首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
长江三角洲地区水和热通量的时空变化特征及影响因子   总被引:9,自引:2,他引:9  
文中利用改进的K B模式和牛顿扩散方法及 196 1年以来的长江三角洲 (2 8~ 33°N ,118~ 12 3°E)地区的 4 8个测站的常规气象资料 ,估计了该地区近 4 0a来的蒸散量和感热通量。结合该地区的气温、太阳辐射等气候资料和 196 0年以来该区域土地资源利用变化等有关信息对该地区的潜热通量和感热通量的时 空间变化特征及其可能成因进行了综合分析。结果认为该地区自 2 0世纪 70年代开始平均蒸散量有逐渐减小的趋势 ,与 1980年相比 ,1998年区域年平均蒸散量减小了 2 4mm。区域平均感热通量与蒸散量相比在此期间变化并不明显。通过对该地区的云量、太阳辐射及土地利用变化资料分析认为 ,造成该地区平均蒸散量减少趋势的的原因之一是用于蒸发的能量即太阳辐射的减少 ,而造成太阳辐射减少的可能原因为云量及大气透明度的变化所至 ;原因之二是该地区地表覆盖条件的改变。近 2 0a来 ,该地区的水田、旱地及水域面积占总面积的比率分别减少 1.35 3% ,4 .4 4 2 %和2 .5 97% ,而城镇建设、工矿及其它建设用地面积则增加 3.345 %。耕地及水面的减小和城镇及建设用地面积的增加从整体上使区域平均蒸发量减少。  相似文献   

2.
Regional or local scale hydrological impact studies require high resolution climate change scenarios which should incorporate some assessment of uncertainties in future climate projections. This paper describes a method used to produce a multi-model ensemble of multivariate weather simulations including spatial–temporal rainfall scenarios and single-site temperature and potential evapotranspiration scenarios for hydrological impact assessment in the Dommel catchment (1,350 km2) in The Netherlands and Belgium. A multi-site stochastic rainfall model combined with a rainfall conditioned weather generator have been used for the first time with the change factor approach to downscale projections of change derived from eight Regional Climate Model (RCM) experiments for the SRES A2 emission scenario for the period 2071–2100. For winter, all downscaled scenarios show an increase in mean daily precipitation (catchment average change of +9% to +40%) and typically an increase in the proportion of wet days, while for summer a decrease in mean daily precipitation (−16% to −57%) and proportion of wet days is projected. The range of projected mean temperature is 7.7°C to 9.1°C for winter and 19.9°C to 23.3°C for summer, relative to means for the control period (1961–1990) of 3.8°C and 16.8°C, respectively. Mean annual potential evapotranspiration is projected to increase by between +17% and +36%. The magnitude and seasonal distribution of changes in the downscaled climate change projections are strongly influenced by the General Circulation Model (GCM) providing boundary conditions for the RCM experiments. Therefore, a multi-model ensemble of climate change scenarios based on different RCMs and GCMs provides more robust estimates of precipitation, temperature and evapotranspiration for hydrological impact assessments, at both regional and local scale.  相似文献   

3.
Time series (1961–2000) of Penman-Monteith potential evapotranspiration estimates for 101 stations on the Tibetan Plateau and surrounding areas are analyzed in this paper. For the Tibetan Plateau as a whole potential evapotranspiration (PET) has decreased in all seasons. The average annual evapotranspiration rate decreased by 13.1 mm/decade or 2.0% of the annual total. Superimposed on this general decline are fluctuations ranging from app. 600 to 700 mm with above average rates in the 1970s and 1980s. On a regional basis, spatial trend distributions remain stable throughout the year with similar seasonal variations. Decreasing PET rates are more pronounced in winter and spring (80% of all stations) as compared to summer and autumn (58% of all stations). Maximum negative (positive) annual rates were recorded at two stations in the southern Qaidam Basin with –79.5 mm/decade (84.8 mm/decade) even though in general negative rates tend to be noticeably higher than positive rates.Changes in wind speed and to a lesser degree relative humidity were found to be the most important meteorological variables affecting PET trends on the Tibetan Plateau while changes in sunshine duration played an insignificant role. Stable daytime temperatures on the Tibetan Plateau have limited the importance of temperature trends for changes of PET rates. Negative evapotranspiration trends are therefore thought to be linked to a general decrease in intensity of the regional monsoon circulation rather than to reductions in sunshine duration. Reduced PET rates appear to be in contrast to a predicted increased hydrological cycle under global warming scenarios.  相似文献   

