首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
【目的】为了解黔南州的冰雹特征。【方法】利用2006—2022年多普勒天气雷达、常规气象观测资料以及人工影响天气作业站点冰雹观测等资料,采用统计学方法分析了影响黔南州冰雹个例的冰雹直径、降雹持续时间、冰雹日变化、冰雹云移动速度等特征。【结果】黔南州的降雹主要出现在3、4月份,降雹以中冰雹为主,冰雹日变化明显,一天中冰雹主要发生在15时—次日00时,白天17—20时冰雹频发。降雹持续时间短,65%的降雹持续时间在5 min以内。冰雹云单体的移动速度范围为16~102 km·h-1,平均速度50 km·h-1。冰雹云单体的维持时间最短仅为17 min,最长可达290 min,平均122 min。冰雹云移动路径主要以西南路径为主,其次是西北路径和偏西路径。西南路径降雹点主要分布在黔南州中部一线,西北路径降雹点主要分布在黔南州中西部的惠水、长顺,偏西路径的降雹点主要在黔南州中北部。影响黔南的冰雹云源地有境外移入和黔南州境内生成的两类,主要源地在安顺市、黔南州、黔西南州东部和北部、毕节市东部和南部以及贵阳市南部,不同路径的冰雹云源地具有明显的分布差异。【结论】本文研究成果可进一步提高对黔南冰雹特征的认识。  相似文献   

2.
西藏冰雹的气候特征   总被引:1,自引:0,他引:1  
利用1981 ~ 2008年的逐日冰雹资料和2007~2008年的天气图资料,通过线性倾向估计、功率谱和聚类分析等方法,分析了西藏冰雹的气候特征及天气背景,结果表明:西藏地区年均冰雹日数呈下降趋势,并呈现出2~3年的准周期变化.多雹区沿高原地形和山脉呈带状分布,北部较多,西部和东部相对较少.全区年均冰雹日数为20.8天,最大中心位于那曲;西藏地区冰雹具有明显的季、月、日变化,冰雹在3 ~ 10月均有发生,主要出现在6~9月,为典型的夏雹型,夜间和早晨很少降雹,主要发生在12 ~20时之间.西藏地区冰雹与海拔高度和雷暴有很好的正相关,冰雹的发生与低涡、切变线、西风槽和西太平洋副高等天气系统有着密切的联系.  相似文献   

3.
阿克苏东部冰雹天气发生规律与降雹日分布特征   总被引:1,自引:0,他引:1  
依据1985~2004年阿克苏东部(库车县、沙雅县、新和县)20a间的冰雹天气资料,统计分析冰雹天气发生规律(生成源地、移动路径),并探讨了雹云成因及雹日分布特征。  相似文献   

4.
以3D-Barnes方案插值的新一代天气雷达反射率因子等高平面资料,用垂直累积液态含水量(Vertically Integrated Liquid Water Content,简称:VIL)的理论模式计算单体的VIL,用VIL与单体顶高度之比计算单体的VIL密度(Vertically Integrated Liquid Water Content Density,简称:VILD),采用统计方法对青藏高原东北侧局地冰雹的日变化和大小分布特征以及地面最大冰雹直径(简称:Rmax)与单体在降雹过程中的最大VIL(简称:VILmax)和最大VILD(简称:VILDmax)之间的关系进行了统计。结果表明:(1)青藏高原东北侧局地降雹主要以中冰雹为主(直径在5~20 mm之间),其次是小冰雹(直径<5 mm,现称为霰),出现大冰雹(直径≥20 mm)的概率很小;(2)从冰雹的日变化特征看,青藏高原东北侧局地降雹主要出现在下午到傍晚,期间存在2个降雹高峰时段。第一个主要集中在13:00~18:00,其中以15:00~16:00出现的概率最高,另一个主要集中在20:00~21:00,日内其余时间降雹概率很小,此结论与陈乾[1]等研究区域性冰雹发现的午后傍晚双峰型特征基本吻合,但在出现时段上稍有偏早;(3)VILmax和VILDmax从总体趋势上看与Rmax之间均存在正相关关系,但VILD-max比VILmax与Rmax之间的相关性更好;相同大小的冰雹所对应的雹云单体的VILDmax虽然存在一定的差异,但差异不大,一般维持在0.1 g.m-3以内;(4)雷达观测静锥区和单体强回波区倾斜或悬垂回波等是影响VILmax和VILDmax与Rmax之间出现负相关的2个主要因素。  相似文献   

