方地区气温升高,造成南方地区季节内反位相变率增大。1986年之后,欧亚高中低纬地区的环流异常从前冬到后冬显著性增强,欧亚中高纬度环流发生较大调整,而低纬度的环流变化不大,北方地区前冬冷到后冬全国明显转暖,造成北方地区季节内反位相变率大。即副热带环流和中高纬度环流分别在两个年代际尺度阶段南方和北方的冬季气温季节内变率中起到主导作用。  相似文献   

2.
我国前冬和后冬气温年际变化的特征与联系   总被引:7,自引:1,他引:6  
韦玮  王林  陈权亮  刘毓赟 《大气科学》2014,38(3):524-536
基于我国160个台站观测的月平均地面气温资料,通过考察冬季各月气温之间的联系将11月和12月划分为前冬,次年的1月至3月划分为后冬,并利用160站资料和NCEP/NCAR再分析资料,通过经验正交函数 (EOF,empirical orthogonal function)分解和依赖于季节的EOF(SEOF,season-reliant EOF)分解对近62年来我国前冬和后冬气温各自的年际变化特征、它们之间的联系以及对应的大气环流进行了分析。结果表明,我国前冬和后冬气温年际变化的前两个EOF模态在空间上均表现为全国一致的变化和南北相反的变化;其时间系数的分布表明,当前冬出现全国性偏暖(冷)或北冷(暖)南暖(冷)的气温异常时,后冬出现类似气温异常和相反气温异常的概率均在50%左右。进一步,通过SEOF分解得到了年际变化时间尺度上我国冬季气温演变的两个主要模态。第一模态(SEOF1)为前冬到后冬同相演变型,即前冬全国一致偏暖(冷)时后冬亦全国一致偏暖(冷),该模态在20世纪80年代中期有明显的年代际增暖;第二模态(SEOF2)表现为前冬到后冬反相演变型,即前冬全国一致偏冷(暖)而后冬全国一致偏暖(冷),该模态以年际变化为主。对环流场的分析表明,中纬度大气过程特别是大气遥相关型的变化是同向和反向两种演变模态产生的主要原因。SEOF1的环流表现为对流层中层斯堪的纳维亚遥相关型在整个冬季的持续性同号异常,与此相伴的海陆气压差强度和东亚高空急流强度的变化使得前、后冬中的东亚冬季风环流呈一致加强或减弱,从而引起同相演变模态。SEOF2的环流在前冬表现为欧亚遥相关型的特征,整个对流层的变化都很显著,而后冬的环流信号主要在对流层中低层显著,此时表现为类似斯堪的纳维亚遥相关型的特征且符号发生了反转,从而引起反相演变模态。  相似文献   

3.
分析了近55 a来中国冬季气温变化特征及其与大尺度环流异常的关系,结果显示:1) 中国冬季气温变化有两个主要空间模态,第一模态表现为20世纪80年代中期以后全国一致变暖;第二模态表现为80年代以后东北、西北地区冬季气温升高,而西南、华南地区气温降低。2) 西伯利亚高压变化与中国冬季气温变化的第一模态关系密切,当西伯利亚高压偏强时,我国大部分地区气温偏低,反之亦然。3) 北极涛动(AO)与冬季气温变化的第二模态关系密切,它与中国冬季气温相关最显著的区域主要在东北和西北地区,当AO为正位相时,上述区域气温往往偏高。  相似文献   

4.
朱红霞  陈文  冯涛  王林 《高原气象》2019,38(4):685-692
选取40°N—60°N,80°E—120°E的区域作为西伯利亚高压的主要活动区域,利用NCEP/NCAR月均海平面气压再分析资料,对该区域西伯利亚高压(Siberian High,SH)从1979—2017年共38个冬季(12月至次年2月)进行经验正交函数分解(Empirical Orthogonal Function,EOF)。结果表明,第1模态为全区一致的变化,第2模态为南北气压的反相变化关系,第3模态为东西部气压的反相变化关系,并且3个模态的时间序列都存在显著的年际变化。进一步对相关的大气环流和东亚气温异常的分析表明,第1模态相联系的大气环流在地面表现为海陆气压差的改变,500 h Pa高度上东亚大槽强度的变化,200 h Pa纬向风场上温带急流、副热带急流强度的变化,SH负位相时,东亚偏暖,SH正位相时,东亚偏冷;第2模态与北极涛动(Arctic Oscillation,AO)和北大西洋涛动(North Atlantic Oscillation,NAO)的变化有密切关系,在高度场上表现为一个准正压的南北环状模态,SH北强南弱时,环流场类似AO正位相,温带急流减弱,东亚东北部偏暖,SH北弱南强时,东亚东北部偏冷;而与第3模态相联系的大气环流主要出现在欧亚大陆局部区域,与北大西洋涛动(NAO)也存在一定的关联,SH东强西弱时,东亚北部偏暖,西南部偏冷,SH东弱西强时,东亚北部偏冷,西南部偏暖。  相似文献   

