首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
荒漠戈壁大气总体曳力系数和输送系数观测研究   总被引:24,自引:10,他引:14  
张强  卫国安 《高原气象》2004,23(3):305-312
利用“我国西北干旱区陆一气相互作用观测试验”在甘肃敦煌进行的陆面过程野外试验的观测资料,依据三种不同方法确定了干旱戈壁区动量输送的曳力系数Cd、感热和潜热交换的总体输送系数Ch和Cq。结果表明:尽管这三种方法计算的曳力系数和总体输送系数有一定的差别,但在量级上相当,尤其是Cd和Ch的平均值比较接近。本文还通过对风向的分析,剔除了附近建筑物干扰和来自绿洲湿平流的影响,得到了荒漠戈壁总体输送系数的特征及其与理查孙数的关系。  相似文献   

2.
The turbulent fluxes for sensible and latent heat and momentum are computed and analyses are carried outabout the factors in terms of the fluxes,with the profile methods,based on the data from the Tibetan(Xi-zang)Plateau Meteorological Experiment in 1986(TIPMEX-86).It is shown that the fluxes of various kindshave evident diurnal variation,and each decade mean diurnal variation is quite different from others.Thesensible heat flux is about 2/3 less in July than in June.The results indicate that the averaged drag coefficient,C_d,and the averaged bulk transfer coefficient of sensible heat,C_h,are 0.0052 and 0.0075 respectively,for theperiod 13 to 28 in June for Nagqu.But for Lhasa,the mean C_d is 0.0056,and the mean C_h is 0.0085,for the period of June 11 to July 20.It is found that C_d and C_h are not only the function of wind velocity,but also influenced by stability conditions and wind and temperature gradients.  相似文献   

3.
1986年夏季西藏东部近地层湍流输送特征的分析   总被引:3,自引:0,他引:3  
马淑芬 《气象学报》1990,48(2):210-219
本文以1986年夏季西藏高原气象实验(TIPMEX-86)期间获得的资料为基础,运用廓线方法,计算了实验期间感热、潜热和动量湍流通量并分析了与通量输送有关因子的变化。分析结果表明,各种湍流通量都有明显的日变化、日际变化和旬变化。7月份感热通量比6月份大约减少了2/3以上。计算得出那曲6月13—28日拖曳系联C_d的平均值为0.0052,同期感热通量的整体输送系数C_h为0.0075;而拉萨6月11日—7月20日C_d的平均值为0.0056,同期C_h的平均值为0.0085。根据整体输送系数和各种有关因子的关系分析表明,C_d,C_h不可能用一个常数代表,它们不仅仅是风速的函数,而且其变化还包含了稳定度、风速梯度、温度梯度的综合效应。  相似文献   

4.
The vertical turbulent fluxes have been determined during the Atlantic Trade Wind Experiment (ATEX) both by direct and profile methods. The drag coefficient obtained from direct measurements was c D = 1.39 × 10–3. A distortion of the wind profile due to wave action could be demonstrated, this produced an increased drag coefficient estimated by the profile method. The dissipation technique using the downwind spectrum gave a lower drag coefficient of 1.26 × 10–3, probably due to non-isotropic conditions (the ratio of vertical to downwind spectrum at high frequencies scattered considerably with an average of 1 instead of 4/3).From direct measurements, the sensible heat flux showed a poor correlation with the bulk parameter product U, contrary to the heat flux obtained from profiles. It is shown that this is due to the higher frequency part of the cospectrum, say above 0.25 Hz, which contributes more than 50 % of the total flux. Determination of the heat flux from temperature fluctuations by the dissipation method would be in agreement with the direct determination only if the corresponding Kolmogoroff constant were 2.1 instead of 0.8.For the vertical flux of water vapor obtained from profiles, the bulk transfer coefficient was 1.28 × 10–3.This work was supported by the Deutsche Forschungsgemeinschaft, Schwerpunktprogramm Meeresforschung and later the Sonderforschungsbereich Meeresforschung Hamburg.  相似文献   

5.
The structure of the atmospheric surface layer above the sea is analysed from aircraft turbulence measurements. The data are issued from two experiments performed in 1990 above the Mediterranean sea: Crau and PYREX, and correspond to moderately unstable conditions and to wind velocities ranging from 6 to 20 m/s. Low-altitude straight and level runs were used to compute the variances of the wind components, as well as of the temperature and moisture. Their dependence on the stability index —z/L is analysed. The turbulent fluxes of momentum, sensible heat and latent heat, calculated by the eddy-correlation technique, are used to estimate the neutral bulk coefficients: drag coefficient, Stanton number and Dalton number. The neutral drag coefficient clearly exhibits a dependence on the windspeed, which could be well fitted by the Charnock relation, with a constant of 0.012.  相似文献   