5.
利用决策树对天津地区2005—2014年4—9月间的25次有灾情资料的冰雹天气进行多普勒天气雷达因子识别,采用冰雹概率(POH)、强冰雹概率(POSH)、垂直液态含水量(VIL)、最大反射率因子(DBZM)、风暴质心高度(HT)、风暴顶高(TOP)等主要雷达识别指标,归纳出天津地区冰雹云雷达回波判识指标:(1)当DBZM≤54.5dBz,或者当DBZM54.5dBz但POSH≤35,单体不会降雹;(2)当DBZM54.5dBz且POSH35,则该单体将会降雹。与判别分析方法比较,基于决策树分析的识别降雹单体的成功率达90.2%,临界成功指数达78.3%,识别结果明显优于判别分析方法。  相似文献   

6.
用兴安盟1996—2002年711数字化雷达回波资料及雷暴和冰雹天气的地面实况资料,把雷暴和冰雹天气的时空分布特征作为雷达回波的隐含参数指标,分析了雷暴和冰雹雷达回波的特征参数及形态结构特征。把冰雹与雷雨差别显著的雷达回波特征参数作为判别指标,建立了兴安盟冰雹云雷达回波概念模型。  相似文献   

7.
利用1971-2005年三门峡市冰雹天气过程资料,分析了冰雹时空分布特征、主要影响系统、本站要素指标及雷达回波特征等,结果表明:渑池县降雹次数最多,灵宝次之,卢氏最少;降雹集中在4-8月,13-19时降雹几率最高.三门峡降雹的天气形势主要有蒙古-华北冷槽、冷涡型和西北气流型.受上述天气系统影响时,500 hPa有冷平流,若地面连续2~3天增温增湿,有可能出现冰雹天气.此外,雹云雷达回波强度>50 dBz,云顶高度>10 km,云顶温度<-40℃,垂直积分液态含水量有明显的跃升.是降雹的前兆.  相似文献   

8.
一次早春多单体冰雹分析   总被引:2,自引:1,他引:1  
利用常规气象资料、NCEP再分析资料,结合黄山多普勒雷达观测资料,对2009年2月发生在黄山地区一次冰雹天气个例发生发展过程进行分析。结果显示:①此次降雹是由于高空急流引发的,有一次积云合并过程,具有多雷暴单体的基本特征。②冰雹发生在早春2月,具有明显的季节特征,组合反射率也很高,但由于空气柱气温较低,垂直液态水含量相比初夏的冰雹要小,-20℃高度相比初夏低1~2km。  相似文献   

9.
一次冰雹云演变过程的卫星遥感监测与分析   总被引:22,自引:7,他引:15  
针对2003年9月21日的一次区域性冰雹云强对流天气过程,结合天气实况、环流场特征和雷达资料,利用NOAA卫星数据,从天气分析、能量转换以及云在可见光、中红外波段的反射特性,分析了冰雹云的演变及特征。结果表明,伴随着大气能量的转换,当日青海湖以北的对流冷云单体在东移过程中,结合了西南部暖舌带来的暖湿气流,午后受地面增温出现了爆发性发展。(1)17:00云团发展最旺盛,云顶温度最低值达到-44℃,并确定冰雹发生的云顶温度临界值为-39.2℃,云顶亮温为221K;(2)冰雹云温度水平梯度介于20~35℃/50km之间,表现为有雹无灾的冰雹强度特征;(3)卫星数据表明,此时雹云与其它云团不同,具有粒子有效半径较大,气溶胶光学厚度也大的特点。  相似文献   

10.
渭南市冰雹概况分析   总被引:2,自引:1,他引:1  
应用 1 989~ 1 998年渭南冰雹、天气、雷达资料分析冰雹时空分布规律及发生发展特点 ,指出 :渭南冰雹具有雹季长、频次高、范围广、突发性强、来势猛的特点。降雹最高时段为 7、8月 ,且以午后型为主 ,冰雹环流形势主要为西北气流型和低槽 (涡 )型 :以及雹云雷达回波特点。  相似文献   

