首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The seasonal variations of convective activities over the South China Sea(SCS)and itsneighborhood.as well as the similarities and differences of convection in the different key regionsduring the strong and weak convection years are analyzed by using the pentad data of TBB from1980 to 1993.The results show that in winter and summer the seasonal variations of the convectiveactivities are synchronous over the SCS and its neighborhood,the anomalous convection amplitudesare obviously different in different regions.The significant extents of convective activities havesomewhat seasonal differences in the strong and weak convection years.In the strong convectionyears,it is in winter,spring and autumn that the convection anomaly is more evident than that inthe normal years,however,after the summer monsoon onset the convection is sustained.stableand similar to that in the normal years.In the weak convection years.the convection weakensgreatly in each season.but the primary weakening occurs in spring.summer and autumn.Nomatter in the strong or the weak convection years.the convective activities are somewhat ofdifference in the Bay of Bengal.the Indochina Peninsula.the SCS and the Philippines.In addition.the convective activities are also different over the south and the north parts of the SCS.theconvection variation in the strong year is similar to that in the weak year over the north part of theSCS.but over the south part there are great differences.  相似文献   

2.
With the aim to examine variations in the migration phenology and population of N. lugens along with the advance/retreat of the Asian summer monsoon(ASM) and lay the foundation for further study on predicting the timing and location of N. lugens outbreak, correlation analysis and spatial analysis were applied for estimating the impact of the ASM and its related meteorological factors on the migration phenology and population of N. lugens in China in this paper. The ASM had a positive effect on the occurrence and outbreak of N. lugens. First, the first appearance date of N.lugens was consistent with seasonal advances of the northernmost location of the ASM, and the ASM provided the dynamic condition for the northward migration of N. lugens. Second, outbreak of N. lugens occurred in the area under the control of the ASM, and the ASM provided the survival condition for the population of N. lugens. Third, the population was positively related to the northernmost location of the ASM, θ_E(850 hPa) and wind speed(850 hPa).Particularly, the stronger southwest wind caused the date of the first, peak and last catches of N. lugens to turn up earlier than in the extremely years.  相似文献   

3.
A coupled general circulation model in a zonal belt is used to simulate the variation of circulationfeatures in the process of uplift of the Qinghai-Xizang Plateau.The results reveal that the heatingrates of the Plateau increase with the rising of the Plateau topography,and the latent heating compo-nent in the heating field tends to be the most important heating factor.The uplift of the Plateau en-hances the upward motion,intensifies the pressure systems in the high and low level atmosphere,re-inforces Southeast Asia monsoon strength,increases precipitation and severely decreases the surfacetemperature over the Qinghai-Xizang Plateau.However.the basic structures of the general circulation do not vary much due to the uplift of theQinghai-Xizang Plateau.and it is the land-sea distribution that is the decisive factor to form the pre-sent circulation pattern and monsoon.Therefore,to simulate the paleoclimate during the geologicalperiod people should consider more factors,especially the land-sea distribution.  相似文献   

4.
Firstly, typical features of a supercell, which occurred in Guangzhou on August 11, 2004, are discussed by using the new generation weather radar data. V-notch, finger-echo, weak echo region, overhang and echo-wall are observed from reflectivity products. A vertical cross section of the radial velocity is made along the direction of the low-level inflow and across the maximum reflectivity core, which displays a part of strong updraft and downdraft. Secondly, a 3-D convective storm model is used to simulate the supercell. The maximum reflectivity and the core thickness of the simulated radar echo are 75 dBz and 14km, respectively. These values are more than the counterparts that are detected by radar. The reason is that attenuation is not calculated in the model. The wind field structure is also given when the storm is the strongest. Divergence, caused by thunderstorm outflow, is in the low level. In the middle and high level, convergence is dominant, but the plume is not simulated at the top. Finally, the evolution of the simulated vertical motion is documented. The interaction between the environmental wind and the updraft, which is formed by the convergence on the ground at the beginning, makes the storm stronger. Then, downdraft occurs and grows. When it becomes dominant, the supercell collapses.  相似文献   

