首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
采用1950-2000年逐月观测的不同海域(全球、热带外、热带、热带印度洋-太平洋、热带印度洋及热带太平洋)海表温度分别驱动NCAR CAM3全球大气环流模式,进行了多组长时间积分试验,对比ERA-40和NCEP/NCAR再分析资料,讨论了这些海域海表温度异常对东亚夏季风年代际变化的影响。数值试验结果表明:全球、热带、热带印度洋-太平洋和热带太平洋海表温度变化对东亚夏季风的年代际变化具有重要作用,均模拟出了东亚夏季风在20世纪70年代中后期发生的年代际减弱现象,以及强、弱夏季风年代夏季大气环流异常分布的显著不同,这与观测结果较一致,表明热带太平洋是影响东亚夏季风此次年代际变化的关键海区;利用热带印度洋海表温度驱动模式模拟出的东亚夏季风在20世纪70年代中后期发生年代际增强现象,即当热带印度洋海表温度年代际偏暖(冷)时,东亚夏季风年代际增强(减弱),与热带太平洋海表温度变化对东亚夏季风年代际变化的影响相反;热带太平洋海表温度年代际背景的变化对东亚夏季风在20世纪70年代中后期的年代际减弱有重要作用。  相似文献   

2.
Interdecadal Variability of the East Asian Summer Monsoon in an AGCM   总被引:3,自引:0,他引:3  
It is well known that significant interdecadal variation of the East Asian summer monsoon (EASM) occurred around the end of the 1970s. Whether these variations can be attributed to the evolution of global sea surface temperature (SST) and sea ice concentration distribution is investigated with an atmospheric general circulation model (AGCM). The model is forced with observed monthly global SST and sea ice evolution through 1958-1999. A total of four integrations starting from different initial conditions are carried out. It is found that only one of these reproduces the observed interdecadal changes of the EASM after the 1970s, including weakened low-level meridional wind, decreased surface air temperature and increased sea level pressure in central China, as well as the southwestward shift of the western Pacific subtropical high ridge and the strengthened 200-hPa westerlies. This discrepancy among these simulated results suggests that the interdecadal variation of the EASM cannot be accounted for by historical global SST and sea ice evolution. Thus, the possibility that the interdecadal timescale change of monsoon is a natural variability of the coupled climate system evolution cannot be excluded.  相似文献   

3.
Impact of global SST on decadal shift of East Asian summer climate   总被引:2,自引:0,他引:2  
East Asia experienced a significant interdecadal climate shift around the late 1970s, with more floods in the valley of the Yangtze River of central-eastern China and more severe drought in North China since then. Whether global SST variations have played a role in this shift is unclear. In the present study, this issue is investigated by ensemble experiments of an atmospheric general circulation model (AGCM), the GFDL AM2, since one validation reveals that the model simulates the observed East Asian Summer Monsoon (EASM) well. The results suggest that decadal global SST variations may have played a substantial role in this climate shift. Further examination of the associated atmospheric circulation shows that these results are physically reasonable.  相似文献   

4.
利用1951—2013年全国160个测站逐月降水资料、NCEP/NCAR月平均再分析资料和NOAA全球月平均海表温度等资料,分析了中国东部地区夏季降水的年代际转型及相关大气环流变化。研究结果表明,1970s中后期和1990s PDO两次位相转换给中国东部地区夏季降水带来显著的年代际变化,前者使得东亚夏季风进一步减弱,夏季雨带南退至长江中下游地区,后者使得东亚夏季风恢复增强,雨带北移至淮河流域。进一步研究发现,1990s PDO年代际突变导致东亚夏季大气环流场发生显著变化,贝加尔湖地区增暖导致向北的经向温度梯度增大以及副热带高压的东退北抬是导致1990s东部地区夏季降水年代际变化的可能原因。  相似文献   

