首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
基于1999—2013年大连地区的雷暴大风、雷暴和冰雹等观测资料,对大连地区雷暴大风天气的气候和天气学特征进行了分析。结果表明:1999—2013年大连地区雷暴大风天气具有较强的地域特点,夜间雷暴大风天气的发生频率明显高于白天,海岛站雷暴大风出现次数明显多于陆地站;雷暴大风天气主要集中出现在夏季,10月雷暴大风发生也较多。统计表明,大连地区雷暴大风天气通常发生在空间尺度和时间尺度均相对较大的雷暴群中,单体雷暴出现雷暴大风的概率极低,且大都伴有降水,但雷暴大风与暴雨或冰雹相伴出现的概率较低。大连地区的雷暴大风天气是由多种有利的高低空系统配置及高低空急流和中高空干空气的共同作用产生的,其中高空急流和中高空干空气是制约雷暴大风产生的重要因素,高空急流有时制约雷暴大风的产生方位和分布形态,大连地区雷暴大风通常位于高空急流轴下方及其附近区域;中高空干空气具有3个作用:一是增强大气不稳定度;二是在干湿区的交界处形成较强的露点锋,有时具有雷暴的触发作用;三是与其他天气系统叠加时具有增强上升运动的作用。  相似文献   

2.
利用常规气象资料对2016年4月16日青海北部一次大风天气成因做了综合分析。结果表明:新疆东部横槽转竖,且有较强的冷温槽与之配合,高空冷空气入侵,为大风天气的发生发展提供了有利的高空环流背景;冷锋是大风天气过程的触发机制;高空急流的形成为低层大气的加速运动提供动量、使低层锋区加强、导致大气层结不稳定,为大风天气提供了有利的条件;次级环流的形成把高空急流的动量传递到地面,是大风天气中动量下传的重要机制。  相似文献   

3.
中国西南低空急流和西南低层大风对比分析   总被引:3,自引:0,他引:3  
通过从垂直切变角度对中国低空急流的定义,表明西南低层大风现象有两类:有垂直轴的低空急流和无垂直轴的西南低层大风(简称低层大风),并揭示了二者的气候学和天气学特征差异。分析表明:在江南地区,低空急流主要活动在4~7月850 hPa,有明显的日变化,和华南、江淮地区的暴雨期同步;在东北地区,低空急流在全年都有较多活动,多在925 hPa,日变化不明显,和降水季节没有同步性。低层大风主要活动在700 hPa,日变化不明显,江南地区主要发生在12月至翌年4月,东北地区全年都有少量出现;江南地区低空急流日,从850 hPa至500 hPa随着高度增加,气压梯度明显减小,风速随高度减小,大风只存在于对流层低层。东北地区低空急流日的气压梯度随高度减弱不明显,低空急流轴浅薄,位于925 hPa左右的低层,其上方仍然受高空急流控制。低层大风日,从850 hPa至500 hPa随着高度增加,气压梯度明显增大,风速随高度增强,大风存在于对流层整层。风场和气压场变化趋势都近似满足地转风关系。江南地区低空急流的水平尺度和垂直厚度比较大,东北地区的低空急流尺度与“狭管”地形相当。江南地区的西南低层大风当其活动高度下降到850 hPa以下并和副高西侧西南气流配合时,也有较强的水汽输送作用,伴有明显降水天气。东北地区的低空急流和低层大风,主要是与中高空大风的向下延伸和地形强迫有关,气流一般为西北再转成西南风,水汽输送能力小,不利于产生大的降水天气。总之,低空急流和低层大风有着不同的结构和成因,它们的动力热力学涵义也不同,通过对二者区分,可以更合理地理解中国低空急流与暴雨(雪)天气的关系。  相似文献   