6.
青藏高原总体输送系数的特征   总被引:17,自引:1,他引:17  
利用中日亚洲季风机制合作研究计划设在西藏的 4个自动气象站(AWS)获得的5a多(199年7月~1998年12月)时次密集、观测连续的近地层梯度资料,以最小二乘法确定出相应站点各季节的地表粗糙度,并应用廓线-通量法计算了4站逐日的总体输送系数,分析了其随时间的变化特征。结果表明:青藏高原动量输送系数的多年平均值为3.53×10-3~4.99×10-3,热量输送系数为4.67×10-3~6.73×10-3,并且两种输送系数都存在明显的日变化和季节变化,部分站点还存在较明显的年际变化。另外,还讨论了总体输送系数与近地层大气层结稳定度、地表粗糙度以及地面风速等因子的关系,初步建立了可用常规气象站地面观测资料计算青藏高原总体输送系数的拟合公式。  相似文献   

7.
The statistics of momentum exchange in the urban roughness sublayer are investigated. The analysis focuses on the characteristics of the dimensionless friction velocity, \({u_{*}}/U\) , which is defined as the square root of the drag coefficient. The turbulence observations were made at a height of 47 m above the ground on the 325-m meteorological tower, which is located in a very inhomogeneous urban area in Beijing. Under neutral conditions, the dependence of the drag coefficient on wind speed varies with wind direction. When the airflow is from the area of densely built-up buildings, the drag coefficient does not vary with wind speed, while when the airflow is from the area covered by vegetation, the drag coefficient appears to decrease with increasing wind speed. Also, the drag coefficient does not vary monotonically with the atmospheric stability. Both increasing stability and increasing instability lead to the decrease of the drag coefficient, implying that the roughness length and zero-plane displacement may vary in urban areas.  相似文献   

8.
The lack of in situ observations and the uncertainties of the drag coefficient at high wind speeds result in limited understanding of heat flux through the air-sea interface and thus inaccurate estimation of typhoon intensity in numerical models. In this study, buoy observations and numerical simulations from an air-sea coupled model are used to assess the surface heat flux changes and impacts of the drag coefficient parameterization schemes on its simulations during the passage of Typhoon Kalmaegi (2014). Three drag coefficient schemes, which make the drag coefficient increase, level off, and decrease, respectively, are considered. The air-sea coupled model captured both trajectory and intensity changes better than the atmosphere-only model, though with relatively weaker sea surface cooling (SSC) compared to that captured by buoy observations, which led to relatively higher heat flux and thus a stronger typhoon. Different from previous studies, for a moderate typhoon, the coupled simulation with the increasing drag coefficient scheme outputted an intensity most consistent with the observation because of the strongest SSC, reasonable ratio of latent and sensible heat exchange coefficients, and an obvious reduction in the overestimated surface heat flux among all experiments. Results from sensitivity experiments showed that surface heat flux was significantly determined by the drag coefficient-induced SSC rather than the resulting wind speed changes. Only when SSC differs indistinctively (<0.4°C) between the coupled simulations, heat flux showed a weak positive correlation with the drag coefficient-impacted 10-m wind speed. The drag coefficient also played an important role in decreasing heat flux even a long time after the passage of Kalmaegi because of the continuous upwelling from deeper ocean layers driven by the impacted momentum flux through the air-sea interface.  相似文献   

9.
藏北高原草甸下垫面近地层能量输送及微气象特征   总被引:61,自引:9,他引:52  
利用GAME/Tibet 1998年IOP观测资料,分析研究藏北高原草甸下垫面近地层的地面加热场、地表能量平衡、地面阻曳系数CD及感热通量整体输送系数CH等特征,得到了一些有关藏北高原草甸下垫面近地层能量输送及微气象特征结构的新认识.  相似文献   

10.
基于无结构网格有限体积法的正模型和伴随数据同化模型,建立了风应力系数反演表达式,将风应力系数的确定变成依赖于区域内观测值的数值迭代过程,实现了风应力系数确定的自动化,并成功进行了概化河口一系列风应力系数反演的伴随同化实验,反演得到的结果精度较高,实验结果表明:1)伴随法反演风应力系数是合理可行的;2)充分的观测数据能够提高反演的精度;3)风速在10 m/s或15 m/s的情况下,对于风应力系数反演的结果影响不大。  相似文献   