5.
孙颖  徐海明  邓洁淳 《大气科学》2014,38(6):1055-1065
本文首先利用NCEP/NCAR和ERA-40再分析资料以及中国753站降水资料对太平洋—日本(Pacific-Japan,简称P-J)遥相关型在上世纪70年代末期气候突变前后的年代际变化特征进行了分析研究。结果表明,在气候突变前后,P-J遥相关型的位置发生了显著的变化,气候突变以后其位置明显向西向南偏移。这种位置的变化同样也反映在纬向风场、高度场上。研究结果还表明,气候突变前后P-J遥相关型的年代际变化与热带太平洋和印度洋海温变化有关。气候突变之前,P-J遥相关型的变化与前期热带太平洋和印度洋海温不存在显著的相关;但在气候突变之后,P-J遥相关型与前期冬春季的热带太平洋、印度洋海温之间存在大范围的显著相关区。这种P-J遥相关型与热带太平洋、印度洋海温相关关系的年代改变可能与1970年代中期以后赤道中东太平洋海温变化振幅明显增强有关。随后,本文采用一个高分辨率的大气环流模式,通过一系列的数值试验也进一步证实了1970年代末期热带太平洋和印度洋海温的年代际变化确实可致使P-J遥相关型位置发生相应的改变。  相似文献   

6.
In this work, the authors investigate changes in the interannual relationship between the East Asian summer monsoon (EASM) and the tropical Indian Ocean (IO) in the late 1970s. By contrasting the correlations of the EASM index (EASMI) with the summer IO sea surface temperature anomaly (SSTA) between 1953–1975 and 1978–2000, a pronounced different correlation pattern is found in the tropical IO. The SSTA pattern similar to the positive Indian Ocean Dipole (IOD) shows a strongly positive correlation with the EASMI in 1953–1975. But in 1978–2000, significant negative correlation appears in the northern IO and the IOD-like correlation pattern disappears. It is indicated that the summer strong IOD events in 1953–1975 can cause a weaker-than-normal western North Pacific (WNP) subtropical high, which tends to favor a strong EASM. In 1978–2000, the connection between the summer IOD and the WNP circulation is disrupted by the climate shift. Instead, the northern IO shows a close connection with the WNP circulation in 1978–2000. The warming over the northern IO is associated with the significant enhanced 500 hPa geopotential height and an anomalous anticyclone over the WNP. The change in the IO–EASM relationship is attributed to the interdecadal change of the background state of the ocean–atmosphere system and the interaction between the ENSO and IO. In recent decades, the tropical IO and tropical Pacific have a warmer mean SST, which has likely strengthened (weakened) the influence of the northern IO (IOD) on the EASM. In addition, due to the increase in the ENSO variability along with the higher mean equatorial eastern Pacific SST in 1978–2000, the influence of ENSO on the East Asian summer circulation experiences a significant strengthening after the late 1970s. Because the warming over the northern IO is associated with the significant warming in the equatorial eastern Pacific, the strengthened ENSO–EASM relationship has likely also contributed to the strengthened relationship between the northern IO and the EASM in 1978–2000.  相似文献   

7.
林婷婷  李春 《山东气象》2019,39(2):68-75
基于NOAA重建的海面温度(sea surface temperature, SST)资料和NCEP再分析大气资料,研究了ENSO(El Niño-Southern Oscillation)与南海SST关系的年代际变化。结果表明:ENSO影响南海SST的冬、夏季“双峰”现象发生了显著的年代际变化,即冬季的“峰值”自20世纪80年代显著减弱,而夏季的“峰值”稳定持续且在20世纪70年代之后增强;冬季“峰值”的减弱可能与冬季西北太平洋反气旋的年代际变化有关,夏季“峰值”的维持和增强可能与20世纪70年代之后印度洋SST“电容器”效应的增强有关。  相似文献   

8.
The East Asian summer monsoon (EASM) underwent an interdecadal variation with interannual variations during the period from 1958 to 1997, its index tended to decline from a higher stage in the mid-1960's until it reached a lower stage after 1980's. Correlation analysis reveals that EASM is closely related with the global atmospheric circulation and sea surface temperature (SST). The differences between the weak and strong stage of EASM shows that, the summer monsoon circulation over East Asia and North Africa is sharply weakened, in the meantime, the westerlies in high latitudes and the trade--wind over the tropical ocean are also changed significantly. Over the most regions south of the northern subtropics, both air temperature in the lower troposphere and SST tended to rise compared with the strong stage of EASM. It is also revealed that the ocean-atmosphere interaction over the western Pacific and Indian Ocean plays a key role in interannual to interdecadal variation of EASM, most probably, the subtropical Indian Ocean is more important. On the other hand, the ENSO event is less related to EASM at least during the concerned period.  相似文献   