5.
孙健  李栋梁  邵鹏程  高娜 《气象学报》2019,77(5):885-897
基于1951—2014年中国160站月气温和NCEP/NCAR再分析资料,利用季节的经验正交函数分解(S-EOF)等方法,研究了中国冬季气温月际变化的时、空演变特征及其对大气环流异常的响应。结果表明,中国冬季气温在月尺度上常常出现前、后冬相反甚至冷暖交替的现象。中国冬季气温月际变化存在3个主模态:全冬一致型、前后反相型和冷暖交替型。当西伯利亚高压冬季一致偏强(偏弱)时,冬季一致冷(暖);当海陆热力差异由强变弱、西伯利亚高压强度由强变弱,东亚西风急流比较稳定,强度偏强,位置由南向北移动时,冬季前冷后暖;当大气环流发生突变,尤其是海平面气压场和500 hPa位势高度场上大气活动中心的频繁调整,西伯利亚高压强度在月时间尺度上强弱交替时,冬季气温呈冷—暖—冷交替变化。   相似文献   

6.
利用常规观测温度资料和中国国家气候中心提供的环流特征量、NCEP/NCAR再分析资料及美国气候预测中心(CPC)提供的AO指数等,分析了2009年11月至2010年4月中高纬大气环流异常特征,探讨了AO与同期气温的关系。结果表明:黑龙江省冬春气候异常与500hPa大尺度环流背景有关。冬春持续偏冷,对应北半球欧亚中高纬地区呈“-+-”的波列分布,90°-180°E呈现出“北正南负”的环流形势;北半球极涡面积偏大,冬季东亚大槽位置偏西,春季东亚大槽强度偏强,冬春AO指数持续异常偏强,显著负位相。  相似文献   

7.
利用常规观测的温度资料和中国国家气候中心提供的环流特征量、NCEP/NCAR再分析资料及美国气候预测中心(CPC)提供的AO指数等,分析了2009年11月至2010年4月中高纬大气环流异常特征,探讨了AO与同期气温的关系。分析表明:黑龙江省冬春气候异常与500 hPa大尺度环流背景有关。冬春持续偏冷,对应北半球欧亚中高纬地区呈“-+-”的波列分布,90°-180°E呈现出“北正南负”的环流形势;北半球极涡面积偏大,冬季东亚大槽位置偏西,春季东亚大槽强度偏强,冬春AO指数持续异常偏强,显著负位相。  相似文献   

8.
为了揭示云南低纬高原地区冬季气温变化的主要特征及影响的关键环流因子,本文利用云南124站地面气象站月平均气温观测资料、 NCEP/NCAR大气环流再分析资料,以及CPC和NCC提供的部分大气遥相关型和环流特征指数,首先分析了云南冬季气温变化的主要特征,表明冬季气温年际变率东部大于西部,主要空间分布有全区一致、东西差异、经向三级差异、西北-东南差异四种型态,前四个模态占EOF总方差贡献的90%,其中前三个模态线性变化趋势明显,第四模态主要表现出显著的年代际波动特征。分析发现相应不同气温模态,中高纬度异常波列呈现出明显不同的形势和走向,与500 hPa中高纬度异常波列相关的四个关键区的高度异常,以及孟加拉湾地区的高低层环流异常对气温主要模态有十分重要的影响:第一模态与东亚中低纬度南(20°N-30°N, 90°E-120°E)北(45°N-60°N, 90°E-120°E)两个区域经向差异密切联系,北低南高(北高南低)形势有利于全区一致偏暖(冷);第二模态与中高纬度纬向波列有关,当东亚-西北太平洋区域(25°N-45°N, 120°E-160°E)高度偏高(低)、 700 hPa孟加拉湾北...  相似文献   