11.
Measurements from the Baltic Sea and a wind-over-wave coupled model are used to study the wave impact on the sea drag. The study has been carried out for different wave conditions, namely a pure wind-sea, following-swell/ mixed sea and cross-swell/ mixed sea. Measurements reveal the fact that the sea drag is dependent on the sea-state. In stationary conditions and in the absence of severe cross-swell, swell reduces drag compared to wind-sea at the same wind speed. The cross-swell enhances the drag as compared to the following-swell case and the magnitude of the drag coefficient is increased with increasing the angle of swell propagation to the wind. It is shown that the agreement between the model results and measurements is good for pure wind-sea and stationary mixed-sea cases. Discrepancies occur at light winds, where most of the data represent pure swell conditions. During these pure swell conditions the data are characterized by a large variation of the drag coefficient. The variation is caused by mesoscale variability in the stress co-spectra, wind-cross-swell effects and nonstationarity in the wave and wind fields not represented in the model.  相似文献   

12.
Two parameterisation schemes for the turbulent surface fluxes and drag coefficients over the Arctic marginal sea-ice zone (MIZ) are (further) developed, and their results are compared with each other. Although the schemes are based on different principles (flux averaging and parameter averaging), the resulting drag coefficients differ only slightly in the case of neutral and stable stratification. For unstable stratification and sea-ice conditions being typical for the north-eastern Fram Strait, the drag coefficients resulting from the parameter-averaging concept are 5–10% larger than those of the flux-averaging concept. At a sea-ice concentration of 45%, the parameter-averaging method overestimates the heat fluxes by a factor of 1.2. An inclusion in the schemes of form drag caused by floe edges and ridges has a much larger effect on the drag coefficient, and on the momentum fluxes, than the choice between the parameter-averaging or flux-averaging methods. Based on sensitivity studies with the flux-averaging scheme, a simple formula for the effective drag coefficient above the Arctic MIZ is derived. It reduces the computational costs of the more complex parameterisations and could also be used in larger scale models. With this simple formula, the effective drag coefficient can be calculated as a function of the sea-ice concentration and skin drag coefficients for water and ice floes. The results obtained with this parameterisation differ only slightly from those using the more complex schemes. Finally, it is shown that in the MIZ, drag coefficients for sea-ice models may differ significantly from the effective drag coefficients used in atmospheric models.  相似文献   

13.
The marine atmospheric boundary layer (MABL) plays a vital role in the transport of momentum and heat from the surface of the ocean into the atmosphere. A detailed study on the MABL characteristics was carried out using high-resolution surface-wind data as measured by the QuikSCAT (Quick scatterometer) satellite. Spatial variations in the surface wind, frictional velocity, roughness parameter and drag coefficient for the different seasons were studied. The surface wind was strong during the southwest monsoon season due to the modulation induced by the Low Level Jetstream. The drag coefficient was larger during this season, due to the strong winds and was lower during the winter months. The spatial variations in the frictional velocity over the seas was small during the post-monsoon season (-0.2 m s^-1). The maximum spatial variation in the frictional velocity was found over the south Arabian Sea (0.3 to 0.5 m s^-1) during the southwest monsoon period, followed by the pre-monsoon over the Bay of Bengal (0.1 to 0.25 m s^-1). The mean wind-stress curl during the winter was positive over the equatorial region, with a maximum value of 1.5×10^-7 N m^-3, but on either side of the equatorial belt, a negative wind-stress curl dominated. The area average of the frictional velocity and drag coefficient over the Arabian Sea and Bay of Bengal were also studied. The values of frictional velocity shows a variability that is similar to the intraseasonal oscillation (ISO) and this was confirmed via wavelet analysis. In the case of the drag coefficient, the prominent oscillations were ISO and quasi-biweekly mode (QBM). The interrelationship between the drag coefficient and the frictional velocity with wind speed in both the Arabian Sea and the Bay of Bengal was also studied.  相似文献   

14.
李毓芳  鹿晓丹  高坤 《大气科学》1991,15(5):106-114
本文利用一个10层细网格模式,在考虑边界层摩擦和积云对流参数化的基础上,设计了几种方案,就地面热通量对暴雨系统的影响进行敏感性试验,得出以下初步结果:(1)在一定的环境流场下,地面热通量对最大降水的发生时间可能发生影响,可使午后降水减小,凌晨降水加大;(2)地面热通量对降水影响的主要机制是通过改变近地层的层结稳定度来改变地面湍流系数,并与低空急流中心风速的水平分布不均相耦合,造成水平散度场和水汽辐合场的改变,并通过平流作用将此变化了的场移至雨区上空,引起雨区降水条件的改变;(3)云和CO_2对辐射和地面热  相似文献   