4.
We analyze ensembles (four realizations) of historical and future climate transient experiments carried out with the coupled atmosphere-ocean general circulation model (AOGCM) of the Hadley Centre for Climate Prediction and Research, version HADCM2, with four scenarios of greenhouse gas (GHG) and sulfate forcing. The analysis focuses on the regional scale, and in particular on 21 regions covering all land areas in the World (except Antarctica). We examine seasonally averaged surface air temperature and precipitation for the historical period of 1961–1990 and the future climate period of 2046–2075. Compared to previous AOGCM simulations, the HADCM2 model shows a good performance in reproducing observed regional averages of summer and winter temperature and precipitation. The model, however, does not reproduce well observed interannual variability. We find that the uncertainty in regional climate change predictions associated with the spread of different realizations in an ensemble (i.e. the uncertainty related to the internal model variability) is relatively low for all scenarios and regions. In particular, this uncertainty is lower than the uncertainty due to inter-scenario variability and (by comparison with previous regional analyses of AOGCMs) with inter-model variability. The climate biases and sensitivities found for different realizations of the same ensemble were similar to the corresponding ensemble averages and the averages associated with individual realizations of the same ensemble did not differ from each other at the 5% confidence level in the vast majority of cases. These results indicate that a relatively small number of realizations (3 or 4) is sufficient to characterize an AOGCM transient climate change prediction at the regional scale. Received: 12 January 1998 / Accepted: 7 July 1999  相似文献   

5.
The regional climate model (RegCM4) is customized for 10-year climate simulation over Indian region through sensitivity studies on cumulus convection and land surface parameterization schemes. The model is configured over 30° E–120° E and 15° S–45° N at 30-km horizontal resolution with 23 vertical levels. Six 10-year (1991–2000) simulations are conducted with the combinations of two land surface schemes (BATS, CLM3.5) and three cumulus convection schemes (Kuo, Grell, MIT). The simulated annual and seasonal climatology of surface temperature and precipitation are compared with CRU observations. The interannual variability of these two parameters is also analyzed. The results indicate that the model simulated climatology is sensitive to the convection as well as land surface parameterization. The analysis of surface temperature (precipitation) climatology indicates that the model with CLM produces warmer (dryer) climatology, particularly over India. The warmer (dryer) climatology is due to the higher sensible heat flux (lower evapotranspiration) in CLM. The model with MIT convection scheme simulated wetter and warmer climatology (higher precipitation and temperature) with smaller Bowen ratio over southern India compared to that with the Grell and Kuo schemes. This indicates that a land surface scheme produces warmer but drier climatology with sensible heating contributing to warming where as a convection scheme warmer but wetter climatology with latent heat contributing to warming. The climatology of surface temperature over India is better simulated by the model with BATS land surface model in combination with MIT convection scheme while the precipitation climatology is better simulated with BATS land surface model in combination with Grell convection scheme. Overall, the modeling system with the combination of Grell convection and BATS land surface scheme provides better climate simulation over the Indian region.  相似文献   

6.
The current study presents an assessment of the impact of climate change on water yield, one of the main hydrological ecosystem services, in northern Patagonia. The outputs of regional climate models from the CORDEX Project for South America were used to drive the InVEST water yield model. CORDEX regional climate models project for the far future (2071–2100) an increase in temperature higher than 1.5 °C and a precipitation decrease ranging from − 10 to − 30% for the study area. The projected warmer and dryer climate emerges as a robust signal based on model agreement and on consistent physical drivers of these changes. Moreover, both the projected increase in evapotranspiration and the decrease in precipitation contribute to a strong decrease in water yield of around − 20 to − 40% in the headwaters of northern Patagonian watersheds. Comparison of the results in the two basins reveals that the land cover may be considered a buffer of water yield changes and highlights the key role of protected areas in reducing the vulnerability of water resources to climate change.  相似文献   