9.
我国冬季气温年代际变化及其与大气环流异常变化的关系   总被引:37,自引:8,他引:29  
利用我国160个台站50年(1951~2000年)的月平均温度资料和NCEP/NCAR再分析资料,对我国从1951/1952~1999/2000共49个冬季(11月至次年3月平均)的气温进行经验正交函数(EOF)分解。第1模态表现为全国一致的增温或者降温,20世纪70年代中期以后,我国冬季气温增暖明显,发生了显著的年代际变化;第2模态则表现为南北温度的反相关系,20世纪80和90年代,我国北部地区,特别是东北和西北的温度增加,而我国南部则温度降低。采用频谱分析方法提取我国冬季气温的年代际变化信号更清楚地反映出这些变化。而且这两种模态从20世纪80年代开始的正位相叠加使得我国冬季持续偏暖,在降水场没有显著变化的情况下,加剧了华北地区的干旱程度。对气温的年代际变化与大气环流的回归分析表明,我国冬季气温年代际变化的第1模态与半球尺度上的北极涛动(AO)的变化有密切的关系,它在高度场上表现为一个准正压的南北环状模态;而第2模态则与中高纬大气环流中的一波结构联系密切,它在高度场上表现为一个准正压的太平洋和大西洋上反相的振荡模态。这就表明,我国冬季气温的年代际变化与大气环流中的基本气流及其扰动有密切的关联。作者还讨论了大气环流影响我国冬季气温年代际变化的可能机理,并指出进一步需要研究的问题。  相似文献   

10.
基于新疆北部区域(简称北疆)37个代表气象站1961—2019年逐月平均气温资料和NCEP/NCAR再分析环流资料,通过经验正交函数(EOF)分解和相关分析方法,研究北疆近58 a冬季气温季节内变化的时空演变特征及其对应的大气环流特征。结果表明:(1)北疆前冬和后冬气温EOF分解的前两个模态在空间上均表现为全区一致变化型和偏西偏北地区与中东部反相变化型。前冬和后冬气温全区一致型的时间系数与同期500 hPa位势高度场呈显著负相关关系区域位于乌拉尔山附近,气温反相变化型的时间系数与同期500 hPa位势高度场呈显著正相关关系区域位于波罗的海附近。(2)北疆冬季气温季节内主要有前后距平一致和前后距平相反两种特征。在北疆冬季气温前后距平相反年份",前冷后暖"时的500 hPa乌拉尔山高压脊减弱消失,欧洲槽东移加深,东亚大槽强度减弱";前暖后冷"时,500 hPa欧洲槽减弱西退,乌拉尔山地区高度场抬升,东亚大槽加深。(3)前冬偏冷时,后冬偏暖的主要原因来自于500 hPa极涡增强,欧洲槽加深;前冬偏暖时,后冬偏冷的大部分原因是受500 hPa欧亚大陆大片的负变高区影响。  相似文献   

11.
利用NCEP/NCAR月平均再分析资料(1958-1997),月平均海表面温度资料(1950-1992)以及月的海冰密集度资料(1953-1995),研究了冬季北极涛动与西伯利亚高压、东亚冬季风以及巴伦支海海冰范围之间的联系。研究结果表明,冬季北极涛动不仅影响北极和北大西洋区域气候变化,并且可能影响冬季西伯利亚高压,进而影响东亚冬季风。当冬季北极涛动处于正位相时,冬季西伯利亚高压和东亚冬季风都偏弱,在西伯利亚南部和东亚沿岸,包括中国东部、韩国和日本,从地表面到对流层中部气温偏高0.5-2℃。当冬季北极涛动处于负位相时,结果正相反。研究结果还表明,冬季西伯利亚高压对北极以及北大西洋区域气候变化没有显的影响,与北极涛动的影响相比,西伯利亚的影响强度和范围明显偏弱。研究进一步揭示了冬季北极涛动可能影响西伯利亚高压的可能机理。冬季西伯利亚高压与动力过程以及从地表面到对流层中部的气温变化有密切的关系。西伯利亚高压的西部变化主要依赖于动力过程,而其东部与气温变化更为密切。冬季西伯利亚高压的维持主要依赖于对流层中的下沉气流,这种下沉气流源于北大西洋区域,其变化受到北极涛动的影响。当冬季北极涛动处于正(负)位相时,气流的下沉运动明显减弱(增强),进而影响冬季西伯利亚高压。此处,冬季北极涛动对同时期的巴伦支海海冰范围有显的影响。  相似文献   