5.
The outputs of 17 models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed to investigate the temporal and spatial features of 2.0°C warming of the surface temperature over the globe and China under the Representative Concentration Pathways (RCP) 4.5 scenario. The simulations of the period 1860-1899 in the "historical" experiment are chosen as the baseline. The simulations for the 21st century in the RCP4.5 experiment are chosen as the future project. The multi-model ensemble mean (MME) shows that the global mean temperature would cross the 2.0°C warming threshold in 2047. Warming in most of the models would cross the threshold during 2030-2060. For local warming, high-latitude areas in the Northern Hemisphere show the fastest warming over the globe. Land areas warm substantially faster than the oceans. Most of the southern oceans would not exceed the 2.0°C warming threshold within the 21st century. Over China, surface warming is substantially faster than the global mean. The area-averaged warming would cross the 2.0°C threshold in 2034. Locally, Northwest China shows the fastest warming trend, followed by Central North China and Northeast China. Central China, East China, and South China are the last to cross the 2.0°C warming threshold. The diversity of the models is also estimated in this study. Generally, the spread among the models increases with time, and there is smaller spread among the models for the areas with the faster warming.  相似文献   

6.
In this study, based on simulations of a two-dimensional multicell storm under a ground-layer upshear (Uz〈0) by a mesoscale numerical model, a new mechanism of cell regeneration and development within the multicell storm at the "less than optimal shear" state.is proposed. In the presence of a ground-layer upshear, the circulation associated with the surface cold pool is not counteracted by that associated with the ambient wind sl~ear, and the density current extends out faster, making the multicell storm stay at the "less than optimal shear" state. As a result, a new cell is triggered by the strong vertical perturbation ahead of the mature convection, rather than by the split-up from the updraft at the leading edge of the surface cold pool as well as the gust front. The latter is the mechanism at the "optimal" state proposed by Lin et al. in 1998. In the new mechanism, the regenerated cell grows fast with the incident warm moist air from the upstream of the multicell storm, and tends to cut off the moist airflow into the mature convection at its western sector. Consequently, the mature convection would weaken, be replaced, and eventually decay. Actually, these two different mechanisms come into play in a way depending on the relationship between the circulation of the low-level shear and that of the cold pool. When the circulation of the cold pool is stronger than that of the wind shear, the multicell storm is at the "less than optimal shear" state, and the new convective cell is produced by the disturbance ahead of the mature cell. When the circulation of the cold pool is weaker, the cell regeneration is dominated by the mechanism at the "optimal" state, and the new cell is split from the gust front updraft. Therefore, these two mechanisms are not contradictive. With a moderate ground-layer upshear, they can alternately operate within a multicell storm.  相似文献   

7.
By using the data from observation on the Chinese research vessel Xiang Yang Hong No.5 and other sources during AMEX phase II, the kinetic energy budget and circulation characteristics of the tropical storm Irma were analyzed.Irma formed on the ITCZ of the Southern Hemisphere. During the formative stage of the storm, the SE trades and monsoon westerlies on both sides of the ITCZ strengthened, and more importantly, there was a strong divergent flow in upper troposphere. These contributed to the intensification of Irma. At the time when Irma formed, the Richardson number (Ri) in middle and lower troposphere was much smaller than that prior to and post the formation.When Irma intensified rapidly, the area-averaged kinetic energy in the general flow increased in the whole troposphere . The largest contribution came from kinetic energy generation term, -[v.(?)(?)] .indicates that there existed a strong ageostrophic accetration. As to the generation term , the conversion of available potential energy to kinetic energy, - |ωα|, made the largest contribution. This illustrates the importance of internal sources and of the ensemble effect of cumulus convection to the kinetic energy.To the increase of area-averaged eddy kinetic energy during the rapid intensification of Irma, the most impor tant source in the whole troposphere was the dissipation term - [E'], that should be interpreted as the. feeding of eddy kinetic energy from smaller to larger scale disturbances. Another important source was generation term, - [v' (?)(?)'], in the lower troposphere. Rather small contribution came from the energy conversion from the kinetic energy of area-mean flow to eddy kinetic energy. Therefore, the eddy kinetic energy of the developing tropical disturbance extracted both from smaller an, .arger scale motions. The former was much more important than the latter In addition, the disturbance acting as a generator and exporter, generated and exported eddy kinetic energy to the environmental atmosphere.  相似文献   