9.
Changma, which is a vital part of East Asian summer monsoon (EASM) system, plays a critical role in modulating water and energy cycles in Korea. Better understanding of its long-term variability and change is therefore a matter of scientific and societal importance. It has been indicated that characteristics of Changma have undergone significant interdecadal changes in association with the mid-1970s global-scale climate shift and the mid-1990s EASM shift. This paper reviews and revisits the characteristics on the long-term changes of Changma focusing on the underlying mechanisms for the changes. The four important features are manifested mainly during the last few decades: 1) mean and extreme rainfalls during Changma period from June to September have been increased with the amplification of diurnal cycle of rainfall, 2) the dry spell between the first and second rainy periods has become shorter, 3) the rainfall amount as well as the number of rainy days during August have significantly increased, probably due to the increase in typhoon landfalls, and 4) the relationship between the Changma rainfall and Western Pacific Subtropical High on interannual time scale has been enhanced. The typhoon contribution to the increase in heavy rainfall is attributable to enhanced interaction between typhoons and midlatitude baroclinic environment. It is noted that the change in the relationship between Changma and the tropical sea surface temperature (SST) over the Indian, Pacific, and Atlantic Oceans is a key factor in the long-term changes of Changma and EASM. Possible sources for the recent mid-1990s change include 1) the tropical dipole-like SST pattern between the central Pacific and Indo-Pacific region (the global warming hiatus pattern), 2) the recent intensification of tropical SST gradients among the Indian Ocean, the western Pacific, and the eastern Pacific, and 3) the tropical Atlantic SST warming.  相似文献   

10.
Classical monsoon dynamics considers the winter/spring snow amount on the Tibetan Plateau (TP) as a major factor driving the East Asian summer monsoon (EASM) for its direct influence on the land–sea thermal contrast. Actually, the TP snow increased and decreased after the late 1970s and 1990s, respectively, accompanying the two major interdecadal changes in the EASM. Although studies have explored the possible mechanisms of the EASM interdecadal variations, and change in TP snow is considered as one of the major drivers, few studies have illustrated the underlying mechanisms of the interdecadal changes in the winter TP snow. This study reveals a tripole pattern of change, with decreased winter precipitation over the TP and an increase to its north and south after the late 1990s. Further analyses through numerical experiments demonstrate that the tropical Pacific SST changes in the late 1990s can robustly affect the winter TP precipitation through regulating the Walker and regional Hadley circulation. The cooling over the tropical central-eastern Pacific can enhance the Walker circulation cell over the Pacific and induce ascending motion anomalies over the Indo-Pacific region. These anomalies further drive descending motion anomalies over the TP and ascending motion anomalies to the north through regulating the regional Hadley circulation. Therefore, the positive–negative–positive winter precipitation anomalies around the TP are formed. This study improves the previously poor understanding of TP climate variation at interdecadal timescales.摘要在20世纪70年代和90年代末, 伴随着东亚夏季风的两次主要年代际变化, 高原积雪分别显著增加和减少. 尽管很多学者研究了东亚夏季风年代际变化的可能机制, 高原积雪变化也被认为是主要因素之一, 但是关于高原冬季积雪本身发生年代际变化的潜在机制尚鲜有研究. 本文揭示了20世纪90年代末高原及周边冬季降水的三极子变化特征: 高原主体上空主要为降水减少, 其南北两侧区域降水增加. 数值试验结果表明, 热带太平洋海温变化可以通过调节沃克环流和局地哈德莱环流, 对上述三极子降水变化型态产生显著影响.  相似文献   