12.
In 2008 (January–February), East Asia (EA) experiences the most severe and long-persisting snowstorm in the past 100 years. Results in this study show that 2007/2008 winter is dominant by the third principal mode of the East Asian winter monsoon (EAWM) which explains 8.7% of the total surface air temperature variance over EA. Significantly distinguished from the first two leading modes, the third mode positive phase features an increased surface pressure over the northwestern EA, an enhanced central Siberian high (CSH), a strengthened and northwestward extended western Pacific subtropical high (WPSH) and anomalously strong moisture transport from western Pacific, Arabian Sea and Bay of Bengal to EA. It also exhibits an intimate linkage with the sea surface temperature anomalies (SSTAs) in the Arctic Ocean areas adjacent to northern Eurasian continent, central North Pacific and northeastern Pacific. Such SSTAs emerge in prior autumn and persist through ensuing winter, signifying precursory conditions for the anomalous third EAWM mode. Numerical experiments with a simple general circulation model demonstrate that the Arctic SSTAs excite geo-potential height anomalies over northern Eurasian continent and impacts on the CSH, while the extra-tropical Pacific SSTAs deform the WPSH. Co-effects of them play crucial roles on origins of the third EAWM mode. Based on these results, an empirical model is established to predict the third mode of the EAWM. Hindcast is performed for the 1957–2008 period, which shows a quite realistic prediction skill in general and good prediction ability in the extreme phase of the third mode of the EAWM such as 2007/2008 winter. Since all these predictors can be readily monitored in real time, this empirical model provides a real time forecast tool and may facilitate the seasonal prediction of high-impact weather associated with the abnormal EAWM.  相似文献   

13.
20世纪90年代末东亚冬季风年代际变化特征及其内动力成因   总被引:10,自引:4,他引:6  
为纪念陶诗言先生对东亚冬季风研究的杰出贡献,本文利用我国测站、NCEP/NCAR和ERA-40/ERA-Interim再分析资料分析了我国冬季气温和东亚冬季风在20世纪90年代末所发生的年代际跃变特征及其内动力成因。分析结果表明:从20世纪90年代末之后,我国冬季气温和东亚冬季风发生了明显的年代际跃变。从1999年之后,随着东亚冬季风从偏弱变偏强,我国冬季气温变化从全国一致变化型变成南北振荡型(即北冷南暖型),并由于从1999年之后我国北方冬季气温从偏高变成偏低,故冬季低温雪暴冰冻灾害频繁发生,同时,我国冬季气温和东亚冬季风年际变化在此时期从以往3~4 a周期年际变化变成2~8 a周期;并且,结果还表明了东亚冬季风此次年代际变化是由于西伯利亚高压和阿留申低压的加强所致。本文还从北极涛动(AO)和北半球准定常行星波活动的动力理论进一步讨论了此次东亚冬季风年代际跃变的内动力成因及其机理,结果表明:从20世纪90年代末之后,北半球冬季准定常行星波在高纬地区沿极地波导传播到平流层加强,而沿低纬波导传播到副热带对流层上层减弱,这造成了行星波E-P通量在高纬度地区对流层和平流层辐合加强,而在副热带地区对流层中、上层辐散加强,因而导致了北半球高纬度地区从对流层到平流层纬向平均纬向流和欧亚上空极锋急流减弱,而副热带急流加强,这造成了AO减弱和东亚冬季风加强。  相似文献   

14.
东亚冬季风气候变异和机理以及平流层过程的影响   总被引:19,自引:5,他引:14       下载免费PDF全文
陈文  魏科  王林  周群 《大气科学》2013,37(2):425-438
本文综述了近几年来关于东亚冬季风变异特征和机理方面的研究,特别对平流层过程对东亚冬季风和气候异常的可能影响作了回顾和进一步分析.东亚冬季风的变异除了季风强弱变化外,还有东亚冬季风的路径变化;研究表明,前者往往对应全国气温一致的变化,而后者可以引起我国气温的南北反相振荡,并导致东亚冬季风变异存在南北两个子系统.此外,进入本世纪后,东亚冬季风的建立推迟,并且东亚冬季风在盛期明显减弱,但冬季风活动在早春比以往要更为活跃,这些变化与冬季气温南北反相变化也有密切的联系.进一步的分析揭示出东亚气温的南北反相变化是东亚冬季风变异的主要模态之一,而且它与平流层极涡强度密切相关.当异常的平流层极涡向下传播时,可以引起对流层低层北极涛动(AO)的异常以及西伯利亚高压的异常,并在东亚地区出现南北反相的温度变化.有关东亚冬季风变异的成因研究表明,上世纪70年代中后期以后,热带厄尔尼诺—南方涛动(ENSO)的影响变弱,而中高纬的北太平洋涛动(NPO)和乌拉尔地区阻塞强度的影响显著增强,相关研究还揭示了这些变化的原因.此外,东亚冬季风在1987年以后的持续减弱主要与准定常行星波活动年代际变化有关,行星波活动通过波流相互作用可以影响AO以及西伯利亚高压和阿留申低压,从而导致冬季风异常.最后,本文还讨论了太阳活动11年周期变化对东亚冬季气候异常的可能影响和过程.  相似文献   