8.
THE FOUNDATION AND MOVEMENT OF TROPICAL SEMI-GEOSTROPHIC ADAPTATION   总被引:4,自引:0,他引:4       下载免费PDF全文
The breakdown and foundation of geostrophic balance is one of the important movements inthe mid-and high-latitude atmosphere and oceans.In the tropical area,the value of Coriolis pa-rameter is so small that it is difficult to satisfy the bi-geostrophic equilibrium between the pressureand velocity fields.However,in the tropical area,the zonal velocity of some motions in the atmo-sphere and oceans is large,so the Coriolis force is not small,geostrophic balance can exist in zonaldirection,i.e.semi-geostrophic balance.Furthermore,in the dominant area of Hadley circulationin the atmosphere or the area near the ocean meridional boundary,the meridional velocity is large,so geostrophic balance can also exist in meridional direction.In this paper,the process of the dis-persion of inertial gravity wave and the foundation of semi-geostrophic balance are first discussed.Second,the adjustment process between the velocity and pressure fields after adaptation is alsoviewed,and the scale criterion of the semi-geostrophic adaptation is discussed,i.e.for the motionwith meridional scale greater than the equatorial Rossby radius of deformation,the velocity andpressure fields after adaptation change to fit the initial pressure field;on the contrary,the fieldschange to fit the initial zonal velocity field,and the strength of the fields after adaptation dependson the zonal scale.  相似文献   

9.
In this paper, an explosive cyclone (EC) that occurred over Northeast China in the spring of 2016 is studied by using 6.7 μm FY satellite water vapor (WV) imagery and NCEP (1°×1°) reanalysis data. Moreover, the evolutions of the upper-level jet stream (ULJ), the vertical motions, and the potential vorticity (PV) are analyzed in detail. Results show that different shapes of the WV image dark zones could reflect different stages of the EC. At the pre-explosion stage, a small dark zone and an S-shaped baroclinic leaf cloud can be found on the WV imagery. Then the dark zone expands and the leaf cloud grows into a comma-shaped cloud at the explosively developing stage. At the post-explosion stage, the dark zone brightens, and the spiral cloud forms. The whole process can be well described by the WV imagery. The dynamic dry band associated with the sinking motion and the ULJ can develop into the dry intrusion later, which is an important signal in forecasting the EC and should be paid attention to when analyzing the WV imagery. Furthermore, the mechanism is also analyzed in detail in this article. EC usually occurs in the left-exit region of the 200-hPa jet and the region ahead of the 500-hPa trough where there is significant positive vorticity advection (PVA). When the EC moves onto the sea surface, the decreased friction would favour the development of the EC. The upper-level PVA, the strong convergence at low level, and the divergence at high levels can maintain the strong updraft. Meanwhile, the high PV zone from the upper levels extends downward, approaching the cyclone. Together, they keep the cyclone deepening continuously.  相似文献   

10.
A 5-layer numerical model with p-σ incorporated coordinate system and primitive equations is used to simulatethe effects of heating anomaly at and over the Tibetan(Qinghai-Xizang)Plateau on the circulations in East Asia in sum-mer,The model is described briefly in the text and the results are analysed in somewhat detail.Results show that the sur-face albedo,the drag coefficient,the evaporation rate and the ground temperature all have large influences on the circula-tion near the Plateau and in East Asia.When the heating at the surface increases,the Tibetan high in the uppertroposphere intensifies,too.Its area enlarges and its axis tilts to northwest.The upper tropical easterly increase andshifts to north.The southwesterly in the lower troposphere,in consistence,also increases.The cross-equatorial low-lev-el currents along Somali and South India are influenced to increase their speeds while those over North Australia de-crease.The land low over the Asian Continent deepens.Meanwhile the upward motions over the land of east China andover the Indo-China Peninsula intensify and therefore the precipitation over those areas increases.However,along thecoastal area of China the upward motions and therefore the precipitation decrease.Atmospheric heat source anomaly has large influence on the circulation,too.Simulated results indicate that heatsource anomaly in the lower atmosphere over the Plateau influences the intensity and the position of the monsoon circu-lation while that in the upper atmosphere only affects the intensity.The heating status over the Plateau has slight influ-ence on the westerly jet,north of the Plateau,while it has strong effect on the subtropical jet at the mid and low latitudes.  相似文献   