11.
张灵玲  谢倩  杨修群 《气象科学》2015,35(6):663-671
利用1958-2001年ERA-40再分析资料计算大气热源,统计分析了亚洲季风区及其邻近海域大气热源年代际变异的典型模态;利用线性斜压干模式,模拟了夏季大气对大气热源年代际异常的响应,揭示了大气热源年代际异常与1970s末期东亚夏季风年代际减弱的关系。结果表明:近50 a来亚洲及其邻近海域夏季整层大气热源变异主要表现为年代际变化特征,其年代际位相转换发生在1970s中后期,这与东亚夏季风年代际减弱的时间一致;菲律宾附近海域和中国西南地区是与东亚夏季风年代际减弱有直接联系的两个热源异常关键区;东亚夏季风年代际减弱最直接地表现为这两个关键区热源异常的共同作用,而赤道中东太平洋、赤道印度洋大气热源增强则通过大气遥响应机制影响菲律宾附近海域低层大气环流异常对东亚夏季风变异起相反的贡献。  相似文献   

12.
The East Asian summer monsoon (EASM) circulation and summer rainfall over East China have experienced large decadal changes during the latter half of the 20th century. To investigate the potential causes behind these changes, a series of simulations using the national center for atmospheric research (NCAR) community atmospheric model version 3 (CAM3) and the geophysical fluid dynamics laboratory (GFDL) atmospheric model version 2.1 (AM2.1) are analyzed. These simulations are forced separately with different historical forcing, namely tropical sea surface temperature (SSTs), global SSTs, greenhouse gases plus aerosols, and a combination of global SSTs and greenhouse gases plus aerosols. This study focuses on the relative roles of these individual forcings in causing the observed monsoon and rainfall changes over East Asia during 1950–2000. The simulations from both models show that the SST forcing, primarily from the Tropics, is able to induce most of the observed weakening of the EASM circulation, while the greenhouse gas plus (direct) aerosol forcing increases the land-sea thermal contrast and thus enhances the EASM circulation. The results suggest that the recent warming in the Tropics, especially the warming associated with the tropical interdecadal variability centered over the central and eastern Pacific, is a primary cause for the weakening of the EASM since the late 1970s. However, a realistic simulation of the relatively small-scale rainfall change pattern over East China remains a challenge for the global models.  相似文献   

13.
Based on the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis data from 1950-1999, interdecadal variability of the East Asian Summer Monsoon (EASM) and its associated atmospheric circulations are investigated. The EASM exhibits a distinct interdecadal variation, with stronger (weaker) summer monsoon maintained from 1950-1964 (1976-1997). In the former case, there is an enhanced Walker cell in the eastern Pacific and an anti-Walker cell in the western Pacific. The associated ascending motion resides in the central Pacific, which flows eastward and westward in the upper troposphere, descending in the eastern and western ends of the Pacific basin. At the same time, an anomalous East Asian Hadley Cell (EAHC) is found to connect the low-latitude and mid-latitude systems in East Asia, which strengthens the EASM. The descending branch of the EAHC lies in the west part of the anti-Walker cell, flowing northward in the lower troposphere and then ascending at the south of Lake Baikal (40°-50°N, 95°- 115°E) before returning to low latitudes in the upper troposphere, thus strengthening the EASM. The relationship between the EASM and SST in the eastern tropical Pacific is also discussed. A possible mechanism is proposed to link interdecadal variation of the EASM with the eastern tropical Pacific SST. A warmer sea surface temperature anomaly (SSTA) therein induces anomalous ascending motion in the eastern Pacific, resulting in a weaker Walker cell, and at the same time inducing an anomalous Walker cell in the western Pacific and an enhanced EAHC, leading to a weaker EASM. Furthermore, the interdecadal variation of summer precipitation over North China is found to be the south of Lake Baikal through enhancing and reducing strongly regulated by the velocity potential over the regional vertical motions.  相似文献   