15.
祁莉  泮琬楠 《大气科学》2021,45(5):1039-1056
东亚冬季气温除了季节平均外,其显著的季内起伏也对国民生活及经济活动有着深远影响。本文利用1959~2018年台站及再分析资料,使用S-EOF(Season-reliant Empirical Orthogonal Function)方法提取东亚冬季气温季内起伏的主要年际变化模态,其主要模态表现为前冬暖(冷)、后冬冷(暖),即为前、后冬反相,其方差贡献达到31.1%。这种前后冬反相的特征并非局地现象,在北半球大尺度均存在。环流场上它表现为欧亚遥相关型波列(Eurasian teleconnection, EU)从前冬12月的负位相(正位相)向后冬2月正位相(负位相)的转变,相伴随的是低层西伯利亚高压与阿留申低压的强度在前、后冬转折,高层副热带急流的变化也与之匹配。分析发现,欧亚遥相关型的季内转向可能与北大西洋涛动(North Atlantic oscillation, NAO)在前冬12月与后冬2月的转向有关,后者通过北大西洋热通量作用进而影响下游EU波列的转向。此外,宽窄厄尔尼诺—南方涛动(El Ni?o–Southern Oscillation, ENSO)事件也有一定贡献,当厄尔尼诺(El Ni?o)发生时,经向上更宽(窄)的海温异常利于前冬气温偏高(低)向后冬气温偏低(高)的转向;而当拉尼娜(La Ni?a)事件发生时,情况与厄尔尼诺年相反。  相似文献   

16.
Using the NCEP/NCAR reanalysis data (Version 1.0) and the observation data of China from January 1951 to February 2007, a new index of East Asian winter monsoon circulation (I EAWM) was defined based on the comparison of previous different winter monsoon indices and circulation factors influencing the winter climate over China. Its relationships with winter temperature over China and large-scale circulation were analyzed. Results show that IEAWM can successfully describe the variation of China's mainland winter temperature and the East Asian winter monsoon (EAWM) system. This index reflects the integrated effect of the circulations over high and low latitudes and the thermal difference between the continent and the ocean. While in the previous studies, most monsoon indices only describe the single monsoon member. The IEAWM is a good indicator of the intensity of the EAWM. Positive values of/EAWM correspond to the strong EAWM, the stronger Siberian high and East Asian trough than normal , and the strengthening of the meridional shear of 500-hPa zonal wind between high and low latitudes over East Asia, and therefore, the southward cold advection becomes stronger and leads to the decrease in surface temperature over China; and vice versa. The IEAWM inter decadal change is obviously positive before the mid-1980s, but negative since the mid-1980s, in good agreement with the fact of the winter warming in China after 1985.  相似文献   

17.
This study investigates the individual effects of the East Atlantic/West Russia (EATL/WRUS) and Western Pacific (WP) teleconnection patterns and their combined effect on the East Asian winter monsoon (EAWM). The contributions of the respective EATL/WRUS and WP teleconnection patterns to the EAWM are revealed by removing the dependence on the Arctic Oscillation (AO) and the El Niño-Southern Oscillation (ENSO) using a linear regression, which are named as N_EATL/WRUS and N_WP, respectively. This is because the EATL/WRUS (WP) is closely linked to the Arctic (tropics) region. A significant increase (decrease) in temperature over East Asia (EA) corresponding to a weak (strong) EAWM is associated with the N_EATL/WRUS and N_WP teleconnection patterns during the positive (negative) phases. In order to examine impacts of these two teleconnections on the EAWM, three types of effects are reconstructed on the basis of ± 0.5 standard deviation: 1) Combined effect, 2) N_EATL/WRUS effect, and 3) N_WP effect. The positive N_EATL/WRUS teleconnection induces to a weakened Siberian High and a shallow EA trough at the mid-troposphere through wave propagation, leading to the weak EAWM. During the positive N_WP pattern, warm air from the tropics flows toward the EA along western flank of an anomalous anticyclone over the North Pacific that is relevant to the meridional shift of the Aleutian Low. When the two mid-latitude teleconnections have the in-phase combination, the increase in temperature over EA appears to be more pronounced than the individual effects by transporting warm air from tropics via strong southeasterly wind anomalies induced by anomalous zonal pressure gradient between the Siberian High and Aleutian Low. Therefore, the impact of the mid-latitude teleconnections on the EAWM becomes robust and linearly superimposed, unlike a nonlinear in-phase combined effect of the AO and ENSO.  相似文献   