15.
The wind finding equations currently used to retrieve horizontal winds from Global Positioning System dropwindsonde wind measurements are derived based on a point object model in which the drag coefficient of the dropwindsonde is assumed to be a constant. The wind tunnel tests performed as part of this study showed, however, that the dropwindsonde aerodynamic coefficients vary appreciably with angles of attack. To investigate the impact of this finding, the dropwindsonde motion in a pseudo-stochastic wind field has been simulated using a motion model more sophisticated than the point object model. The results showed that, although the constant drag coefficient assumption is not supported by the wind tunnel test results, the wind finding equations still correctly calculate both the mean and the turbulence intensity profiles. In addition, a revised method to calculate the vertical wind was proposed based on the derivation of the improved motion model, which enhanced the accuracy of vertical wind estimates by including the real-time dropwindsonde drag coefficient and the dropwindsonde vertical acceleration into calculation.  相似文献   

16.
In order to apply Monin–Obukhov similarity theory to estimatethe profiles of mean quantities and surface fluxes from bulk meteorological parameters, the assumptions of homogeneityand stationarity must be valid. Unfortunately, in coastal zones as well as many other regions of interest, theseassumptions are often violated. In this paper, an extension to the theory is presented that considers systematically varyingstate variables. Along-wind variations of windspeed, atmospheric stratification, and roughness are examined with respectto their relative importance to momentum flux divergence, and the drag coefficient is shown to be systematicallylower in coastal zones. For profiles of scalars, an analysis of the set of quasi-homogeneous terms is only speculated,and the relative importance for the terms will strongly depend on which scalar is of interest.  相似文献   

17.
Three recent experiments allow evaluation of the bulk transfer coefficients for momentum, water vapour and sensible heat over water bodies of different sizes. As part of a study of evaporation rates from a swamp, measurements of latent and sensible heat fluxes were made over Lake Wyangan in southern N.S.W., Australia. This lake is of several kilometers diameter. In a later experiment, Reynolds stress and sensible heat transfer were measured from a natural-gas platform standing in Bass Strait, south of mainland Australia. The most recent experiment involved the direct measurement of each of these turbulent fluxes from a fixed tower erected in Lake Michigan, U.S.A.Perhaps the most important of the results is the finding that drag coefficients measured over Bass Strait are not significantly different from those over Lake Michigan, despite the obvious differences in depth, fetch, and hence surface wave structure. At both locations, drag coefficients are found to increase slightly with increasing wind speed, while at low wind speeds they are not significantly different from those corresponding to aerodynamic smoothness.Near-neutral bulk transfer coefficients for sensible heat and for water vapour are found to be similar. An average value of about 1.4 × 10–3 is obtained.It is emphasized that stability effects should be considered in any discussion of drag coefficients or bulk transfer coefficients. Large errors can result if near-neutrality is incorrectly assumed.  相似文献   

18.
Abstract

Compliant fairing made of plastic ribbons or flexible rubber filaments can be attached to the cables of taut‐line moorings to reduce the drag force of the currents. The efficiency of such fairing depends upon its orientation in the flow and the Reynolds number of the cable. Results of using filament fairing manufactured by ENDECO Inc. on a 337‐m long mooring in the mouth of Hudson Strait are discussed. The fairing was found to be detrimental in this application because of twisting of the wire rope, producing a “bottle‐brush” configuration, and because the normal drag coefficient Cd ? 2.5 ± 0.45 was found to exceed that of a bare cable by 65 per cent on average. The Reynolds number range for this drag coefficient was 2.6 × 103 to 4.2 × 103 and was determined by force measurements in a flume. It is concluded that the problems of correctly orienting the fairing in the flow, and the true drag coefficient for Reynolds numbers less than about 5 × 104 must be carefully addressed in the design of conventional taut‐line moorings. Drag coefficients found in this study imply that compliant fairings would not be warranted for Reynolds numbers below about 5 × 104 unless strumming was expected for bare cables.  相似文献   

19.
The lower limit on the drag coefficient under hurricane force winds is determined by the break-up of the air–sea interface due to Kelvin–Helmholtz instability and formation of the two-phase transition layer consisting of sea spray and air bubbles. As a consequence, a regime of marginal stability develops. In this regime, the air–sea drag coefficient is determined by the turbulence characteristics of the two-phase transition layer. The upper limit on the drag coefficient is determined by the Charnock-type wave resistance. Most of the observational estimates of the drag coefficient obtained in hurricane conditions and in laboratory experiments appear to lie between the two extreme regimes: wave resistance and marginal stability.  相似文献   

20.
Based on theoretical radiative cooling values and observed temperature changes with time near the surface during the night, the bulk heat transfer coefficient C H is estimated from standard meteorological observations obtained from stations representative of open rural, small town and large urban areas, for nights with clear skies and relatively strong winds. It is shown that C H is smaller than the drag coefficient C M, and that C H/C M over urban areas is smaller than that over open countryside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号