14.
East Asia has experienced a significant interdecadal climate shift since the late 1970s. This shift was accompanied by a decadal change of global SST. Previous studies have suggested that the decadal shift of global SST background status played a substantial role in such a climatic shift. However, the individual roles of different regional SSTs remain unclear. In this study, we investigated these roles using ensemble experiments of an atmospheric general circulation model, GFDL (Geophysical Fluid Dynamics Laboratory) AM2. Two kinds of ensembles were performed. The first was a control ensemble in which the model was driven with the observed climatological SSTs. The second was an experimental ensemble in which the model was driven with the observed climatological SSTs plus interdecadal SST background shifts in separate ocean regions. The results suggest that the SST shift in the tropics exerted more important influence than those in the extratropics, although the latter contribute to the shift modestly. The variations of summer monsoonal circulation systems, including the South Asian High, the West Pacific Subtropical High, and the lower-level air flow, were analyzed. The results show that, in comparison with those induced by extratropical SSTs, the shifts induced by tropical SSTs bear more similarity to the observations and to the simulations with global SSTs prescribed. In particular, the observed SST shift in the tropical Pacific Ocean, rather than the Indian Ocean, contributed significantly to the shift of East Asian summer monsoon since the 1970s.  相似文献   

15.
The characteristics and possible physical mechanism of interdecadal variation of the intensity of the South Asian High (SAH) in summer are analyzed using the NCEP/NCAR reanalysis data and NOAA extended reconstructed sea surface temperature (SST) data. The results indicate that a remarkable interdecadal transition occurred in the late 1970s that increased the intensity of SAH, or, an abrupt climate change was around 1978. A comparative analysis between the weak and strong period of the SAH intensity shows that the related anomalous patterns of the atmospheric circulation (including wind field, air temperature field and vertical velocity field) are nearly opposite to each other. The surface latent heat flux anomalies over the plateau (especially in the northwest of the plateau) in summer exert great influence on the interdecadal variation of the SAH intensity and the surface sensible heat flux anomalies play a more important role. Consistent with the interdecadal variation of the SAH intensity, the monopole mode of the tropical Indian Ocean SST in summer also experienced a low to high transition in the late 1970s. To some extent, this can reveal the impact of the anomalous monopole mode of the tropical Indian Ocean SST in summer on interdecadal variation of the SAH.  相似文献   

16.
东亚夏季风强度的变化与中国雨带和旱涝分布密切相关。为了做好东亚夏季风强度的短期气候预测,采用小波分析、Lanczos滤波器、交叉检验等方法,研究了东亚夏季风强度的多尺度变化特征,在年际与年代际尺度上分别寻找了它在前冬海温场、200 hPa纬向风场上的前兆信号,并利用最优子集回归建立了东亚夏季风强度的多尺度统计物理预测模型。结果表明:东亚夏季风强度存在准4年、准13年和准43年的周期振荡。年际尺度上,前冬赤道东太平洋(10°N~10°S,160°W~80°W)海温与东亚夏季风强度有最强的显著负相关,且它与东亚夏季风强度在200 hPa纬向风场上的前兆信号有较强的负相关;年代际尺度上,南半球60°S与35°S附近200 hPa纬向风之差与东亚夏季风强度有最强的显著正相关,且它与东亚夏季风强度在热带印度洋、低纬度东南太平洋、低纬度南大西洋的海温及亚洲副热带200 hPa纬向风等前兆信号有强的正相关。通过探讨这两个前兆因子对东亚夏季风强度的预测意义,揭示了他们影响东亚夏季风强度年际和年代际变化的可能物理过程。所建立的东亚夏季风强度多尺度最优子集回归预测模型,不仅对东亚夏季风强度的年际变化具有较好的预测能力,而且对异常极值年份也具有一定的预测能力。  相似文献   

17.
This paper focuses on the relationship between the phase transition of the Pacific decadal oscillation (PDO) and decadal variation of the East Asian summer monsoon (EASM) in the twentieth century. The first transition occurred in the 1940s, with an enhanced SST in the North Pacific and reduced SST in the tropical eastern Pacific and South Indian Ocean. In agreement with these SST changes, a higher SLP was found in most parts of the Pacific, while a lower SLP was found in the North Pacific and most parts of the Indian Ocean. In this case, the EASM was largely enhanced with a southerly anomaly in the lower troposphere along the east coast of China. Correspondingly, there was less rainfall in the Yangtze River valley and more rainfall in northern and southern China. An opposite change was found when the PDO reversed its phase in the late 1970s. In the tropical Indian Ocean and western Pacific, however, the SST was enhanced in both the 1940s and 1970s. As a result, the western Pacific subtropical high (WPSH) tended to extend westward with a larger magnitude in the 1970s. The major features were reasonably reproduced by an atmospheric general circulation model (IAP AGCM4.0) prescribed with observed SST and sea ice. On the other hand, the westward extension of the WPSH was exaggerated in the 1970s, while it was underestimated in the 1940s. Besides, the spatial pattern of the simulated summer rainfall in eastern China tended to shift southward compared with the observation.  相似文献   