11.
ABSTRACT This study focuses on the intraseasonal variation of the East Asian summer monsoon (EASM) simulated by IAP AGCM 4.0, the fourth-generation atmospheric general circulation model recently developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences. In general, the model simulates the intraseasonal evolution of the EASM and the related rain belt. Besides, the model also simulates the two northward jumps of the westem Pacific subtropical high (WPSH), which are closely related to the convective activities in the warm pool region and Rossby wave activities in high latitudes. Nevertheless, some evident biases in the model were found to exist. Due to a stronger WPSH, the model fails to simulate the rain belt in southern China during May and June. Besides, the model simulates a later retreat of the EASM, which is attributed to the overestimated land-sea thermal contrast in August. In particular, the timing of the two northward jumps of the WPSH in the model is not coincident with the observation, with a later jump by two pentads for the first jump and an earlier jump by one pentad for the second, i.e., the interval between the two jumps is shorter than the observation. This bias is mainly ascribed to a shorter oscillating periodicity of convection in the tropical northwestern Pacific.  相似文献   

12.
In this paper,by carrying out sensitivity tests of initial conditions and diagnostic analysis of physical fields,the impact factors and the physical mechanism of the unusual track of Morakot in the Taiwan Strait are discussed and examined based on the potential vorticity(PV)inversion.The diagnostic results of NCEP data showed that Morakot’s track was mainly steered by the subtropical high.The breaking of a high-pressure zone was the main cause for the northward turn of Morakot.A sensitivity test of initial conditions showed that the existence of upper-level trough was the leading factor for the breaking of the high-pressure zone.When the intensity was strengthened of the upper-level trough at initial time,the high-pressure zone would break ahead of time,leading to the early northward turn of Morakot.Conversely,when the intensity was weakened,the breaking of the high-pressure zone would be delayed.Especially,when the intensity was weakened to a certain extent,the high-pressure zone would not break.The typhoon,steered by the easterly flow to the south of the high-pressure zone,would keep moving westward,with no turn in the test.The diagnostic analysis of the physical fields based on the sensitivity test revealed that positive vorticity advection and cold advection associated with the upper-level trough weakened the intensity of the high-pressure zone.The upper-level trough affected typhoon’s track indirectly by influencing the high-pressure zone.  相似文献   

13.
Shearing Wind Helicity and Thermal Wind Helicity   总被引:3,自引:0,他引:3  
Helicity is defined as H : V ω, where V and ω are the velocity and vorticity vectors, respectively. Many works have pointed out that the larger the helicity is, the longer the life cycle of the weather system is. However, the direct relationship of the helicity to the evolution of the weather system is not quite clear. In this paper, the concept of helicity is generalized as shearing wind helicity (SWH). Dynamically, it is found that the average SWH is directly related to the increase of the average cyclonic rotation of the weather system. Physically, it is also pointed out that the SWH, as a matter of fact, is the sum of the torsion terms and the divergence term in the vorticity equation. Thermal wind helicity (TWH), as a derivative of SWH, is also discussed here because it links the temperature field and the vertical wind field. These two quantities may be effective for diagnosing a weather system. This paper applies these two quantities in cylindrical coordinates to study the development of Hurricane Andrew to validate their practical use. Through analyzing the hurricane, it is found that TWH can well describe the characteristics of the hurricane such as the strong convection and release of latent heat. SWH is not only a good quantity for diagnosing the weather system, but also an effective one for diagnosing the development of the hurricane.  相似文献   