4.
杨璐  陈明轩  孟金平  陈学玲  王子静  赵晨 《气象》2018,44(6):802-813
选取2010—2014年发生在北京地区的19个致灾的雷暴大风天气过程,应用北京新一代多普勒天气雷达体扫资料的反射率因子和径向速度产品,分析了雷暴大风天气不同生命期内的雷达回波特征。分析发现依据径向速度大值区能对77.8%的带状回波造成的雷暴大风天气提前发布预警,能对100%的弓形回波造成的雷暴大风天气提前发布预警,而其中有67%可提前30min发布预警;孤立的块状回波前侧均未观测到阵风锋回波,径向速度图未观测到入流急流,径向速度大值区不明显。但径向速度图上观测到的中层径向辐合、入流急流、中气旋及反射率图上观测到的阵风锋都为雷暴大风的提前预警提供了重要指示特征。  相似文献   

5.
2012年呼伦贝尔市一次西南大风天气成因分析   总被引:1,自引:0,他引:1  
文章利用常规气象资料对2012年4月19—20日呼伦贝尔市一次西南大风天气过程的成因做了综合分析。结果表明:乌拉尔山高压脊的形成和加强东移,配合下游鄂霍次克海阻高的加强,为本次大风天气的发生发展提供了有利的高空环流背景;蒙古气旋是本次大风天气过程的主要影响系统;高空急流的形成为低层大气的加速运动提供动量、使低层锋区加强、导致大气层结不稳定,为本次大风天气提供了有利的条件;次级环流的形成把高空急流的动量传递到地面,是大风天气中动量下传的重要机制;较为旺盛的的对流运动使得次级环流得以生成和维持,为动量下传机制提供了有利的保证。  相似文献   

6.
本文利用常规观测资料、多普勒天气雷达资料、自动站观测资料等多种资料,对2019年4月9日发生在四川东北部的一次飑线大风天气进行了分析。结果表明:本次飑线大风天气过程为低层暖平流强迫类型,低层西南急流和暖脊使得热力不稳定增长,配合低槽东移影响,加强了大气层结的不稳定性,在地面辐合线的作用下,最终触发了本次飑线天气过程。飑线后部存在的中尺度雷暴高压和超强冷池,造成了强冷池密度流,利于产生大风;后向入流和低层显著干区加强了降水粒子的蒸发、冷却,形成了强烈的下沉气流;高空动量下传,对地面大风有增幅作用;飑线移动迅速,前向传播明显,有利于大风的产生。  相似文献   

7.
利用地面、高空等常规气象观测资料,对2009年5月28日发生在呼伦贝尔市一次全市性寒潮大风天气过程进行总结分析。结果表明:贝加尔湖冷涡和蒙古气旋及冷锋是造成这次寒潮大风天气的主导系统;高空强锋区及低层强温度平流是寒潮天气爆发的关键;高低空急流为大风天气提供能量;气压梯度大和冷锋后较大的3h正变压与大风天气有很好的相关性。  相似文献   

8.
分析了2015年8月15日梧州一次强对流天气,表明:(1)本次过程是由于高空槽东移引导低层切变线以及低空急流所共同影响造成的。(2)物理量场分析表明,TlogP图能够对本次过程上干下湿的不稳定层结结构有很好的指示作用。(3)本次强对流天气低空急流的存在对大风的产生的贡献较大。5、本次过程系统移动快、短时雨强大、同时伴有雷暴大风天气。  相似文献   

9.
利用常规地面气象观测资料和NCEP再分析资料,对2017年2月20—21日浙江省中西部地区的一次冷空气大风天气过程进行分析。结果表明:西伯利亚冷高压与东亚大槽共同作用形成的强气压梯度是此次大风天气过程的重要成因;高空槽槽后动量下传是此次区域性大风超出一般冷锋大风强度的关键因素;200 hPa高空西风急流入流区的辐合下沉运动与冷锋前的上升运动叠加形成的次级环流是此次大风天气出现的增强条件。  相似文献   