11.
本文利用长沙区域4个气象站1971~2010年40年观测资料,研究了本区域雷暴的气候变化特征。研究结果表明:长沙区域雷暴日数呈东西山区多,中部平原少的空间分布特征,长沙东部和西部的浏阳、宁乡分别为最高和次高发区,年平均雷暴日数分别达62天和53天,而中部地区的马坡岭年平均雷暴日仅39天。在月变化特征上,长沙区域的雷暴主要出现在2~9月,且呈现出典型的双峰型结构,雷暴最多的月份分别出现在4月和8月。在6~9月,浏阳的雷暴日数要明显大于宁乡、望城和马坡岭的雷暴日数,而在其它月,4个观测站的雷暴日数相差不大。在日变化特征上,长沙区域4个测站的雷暴主要出现在午后到傍晚的时段其中以15~17时最多,在13~18时,浏阳的雷暴次数要比另外3个测站雷暴次数明显偏多。1971~2010年长沙区域4个测站的年雷暴日数均呈现出减少的趋势,其中以浏阳的减少趋势最为明显,2000年以后长沙区域4个测站的初雷日略有推迟,而终雷日明显提前。发生雷暴时,宁乡站对K指数及SI指数所代表的不稳定能量较其它3站略高。   相似文献   

12.
利用2010—2018年全球闪电定位网(WWLLN)观测资料, 采用基于闪电密度的空间聚类算法(DBSCAN)建立了西北太平洋地区雷暴数据集, 研究了该区域雷暴的时空分布特征, 并进行海陆差异对比。研究结果表明, 在合理设定DBSCAN参数阈值的条件下, 基于WWLLN闪电聚类的雷暴与天气雷达观测在时空分布和过程演变上具有一致性。西北太平洋区域的日均雷暴数为3 869, 雷暴的闪电密集区平均面积为557.91km2, 平均延展尺度为31.99 km, 平均闪电频次为33 str/(h·thu)。在空间分布上, 东南亚沿海地区与热带岛屿的雷暴活动最强, 南海的雷暴活动强于深海。距离海岸线越近的海域其雷暴面积越大。在季节分布上, 整个区域雷暴活动在夏季(6—8月)达到全年最强, 南海雷暴活动6月达到峰值, 而日本东部近海海域的雷暴活动则在冬季达到最强。我国内陆南方地区雷暴3月开始显著增多, 雷暴平均面积达到最大, 但雷暴平均闪电频次5月才达到峰值。在日变化方面, 陆地雷暴活动呈现典型的单峰型特征, 大部分雷暴发生在午后及傍晚。海洋雷暴日变化则较为平缓, 南海具有其独特的雷暴日变化特征。   相似文献   

13.
王婷波  周康辉  郑永光 《气象》2020,46(2):189-199
基于2010—2014年国家闪电监测网的云-地闪电定位数据,利用雷暴识别与追踪算法获得了505 257个雷暴系统,进而统计分析了我国中东部地区的雷暴发生发展特征。考虑地形和气候差异,将我国中东部划分为东北、华北、华中与华东、西南、华南五个区域,对比了上述区域的雷暴中地闪活动持续时间、移动距离、移动速度等特征,并进一步对雷暴发生的环境物理量特征进行了统计分析,最后讨论了雷暴发生与地形的相关关系。结果显示:雷暴具有局地性强、快速生消的特性,超过70%的雷暴移动速度低于60 km·h~(-1),超过80%的雷暴持续时间低于2 h,超过90%的雷暴移动距离低于60 km;东北地区雷暴移动速度相对更快,西南地区移速较慢且雷暴移动距离更短。华中与华东、华南地区雷暴发生的整层可降水量与对流有效位能值最高,西南次之,东北与华北地区最低,而0~6 km垂直风切变则反之;广东、海南等地为雷暴发生最活跃区域,江南、西南地区东部、华南地区西部、华北地区太行山一带等地为雷暴发生较为活跃的地区;雷暴发生与地形密切相关,四川盆地西麓与珠江三角洲地区明显呈现出随地形抬升而导致雷暴触发的情况。  相似文献   

14.
利用大理机场5年天气观测资料和FNL 1.0X1.0数据,对大理机场雷暴特征及潜势预报进行分析,结果发现:大理机场全年各月都有可能出现雷暴天气,雷暴天气主要出现在6~9月,每年7月和8月雷暴天气出现最为频繁;雷暴天气持续时间0~1小时的次数最多,持续时间1~2小时的雷暴也比较常见,持续时间4~6小时的次数较少,没有出现持续时间6小时以上的雷暴;雷暴可以出现在大理机场的任何方向,出现在东边的次数最多,出现在天顶的次数最少;雷暴初期平均在1月31日,雷暴终期平均在11月14日,雷暴的初期和终期年际差别较大。选取对流有效位能、500hPa相对湿度、0度层高度、近地表四层等压面的抬升指数和可降水量作为预报因子建立大理机场雷暴预报方程,预报方程是显著的,有较好的雷暴潜势预报能力。  相似文献   