14.
In this study, the temporal structure of the variation of North Atlantic Oscillation (NAO) and its impact on regional climate variability are analyzed using various datasets. The results show that blocking formations in the Atlantic region are sensitive to the phase of the NAO. Sixty-seven percent more winter blocking days are observed during the negative phase compared to the positive phase of the NAO. The average length of blocking during the negative phase is about 11 days, which is nearly twice as long as the 6-day length observed during the positive phase of the NAO. The NAO-related differences in blocking frequency and persistence are associated with changes in the distribution of the surface air temperature anomaly, which, to a large extent, is determined by the phase of the NAO. The distribution of regional cloud amount is also sensitive to the phase of the NAO. For the negative phase, the cloud amounts are significant, positive anomalies in the convective zone in the Tropics and much less cloudiness in the mid latitudes. But for the positive phase of the NAO, the cloud amount is much higher in the mid-latitude storm track region. In the whole Atlantic region, the cloud amount shows a decrease with the increase of surface air temperature. These results suggest that there may be a negative feedback between the cloud amount and the surface air t.emperature in the Atlantic region.  相似文献   

15.
The onset of South China Sea summer monsoon in 1998 occurred on May 21st. Using the U.S. National Centers for Environmental Prediction reanalysis data, this paper examines the physical process of the weakening of a subtropical anticyclone in West Pacific during the onset period using the Zwack-Okossi vorticity equation. Results show that during the pre-onset period, the positive vorticity advection in front of an upper tropospheric trough was the most dominant physical mechanism for the increase of the cyclonic vorticity on the 850-hPa layer over the South China Sea and its nearby region. The secondary contribution to the increase of the cyclonic vorticity was the warm-air advection. After the onset, the magnitude of the latent-heat warming term rapidly increased and its effect on the increase of the cyclonic vorticity was about the same as the positive-vorticity advection. The adiabatic term and divergence term contributed negatively to the increase of the cyclonic vorticity most of the time. Thus, the positive vorticity advection is the most important physical mechanism for the weakening of the West Pacific subtropical anticyclone over the South China Sea during the onset period.  相似文献   

16.
By utilizing a 3-D atmospheric circulation resolving method, the authors studied the air-sea interactive linkages between the tropical Indian Ocean and the Pacific Ocean in 1979-2008 El Ni?o-Southern Oscillation (ENSO) events. Their findings showed that evident 3-D gear-coupling characteristics existed in the 1979-2008 ENSO events. Their resolving analyses also suggested that the general circulation showed stronger and wider sinking motions over the eastern Indian Ocean-western Pacific during the mature phase of 1979-2008 ENSO events, compared with the vertical velocities from the U.S. National Centers for Enviornmental Prediction (NCEP) reanalysis data. With their 3-D analysis method, the vertical velocity was resolved by two components, i.e. zonal and meridional components. It was found that the zonal component of the vertical velocities showed a strong sinking motion while the meridional components showed an upward motion during the prevailing phases of the ENSO events. In the tropics, the zonal component of the vertical velocities was found greater than the meridional component, reflecting the dominant characteristics of the vertical velocity, and the overall outcomes showed a strong sinking motion, although the two components also partially offset each other in the processes. Compared with the vertical velocities from NCEP reanalysis, the vertical motions calculated with the 3-D resolving analysis method demonstrate some advantages.  相似文献   

17.
The East Pacific wavetrain(EPW) refers to here the intense stationary wave activity detected in the troposphere over the East Pacific and North America in 45 northern winters from 1958 to 2002.The EPW is generated in the lower troposphere over the East Pacific,propagating predominantly eastward into North America and slightly upward then eventually into the stratosphere.The intensity of the EPW varies from year to year and exhibits apparent decadal variability.For the period 1958-1964,the EPW was in its second maximum,and it was weakest for the period 1965-1975,then it was strongest for the period 1976-1987.After 1987,the EPW weakened again.The intensity and position of the members(i.e.,the Aleutian low,the North American trough,and the North American ridge) of the EPW oscillate from time to time.For an active EPW versus a weak EPW,the Aleutian low deepens abnormally and shifts its center from the west to the east of the date line,in the middle and upper troposphere the East Asian trough extends eastward,and the Canadian ridge intensifies at the same time.The opposite is true for a weak EPW.Even in the lower stratosphere,significant changes in the stationary wave pattern are also observed.Interestingly the spatial variability of the EPW assumes a Pacific-North American(PNA)-like teleconnection pattern.It is likely that the PNA low-frequency oscillation is a reflection of the oscillations of intensity and position of the members of the EPW in horizontal direction.  相似文献   