7.
使用NASA/NCAR有限区域大气环流模型FvGCM结果驱动高分辨率区域气候模式RegCM3 (20 km),进行1961~1990年当代气候模拟(控制试验)和2071~2100年IPCC A2排放情景下未来气候模拟(A2情景模拟试验)。将RegCM3径流模拟结果同大尺度汇流模型LRM [分辨率0.25°(纬度)×0.25°(经度)]相连接,模拟预估未来气候变化对我国黄河流域水文过程的影响。结果表明:相对于当代气候,未来黄河流域呈现气温升高、降水增加(夏季7~8月降水减少)和蒸发增大的趋势,且空间分布极不均匀,造成河川径流在5~10月减少,加剧流域夏季的水资源短缺;未来气温升高使得融雪径流增加,可能导致更早和更大的春季径流,使径流过程发生季节性迁移,引起黄河流域水资源年内分配发生变化。  相似文献   

8.
用 IAP/LASG GOALS模式模拟CO2增加引起的东亚地区气候变化   总被引:19,自引:0,他引:19  
Two simulations, one for the control run and another for the perturbation run, with a global coupled ocean-atmosphere-land system model (IAP / LASG GOALS version 4) have been carried out to study the global warming, with much detailed emphasis on East Asia. Results indicate that there is no climate drift in the control run and at the time of CO2 doubling the global temperature increases about 1.65℃. The GOALS model is able to simulate the observed spatial distribution and annual cycles of temperature and precipitation for East Asia quite well. But, in general, the model underestimates temperature and overestimates rainfall amount for regional annual average. For the climate change in East Asia, the temperature and precipitation in East Asia increase 2. l℃ and 5% respectively, and the maximum warming occurs at middle-latitude continent and the maximum precipitation increase occurs around 25°N with reduced precipitation in the tropical western Pacific.  相似文献   

9.
Changes of the summer evapotranspiration regime under increased levels of atmospheric greenhouse gases are discussed for three Alpine river basins on the basis of a new set of simulations carried out with a high-resolution hydrological model. The climate change signal was inferred from the output of two simulations with a state-of-the-art global climate model (GCM), a reference run valid for 1961–1990 and a time-slice simulation valid for 2071–2100 under forcing from the A2 IPCC emission scenario. In this particular GCM experiment and with respect to the Alpine region summer temperature was found to increase by 3 to 4 C, whereas precipitation was found to decrease by 10 to 20%. Global radiation and water vapor pressure deficit were found to increase by about 5% and 2 hPa, respectively. On this background, an overall increase of potential evapotranspiration of about 20% relative to the baseline was predicted by the hydrological model, with important variations between but also within individual basins. The results of the hydrological simulations also revealed a reduction in the evapotranspiration efficiency that depends on altitude. Accordingly, actual evapotranspiration was found to increase at high altitudes and to the south of the Alps, but to decrease in low elevation areas of the northern forelands and in the inner-Alpine domain. Such a differentiation does not appear in the GCM scenario, which predicts an overall increase in evapotranspiration over the Alps. This underlines the importance of detailed simulations for the quantitative assessment of the regional impact of climate change on the hydrological cycle.  相似文献   

10.
A continuous 10-year simulation in Asia for the period of 1 July 1988 to 31 December 1998 was conducted using the Regional Integrated Environmental Model System (RIEMS) with NCEP Reanalysis II data as the driving fields. The model processes include surface physics state package (BATS 1e), a Holtslag explicit planetary boundary layer formulation, a Grell cumulus parameterization, and a modified radiation package (CCM3). Model-produced surface temperature and precipitation are compared with observations from 1001 meteorology stations distributed over Asia and with the 0.5 × 0.5 CRU gridded dataset. The analysis results show that: (1) RIEMS reproduces well the spatial pattern and the seasonal cycle of surface temperature and precipitation; (2) When regionally averaged, the seasonal mean temperature biases are within 1–2C. For precipitation, the model tends to give better simulation in winter than in summer, and seasonal precipitation biases are mostly in the range of ?12%–50%; (3) Spatial correlation coefficients between observed and simulated seasonal precipitation are higher in north of the Yangtze River than in the south and higher in winter than in summer; (4) RIEMS can well reproduce the spatial pattern of seasonal mean sea level pressure. In winter, the model-simulated Siberian high is stronger than the observed. In summer, the simulated subtropical high is shifted northwestwards; (5) The temporal evolution of the East Asia summer monsoon rain belt, with steady phases separated by more rapid transitions, is reproduced.  相似文献   