18.
利用多成员集合试验结果,比较分析了热带印度洋和太平洋增暖各自对东亚夏季风趋势变化的影响。试验所用模式是GFDLAM2大气环流模式,增暖是通过在气候平均海洋表面温度(SST)基础上,叠加随时间线性增加的、相当于实际50a左右达到的SST异常来实现的。结果表明:热带印度洋和太平洋共同增暖有使东亚夏季风减弱的趋势。相比较而言,单独印度洋增暖有使东亚夏季风增强、华北降水增多的趋势,而单独太平洋增暖有使东亚夏季风减弱的趋势,即印度洋增暖与太平洋增暖对东亚夏季风存在相反的、竞争性影响。进一步分析指出,热带太平洋特别是热带中东太平洋的增温可能对20世纪70年代末期开始的夏季风年代际减弱有更重要的贡献;在未来热带印度洋和太平洋持续增暖、但增暖强度纬向差异减小的新情况下,东亚夏季风减弱的趋势可能还将持续。  相似文献   

19.
This study aims to explore the interdecadal variation of South Asian High (SAH) and its relationship with SST (Sea surface temperature) of the tropical and subtropical regions by using the NCEP/NCAR monthly reanalysis data from 1948 to 2012, based on the NCAR CAM 3.0 general circulation model. The results show that: 1) the intensity of SAH represents a remarkable interdecadal variation characteristic, the intensity of SAH experienced from weak to strong at the late 1970s, and after the late 1970s , its strength is enhanced and the area is expanded in the east-west direction. The expansion degree is greater westward than eastward, while it is opposite in summer. 2) Corresponding to the interdecadal variation of SAH intensity, after the late 1970s, the divergent component of wind field has two ascending and three descending areas. Of the two ascending areas, one is located in the East Pacific, the other location varies with the season from the Indian Ocean in winter to the South China Sea and West Pacific in summer. Three descending areas are located in the north-central Africa, the East Asia and the Middle Pacific region respectively. 3) Corresponding to the interdecadal variation of SAH intensity, the rotational component of wind field at the lower level is an anomalous cyclone over the South China Sea and West Pacific in summer, while in winter, it is an anomalous cyclone over the Indian Ocean, and an anomalous anticyclone over the equatorial Middle Pacific. 4) Numerical simulations show that the interdecadal variation of SAH is closely related to the SST of the tropical and subtropical regions. The SST of Indian Ocean plays an important role in winter, while in summer, the SST of the South China Sea and West Pacific plays an important role, and the SST of the East Pacific also plays a certain role.  相似文献   

20.
邓伟涛  孙照渤  曾刚 《大气科学》2009,33(4):835-846
采用中国160站降水资料、NOAA ERSST海温资料以及ERA-40大气再分析资料, 分析了中国东部夏季降水型的年代际变化特征及其与北太平洋海温的可能联系。结果表明: 中国东部夏季降水型在近50年中经历了两次年代际变化, 第1次发生在20世纪70年代中后期, 北太平洋中纬度地区冬季海温由正距平向负距平转变, 太平洋年代际振荡(PDO, Pacific decadal oscillation) 由负位相向正位相转变, 通过影响东亚夏季风环流, 使东亚夏季风减弱, 中国东部夏季降水从北到南呈现出“+-+” 转变为“-+-”的三极分布形态, 这次年代际变化体现了同一模态正负位相的转变; 第2次发生在20世纪80年代末90年代初, 北太平洋海温转变为日本以南西北太平洋的正距平分布, 同时菲律宾群岛附近海温偏暖, 西太平洋副热带高压偏南偏西, 使得中国东部夏季降水由北至南转变成“-+”的偶极分布形态, 这次年代际变化体现了一种模态向另一种模态的转变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号