18.
The influence of intraseasonal oscillation (ISO) on TC genesis over the northwestern Pacific is studied through comparing analyses of the more and less TC years from 1979 to 2006. It is indicated that the ISO strongly affects the TC genesis. In the years for more TC genesis, the ISO is weak and propagates insignificantly in the area to the west of the Philippines, but the ISO is strong in the area to the east of the Philippines and propagates significantly northwestward. In this situation, the Walker cell shifts gradually westward from the tropical western Pacific to the tropical eastern Indian Ocean. Convergent winds appear in the lower atmosphere while divergent winds in the upper atmosphere, suggesting the presence of enhanced ascending flow over the 140-160°E region and a favorable condition for TC genesis. Moreover, in the years for less TC genesis, the ISO gradually becomes stronger in the area to the west of the Philippines and significant eastward propagation prevails from the eastern Indian Ocean to the area around 120°E; the ISO is weak in the area to the east of the Philippines. During these years, the Walker circulation gradually moved eastward, with convergent winds in the upper troposphere and divergent winds in the lower troposphere. Sinking motion was significant, unfavorable for the TC genesis over the Northwestern Pacific.  相似文献   

19.
The formation of the Kuroshio large meander in summer 2004 was investigated by using the cruise data,Argo profiles data,and satellite remote sensing data.The authors validated the point that cyclonic eddies contrib-uted to the large meander.Besides,.the impacts of ty-phoons on Kuroshio meanders were also studied.From 29 July to 4 August,the typhoons stirred the ocean and up-welled the deep water,which enhanced the existed cyc-lonic eddy,and immediately made a drastic meander of the Kuroshio.Moreover,the unexpected typhoons in June 2004 also contributed to the initial meander at the Tokara Strait.The result suggests an alternative meander mecha-nism of the Kuroshio path via the typhoon-eddy-Kuroshio interactions.It is argued that typhoons accompanied with cyclonic eddies,might play crucial roles in meanders of the Kuroshio.This will provide a more comprehensive understanding of the dynamics of the western boundary flows,like the Kuroshio and the Gulf Stream,and will be useful in eddy-resolution models.  相似文献   

20.
South Asian high and Asian-Pacific-American climate teleconnection   总被引:2,自引:0,他引:2  
Growing evidence indicates that the Asian monsoon plays an important role in affecting the weather and climate outside of Asia. However, this active role of the monsoon has not been demonstrated as thoroughly as has the variability of the monsoon caused by various impacting factors such as sea surface temperature and land surface. This study investigates the relationship between the Asian monsoon and the climate anomalies in the Asian-Pacific-American (APA) sector. A hypothesis is tested that the variability of the upper-tropospheric South Asian high (SAH), which is closely associated with the overall heating of the large-scale Asian monsoon, is linked to changes in the subtropical western Pacific high (SWPH), the midPacific trough, and the Mexican high. The changes in these circulation systems cause variability in surface temperature and precipitation in the APA region. A stronger SAH is accompanied by a stronger and more extensive SWPH. The enlargement of the SWPH weakens the mid-Pacific trough. As a result, the southern portion of the Mexican high becomes stronger. These changes are associated with changes in atmospheric teleconnections, precipitation, and surface temperature throughout the APA region. When the SAH is stronger, precipitation increases in southern Asia, decreases over the Pacific Ocean, and increases over the Central America. Precipitation also increases over Australia and central Africa and decreases in the Mediterranean region. While the signals in surface temperature are weak over the tropical land portion, they are apparent in the mid latitudes and over the eastern Pacific Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号