11.
气候变化引起的地面气溶胶浓度变化与区域空气质量密切相关。本文利用“国际大气化学—气候模式比较计划”(Atmospheric Chemistry and Climate Model Intercomparison Project, ACCMIP)中4个模式的试验数据分析了RCP8.5情景下2000~2100年气候变化对中国气溶胶浓度的影响。结果显示,在人为气溶胶排放固定在2000年、仅考虑气候变化的影响时,2000~2100年气候变化导致中国北部地区(31°N~45°N, 105°E~122°E)硫酸盐、有机碳和黑碳气溶胶分别增加28%、21%和9%,硝酸盐气溶胶在中国东部地区减少30%。气候变化对细颗粒物(PM2.5)浓度的影响有显著的季节变化特征,冬季PM2.5浓度在中国东部减少15%,这主要是由硝酸盐气溶胶在冬季的显著减少造成的;夏季PM2.5浓度在中国北部地区增加16%,而长江以南地区减少为9%,这可能与模式模拟的未来东亚夏季风环流的增强有关。  相似文献   

12.
Summary In order to explore the spatial and temporal variations of 500 hPa flow patterns and their relationship with the climate of Iran, monthly mean geopotential heights for the region 0° E to 70° E and 20° N to 50° N, at 5 degree resolution, were analysed. The study period covered the winter months October to March during the period 1961–90. The monthly height of the 500 hPa level was averaged along each meridian from 25° N to 45° N. The height of the mean monthly pressure pattern was mapped against the study years. The results showed that the characteristics of the 500 hPa flow pattern varied over monthly and annual time scales. Principal Component Analysis, with S-mode and Varimax rotation, was also used to reduce the gridded data to 5 (6 in October) significant factors. The factor scores for each month were then correlated with monthly Z-scores of precipitation and temperature anomalies over Iran. The results showed that troughs and ridges located close to Iran had more influence on the climate of Iran. Two troughs were identified and named the Caspian and Syrian troughs. Received April 12, 2001 Revised July 24, 2001  相似文献   

13.
基于1961-2018年1 057个地面气象站均一化气温日值数据和通过均一化检验的日降水量资料,统计得到冬春季低温连阴雨过程,分析其时空分布及变化特征。结果表明,湖南、贵州、江西三省为低温连阴雨集中发生地区,连续最长低温连阴雨超过15 d的台站集中在25°~31°N之间的区域。由经验正交函数方法分析表明,南方地区低温连阴雨日数总体上表现为一致偏多或偏少的分布型,且具有东北部与西南部反相变化、东部与西部反相变化的分布型。南方冬春季平均低温连阴雨日数总体呈减少趋势,约为-0.17 d/(10 a)。1960s末期至1990s低温连阴雨日数以偏多为主,从2000年开始以偏少为主。  相似文献   

14.
 Using atmospheric forcing data generated from a general circulation climate model, sixteen land surface schemes participating in the Project for the Intercomparison of Land-surface Parametrization Schemes (PILPS) were run off-line to equilibrium using forcing data from a GCM representative of a tropical forest and a mid-latitude grassland grid point. The values for each land surface parameter (roughness length, minimum stomatal resistance, soil depth etc.) were provided. Results were quality controlled and analyzed, focusing on the scatter simulated amongst the models. There were large differences in how the models’ partitioned available energy between sensible and latent heat. Annually averaged, simulations for the tropical forest ranged by 79 1 3;W m-2 for the sensible heat flux and 80 W m-2 for the latent heat flux. For the grassland, simulations ranged by 34 W m-2 for the sensible heat flux and 27 W m-2 for the latent heat flux. Similarly large differences were found for simulated runoff and soil moisture and at the monthly time scale. The models’ simulation of annually averaged effective radiative temperature varied with a range, between all the models, of 1.4 K for tropical forest and 2.2 K for the grassland. The simulation of latent and sensible heat fluxes by a standard ‘bucket’ models was anomalous although this could be corrected by an additional resistance term. These results imply that the current land surface models do not agree on the land surface climate when the atmospheric forcing and surface parameters are prescribed. The nature of the experimental design, it being offline and with artificial forcing, generally precludes judgements concerning the relative quality of any specific model. Although these results were produced de-coupled from a host model, they do cast doubt on the reliability of land surface schemes. It is therefore a priority to resolve the disparity in the simulations, understand the reasons behind the scatter and to determine whether this lack of agreement in de-coupled tests is reproduced in coupled experiments. Received: 15 October 1997 / Accepted: 22 April 1999  相似文献   