15.
宁夏雷暴天气过程划分及环流分型和环境场特征   总被引:5,自引:1,他引:4       下载免费PDF全文
利用1961—2005年宁夏25个气象站雷暴观测资料,根据雷暴发生特点对雷暴天气过程进行划分,得到全区(大部)性、区域性Ⅰ、区域性Ⅱ、持续性、局部性、分散性6类雷暴天气过程;并利用1996—2005年NCEP/NCAR逐日全球再分析资料,对10年来5—9月263例区域性雷暴天气过程进行分析,总结得到有利于宁夏雷暴天气发生的主要环流分型有4类:蒙古冷涡(槽)型、东北冷涡后部横槽型、河套低涡型、西风槽型。其中,前3种类型下易出现持续性雷暴天气过程。易于发生雷暴的环境场特征为宁夏处于500 hPa"西高东低"环流形势下的(弱)西北气流中,地面一般为气旋或热倒槽所控制,蒙古国至我国新疆一带或河西一带有冷锋、切变东移南下,中低层有一定的水汽和辐合抬升条件。  相似文献   

16.
In order to research possible influences of the adjustment of plant distribution on the development frequency of thunderstorms over the Leizhou Peninsula, mathematic statistic methods, including correlation analyses, 11 kinds of fitting models and all-variable regression methods, were used for analyses and research. The results show that the average trend of the number of annual thunderstorm days is descending obviously, and there are thunderstorms in all seasons, in which warm post-midday thunderstorms have taken up the most part, and high frequency is found from May to September, and the starting and ending dates of thunderstorms have a great annual discrepancy. The vegetation structure has been improved along with the reduction of rice fields and the area increment of sugarcane and fruits planting, which results in the decrease of the number of thunderstorm days; the change in the characteristics of winter spare fields, which is caused by the planting of vegetables, limits the formation of thunderstorms in early winter and late spring. Meanwhile, the area adjustment of peanut planting has little influence on the variation of thunderstorm days. The adjustment of principal crop distribution, such as rice, sugarcane, fruits and vegetables, may have obvious influence on the formation of thunderstorms, and sugarcane has the largest effect, followed in turn by rice, vegetables and fruits, and the adjustment of crop distribution has little influence on the starting and ending dates of thunderstorms.  相似文献   

17.
Convective activity dominates the weather of Hungary in the summer. Especially during the first part of the summer, the frequency of severe thunderstorms grows and associated phenomena such as wind storms, hail, sometimes even tornadoes cause serious damage. In this paper, an overview of the severe thunderstorm situation in the Carpathian Basin is presented with a focus on the most frequent phenomena: squall lines. To understand the physical background of these kinds of severe thunderstorms, the terminology of convective components is introduced. Making use of case studies, the roles of convective components are shown for different types of thunderstorm systems. Case studies also show that most of the tornado events are associated with organized thunderstorm systems, especially prefrontal squall lines.  相似文献   

18.
海南夏季雷暴时空分布特征及成因   总被引:1,自引:0,他引:1  
利用海南18个市县雷暴资料、海南地形高度资料、海南日最高气温资料、海口和三亚2个测站日辐射观测资料和海南中尺度乡镇自动站逐时风资料等,研究海南夏季雷暴时空分布特征及可能原因.结果表明:海南大部分地区夏季雷暴主要发生在白天,集中发生在午后,只有以三亚为代表的南部地区表现出雷暴主要发生在夜间,与其余地区相反.研究认为这种差...  相似文献   

19.
利用1999-2008年新疆地面气象站的雷暴观测资料,从雷暴日的年、季、月、日等方面分析新疆境内雷暴活动的时空分布特征,并针对南、北疆的气候差异对比分析了雷暴活动特征的异同。结果表明:1999-2008年新疆年雷暴日数存在小幅波动,雷暴主要发生在每年的4-10月,每天的17-20时。雷暴活动存在一个沿天山南脉轴向为东北-西南向的带状高发区;南疆雷暴日数的年变化波动较北疆明显;夏、秋季南疆的雷暴日数多于北疆,尤其是秋季。  相似文献   

20.
利用1999-2008年新疆地面气象站的雷暴观测资料,从雷暴日的年、季、月、日等方面分析新疆境内的雷暴活动的 时空分布特征,并针对南、北疆的气候差异对比分析了其雷暴活动特征的异同。结果表明:1999-2008年新疆年雷暴日数存在小幅波动,雷暴主要发生在每年的4月至10月,每天的17时至20时。雷暴活动存在沿天山南脉轴向为东北—西南向的带状高发区;南疆雷暴日数的年变化波动较北疆明显;夏、秋季南疆的雷暴日数多于北疆,尤其是秋季。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号