10.
急流次级环流对局地持续强风暴天气的作用   总被引:7,自引:4,他引:7       下载免费PDF全文
刘勇 《气象科技》2005,33(3):214-217
利用天气图、雷达回波和地面风场资料对1994年6月28日陕西中部发生的一次罕见的长时间局地大风、冰雹、暴雨天气进行诊断分析。结果表明:这次过程出现在500hPa槽前和700hPa低涡暖式切变线附近;强风暴发生在高空急流入口区右侧辐散和低空急流左前侧辐合重叠区,与地面中尺度气旋活动紧密相关;证实了地面中尺度气旋是由高低空急流耦合产生的次级环流引起,次级环流控制着中尺度系统发展变化。  相似文献   

11.
利用机场自动气象观测站数据、常规观测资料和NCEP再分析资料,对昭通机场2019年3月19日一次极端西南大风天气过程进行分析。结果表明:此次大风天气过程中,地面为易产生高压后部偏南大风的典型“东高西低”气压形势,且昭通机场位于高空槽前西南气流控制下,机场上空的西南急流为大风提供了方向引导和加速近地面大气运动的强大动力,具备了产生西南大风的基本环流背景。物理量场的分析表明,高层深厚的辐合运动,使垂直方向出现了强迫下沉气流,整层的冷平流进一步加强了下沉运动,高层动量下传,加速近地面气流运动,形成大风。   相似文献   

12.
本文对2004年3月26日~28日发生在青海西北部、甘肃西部、内蒙古中西部等地的一次强沙尘暴天气过程从天气事实、天气学成因等方面进行了分析和诊断,指出这次沙尘暴过程发生在大气环流调整过程中,前期持续增温为沙尘暴的发生提供了有利的热力条件,斜压槽及强锋区、蒙古气旋和冷锋是触发这次沙尘暴天气过程的重要天气系统;高空急流的动量下传促进了蒙古气旋的发展;涡度对沙尘暴的落区有很好的指示性;在沙尘暴发生区域,对流层低层和近地面层为不稳定层结,从而引起了强烈的垂直上升运动,导致低层强烈辐合,在近地层形成大风和沙尘暴。  相似文献   

13.
2010年3月19日夜间到20日上午,大同地区遭受了长达十几个小时的大风灾害。本文利用常规探测资料、地面加密观测资料及NCEP/NCAR再分析资料从天气形势、物理量特征进行了诊断分析,结果表明:①高空强锋区和强冷平流是引发大风的主要影响系统。②地面热低压的稳定少动及冷锋前后强气压梯度区的建立是形成大风的关键。③地面冷锋前的上升运动与高空急流人口区次级环流上升气流的叠加,为深对流的发展提供了深厚的垂直环流发展条件;高空急流的动量下传加大了地面风速。④高空正涡度平流促进了地面气旋的发展。  相似文献   

14.
康岚  刘炜桦  肖递祥  师锐  王秀明 《气象》2018,44(11):1414-1423
利用常规观测资料、FY-2E卫星云图、多普勒雷达产品、闪电定位资料、自动气象站资料等,分析了2015年4月4日傍晚到夜间发生在四川盆地的极端大风天气过程。分析指出:本次雷暴大风过程是由冷锋对暖湿气团的强迫抬升及干冷空气进入暖湿区域触发形成.中空干层、大的温度直减率、高低空急流耦合区、低层温度脊附近是利于极端雷暴大风出现的潜势区域。该区域为雷暴形成提供了条件不稳定、水汽、动力抬升等有利环境条件。冷空气首先从盆地西北部中低层入侵,在低层切变线上触发生成了一系列雷暴单体,在最有利于对流发展的潜势区域迅速发展。潜势区域中线状回波北段的中尺度涡旋环流、前侧入流和后侧入流的相互作用形成单体弓形回波,该弓形回波具有比普通雷暴更高的反射率因子、垂直液态含水量.根据雷达回波演变特征推断,本次极端大风是由单体弓形回波带来的湿下击暴流所导致。弓形回波中高反射率因子的高度连续下降意味着下沉气流伴随降水粒子下降,干空气被夹卷进入下沉气流使得雨滴被迅速蒸发,大大加强了下沉气流强度,因而显著增加了大风强度。分析还指出:通过分析对流发展背景条件,确定最有利对流发展的潜势区域,关注该区域中回波的生成、形态特点、演变特征,可提前预警大风天气。  相似文献   