15.
The effect of different cumulus parameterization schemes(CPSs) on precipitation over China is investigated by using the International Centre for Theoretical Physics(ICTP) Regional Climate Model version 4.3(Reg CM-4.3) coupled with the land surface model BATS1e(Biosphere-Atmosphere Transfer Scheme version1e). The ERA-interim data are utilized to drive a group of simulations over a 31-yr period from September1982 to December 2012. Two typically sensitive regions, i.e., the eastern Tibetan Plateau(TP; 29°–38°N,90°–100°E) and eastern China(EC; 26°–32°N, 110°–120°E), are focused on. The results show that all the CPSs have well reproduced the spatial distribution of annual precipitation in China. The simulation with the Emanuel scheme shows an overall overestimation of precipitation in China, different from the other three CPSs which only overestimate over northern and northwestern China but underestimate over southern China. Seasonally, the Tiedtke scheme shows the smallest overestimation in winter and summer, and the best simulation of the annual variance of precipitation. Interannual variations of precipitation among the four CPSs are generally simulated better in summer than in winter, and better for entire China than in the subregions of TP and EC. The precipitation trend is simulated better over EC than over TP, and better in summer than in winter. An overestimate(underestimate) of the East Asian summer monsoon index(EASMI) exists in the simulations with the Grell and the Emanuel(the Kuo and the Tiedtke) schemes.The smallest EASMI bias in the Tiedtke simulation could explain its small precipitation bias. A negative correlation between the EASMI and summer precipitation over the middle and lower reaches of Yangtze River is found in the Grell and the Emanuel simulations, but was missed by the simulations using the Kuo and the Tiedtke schemes.  相似文献   

16.
非均匀陆面条件下区域蒸散量计算的遥感模型   总被引:23,自引:0,他引:23  
非均匀陆面条件下的区域蒸散计算是一个复杂的问题。文中首先在利用遥感资料求取地表特征参数 (如植被覆盖度、地表反照率等 )的基础上 ,建立了裸露地表条件下的裸土蒸发和全植被覆盖条件下植被蒸腾计算模型 ,然后结合植被覆盖度 (植被的垂直投影面积与单位面积之比 )给出非均匀陆面条件下的区域蒸散计算方法。实测资料验算表明该模型具有较高的计算精度。文章最后利用该模型对中国北方地区的蒸散量进行了计算 ,并对该研究区蒸散的特点进行了分析  相似文献   

17.
基于修正的Penman-Monteith(P-M)模型,利用1980~2020年黄河源区的气象台站观测数据和陆-气间水热交换观测试验数据,计算出该区域的陆面参考蒸散量,分析了黄河源区蒸散量的时空演变特征,探讨了影响黄河源区蒸散量变化的原因。结果表明:(1)修正的P-M模型能较准确地估算黄河源区的参考蒸散量,与实际观测的相关系数在0.85以上。(2)黄河源区的蒸散量总体呈上升趋势,但在20世纪80年代中期和90年代中期均呈显著减少趋势;近年来,中部和西部地区的蒸散量呈减少趋势,而东部地区的蒸散量呈增加趋势。(3)黄河源区年蒸散量呈自东向西减小的分布特征,东、中、西部地区分别为473.5~516.0mm、437.6~473.5mm和386.3~437.6mm;四季蒸散量差异明显,夏季最大,春季和秋季次之,冬季最小。(4)黄河源区蒸散量随温度、风速和日照时数的增加而增大,随相对湿度和降水量的增大而减小。   相似文献   