18.
前、后冬的东亚冬季风年际变异及其与东亚降水的关系   总被引:2,自引:1,他引:2  
利用ERA-Interim的再分析资料和NOAA海温、降水量等资料对前、后冬的东亚冬季风的年际变异特征及其与东亚降水的关系进行对比分析,并讨论了热带和中高纬系统影响东亚冬季风变异的相对重要性。前冬的东亚冬季风变异的主导模态为东亚全区一致变异型,即一致的北风偏弱或偏强;其次为南部变异型,主要表现为在我国南方-南海北部的东北风偏弱或偏强。而后冬的东亚冬季风变异的主导模态则为南部变异型,其次为东亚全区一致变异型。从前冬到后冬,东亚冬季风的主要变异模态的次序出现交叉更替。前、后冬的冬季风主要模态以年际变化为主,但后冬主导模态还显示出冬季风有变强的趋势。前、后冬的东亚冬季风的主导变异模态也影响东亚降水异常的位置。在前冬,冬季风异常主要影响我国华北、渤海-黄海海域以及朝鲜半岛和日本南部区域的降水异常,而后冬的冬季风异常则主要导致我国东南地区及其东侧附近的西北太平洋海区的降水异常。前冬的东亚冬季风的前两种主要变异模态都受到印度洋-太平洋海温和中高纬环流系统共同的影响;后冬的东亚冬季风的前两种主要变异模态则分别主要受ENSO和中高纬系统的影响。   相似文献   

19.
北极涛动的年代际变化及其气候影响   总被引:1,自引:0,他引:1       下载免费PDF全文
北极涛动(Arctic Oscillation,AO)是北半球热带外地区大气环流变率的主导模态,对北半球以及区域尺度气温变化具有重要影响。AO可在没有外强迫条件下通过波流相互作用形成,因此它被认为是全球气候系统内部变率的重要组成部分。研究年代际尺度上AO的变化及其气候影响,可加深对当前北半球气候变化规律的物理理解,也可为预估未来年代际尺度上气候变化及其不确定性提供科学依据。本文从AO影响东亚冬季风年代际变化的物理机制、AO对北半球冬季气温长期趋势的贡献、AO年代际影响的不确定性三个方面出发,简要回顾和总结了近年来有关年代际尺度上冬季AO时空变化及其对北半球气候影响的研究成果,并初步展望一些值得继续深入研究的问题。  相似文献   

20.
东亚冬季风综合指数及其表达的东亚冬季风年际变化特征   总被引:19,自引:4,他引:15  
贺圣平  王会军 《大气科学》2012,36(3):523-538
本文通过多变量经验正交函数展开 (multivariate EOF, 简称 MV-EOF) 研究了东亚冬季风各系统成员的协同关系, 再运用单变量EOF定义单个系统的强度系数。从而给出能够反映东亚冬季风各主要特征及其年际变化、同时包含西伯利亚高压、东亚大槽和纬向风经向切变信息的强度指数 (EAWMII)。分析表明, 这个新指数EAWMII能够很好地反映东亚冬季风在20世纪80年代中期的减弱信号, 并且与大气环流场以及东亚冬季表面温度的变化均显著相关, 能够在很大程度上表征东亚冬季风的综合特征。此外, EAWMII与北极涛动 (Arctic Oscillation, 简称AO) 指数、北太平洋涛动 (North Pacific Oscillation, 简称NPO) 指数和Nio3.4指数相关显著。分析还表明AO和NPO影响东亚冬季气候的区域有所不同: AO主要影响欧亚大陆中、高纬、我国东北以及日本北部等地区, NPO则主要影响华南、华东、朝鲜、韩国以及日本中南部及其附近海域。并且, AO很可能可以通过影响NPO进而影响东亚冬季风。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号