15.
对9711号台风天气形势和物理量场的诊断分析结果表明:东南低空急流和高层的西风急流与台风的相互作用,高层辐散区与低层辐合区同时北抬和重叠,是造成山东地区附近大范围暴雨的主要原因。暴雨区主要位于台风移动前方的右侧。台风的移向与副高的位置及强弱变化有关。  相似文献   

16.
利用常规观测资料和MICAPS提供的相关资料,对2008年2月29日至3月1日在我区阿拉善盟、巴彦淖尔市西部、鄂尔多斯市西部发生的区域性沙尘暴天气的环流形势及物理量进行分析。分析表明:(1)本次沙尘暴过程基本属于蒙古气旋和干冷锋混合型,有利的气候背景是本次沙尘暴的基础。(2)影响这次沙尘暴天气的高空急流主要是250hPa附近的西风急流,较强西风急流通过动量下传引起地面大风,造成地面减压,促进了蒙古气旋的发展,从而促进了沙尘暴的发展。(3)在40~45°N,95~109°E整层强烈辐合、上升造成很强的抽吸作用可导致强烈辐合,在近地面形成大风和沙尘的扬起提供了较好的条件。  相似文献   

17.
河南省2005-06-21强对流天气分析   总被引:1,自引:0,他引:1  
利用天气图和FY-2C的卫星云图及其反演产品,分析了2005年6月21日凌晨到上午河南省中部的雷雨大风和冰雹天气过程,结果表明:高空冷平流、地面辐合线和前期贮存的较高不稳定能量,为此次强对流天气过程提供了极为有利的不稳定能量和动力条件;在灾害性天气发生的前期,FY-2C卫星云图及其反演产品有很好的指示性,云顶亮温梯度大的区域是灾害性天气的易发区,对流性降水易发生在高层急流南侧的低层高湿区。  相似文献   

18.
塔额盆地大风、沙尘天气统计特征分析   总被引:3,自引:0,他引:3  
利用塔额盆地1961-2005年45a间的大风、沙尘、降水等相关气象资料,对盆地内大风、沙尘天气的分布、强度变化、影响范围等进行了统计分析,并对盆地内大风、沙尘天气形成的天气气候条件进行了初步探讨。研究结果表明,塔额盆地沙尘天气一是受地形影响明显,沙尘和强沙尘天气过程的地理分布基本一致,即盆地西部多于东部,并由高纬向低纬渐强;二是有较明显的周期性和季节性变化特点,强沙尘天气的频发周期约为20a左右,沙尘天气春末至夏季最盛,冬季最少;三是与降水和大风的关系密切,降水偏多的年份,沙尘天气偏少,偏东大风引起沙尘天气发生的概率最大。  相似文献   

19.
一次飑线大风的多种资料分析和临近预报   总被引:11,自引:7,他引:4  
利用临沂新一代天气雷达(CINRAD/SC)观测资料,结合MICAPS资料、加密自动气象站观测资料、MM5模式数值预报产品,对2006年4月28日发生在临沂的一次以灾害性大风为主、有弱降水相伴随、局部还有冰雹发生的飑线天气过程进行了分析.文中利用多种资料重点探讨了弓形回波带来的灾害性大风的形成机制.模式产品分析表明:灾害性大风发生区处在高空急流左侧,此处是正涡度平流和辐散区,强的垂直风切变导致了重力波的产生,300~500 hPa高度上产生的中尺度重力波(MGW)是本次大风过程的启动机制.造成地面大风的强下沉气流是来自于对流层中上层的干冷空气.雷达观测表明:本次过程中,大风区雷达径向速度出现模糊,强回波区对应径向风速辐合,具有较小的VIL值、有界弱回波区和中层径向辐合等特征.雷达径向速度图上高层负径向速度中心值的迅速减小和低层负径向速度中心值迅速增大是高空下沉气流迅速下沉的结果,是产生地面灾害性大风的直观表现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号