18.
Using the high-quality observed meteorological data, changes of the thermal conditions and precipitation over the North China Plain from 1961 to 2009 were examined. Trends of accumulated temperature and negative temperature, growing season duration, as well as seasonal and annual rainfalls at 48 stations were analyzed. The results show that the accumulated temperature increased significantly by 348.5℃ day due to global warming during 1961-2009 while the absolute accumulated negative temperature decreased apparently by 175.3℃ day. The start of growing season displayed a significant negative trend of -14.3 days during 1961- 2009, but the end of growing season delayed insignificantly by 6.7 days. As a result, the length of growing season increased by 21.0 days. The annual and autumn rainfalls decreased slightly while summer rainfall and summer rainy days decreased significantly. In contrast, spring rainfall increased slightly without significant trends. All the results indicate that the thermal conditions were improved to benefit the crop growth over the North China Plain during 1961-2009, and the decreasing annual and summer rainfalls had no direct negative impact on the crop growth. But the decreasing summer rainfall was likely to influence the water resources in North China, especially the underground water, reservoir water, as well as river runoff, which would have influenced the irrigation of agriculture.  相似文献   

19.
The potential hydrologic impact of climatic change on three sub-basins of the South Saskatchewan River Basin (SSRB) within Alberta, namely, Oldman, Bow and Red Deer River basins was investigated using the Modified Interactions Soil-Biosphere-Atmosphere (MISBA) land surface scheme of Kerkhoven and Gan (Advances in Water Resources 29:808–826 2006). The European Centre for Mid-range Weather Forecasts global re-analysis (ERA-40) climate data, Digital Elevation Model of the National Water Research Institute, land cover data and a priori soil parameters from the Ecoclimap global data set were used to drive MISBA to simulate the runoff of SSRB. Four SRES scenarios (A21, A1FI, B21 and B11) of four General Circulation Models (CCSRNIES, CGCM2, ECHAM4 and HadCM3) of IPCC were used to adjust climate data of the 1961–1990 base period (climate normal) to study the effect of climate change on SSRB over three 30-year time periods (2010–2039, 2040–2069, 2070–2099). The model results of MISBA forced under various climate change projections of the four GCMs with respect to the 1961–1990 normal show that SSRB is expected to experience a decrease in future streamflow and snow water equivalent, and an earlier onset of spring runoff despite of projected increasing trends in precipitation over the 21st century. Apparently the projected increase in evaporation loss due to a warmer climate over the 21st century will offset the projected precipitation increase, leading to an overall decreasing trend in the basin runoff of SSRB. Finally, a Gamma probability distribution function was fitted to the mean annual maximum flow and mean annual mean flow data simulated for the Oldman, Bow and Red Deer River Basins by MISBA to statistically quantify the possible range of uncertainties associated with SRES climate scenarios projected by the four GCMs selected for this study.  相似文献   

20.
The role of terrestrial snow cover in the climate system   总被引:2,自引:0,他引:2  
Snow cover is known to exert a strong influence on climate, but quantifying its impact is difficult. This study investigates the global impact of terrestrial snow cover through a pair of GCM simulations run with prognostic snow cover and with all snow cover on land eliminated (NOSNOWCOVER). In this experiment all snowfall over land was converted into its liquid–water equivalent upon reaching the surface. Compared with the control run, NOSNOWCOVER produces mean-annual surface air temperatures up to 5 K higher over northern North America and Eurasia and 8–10 K greater during winter. The globally averaged warming of 0.8 K is one-third as large as the model’s response to 2 × CO2 forcing. The pronounced surface heating propagates throughout the troposphere, causing changes in surface and upper-air circulation patterns. Despite the large atmospheric warming, the absence of an insulating snow pack causes soil temperatures in NOSNOWCOVER to fall throughout northern Asia and Canada, including extreme wintertime cooling of over 20 K in Siberia and a 70% increase in permafrost area. The absence of snow melt water also affects extratropical surface hydrology, causing significantly drier upper-layer soils and dramatic changes in the annual cycle of runoff. Removing snow cover also drastically affects extreme weather. Extreme cold-air outbreaks (CAOs)—defined relative to the control climatology—essentially disappear in NOSNOWCOVER. The loss of CAOs appears to stem from both the local effects of eliminating snow cover in mid-latitudes and a remote effect over source regions in the Arctic, where −40°C air masses are no longer able to form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号