首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rainfall in New South Wales (NSW), located in the southeast of the Australian continent, is known to be influenced by four major climate drivers: the El Niño/Southern Oscillation (ENSO), the Interdecadal Pacific Oscillation (IPO), the Southern Annular Mode (SAM) and the Indian Ocean Dipole (IOD). Many studies have shown the influences of ENSO, IPO modulation, SAM and IOD on rainfall in Australia and on southeast Australia in particular. However, only limited work has been undertaken using a multiple regression framework to examine the extent of the combined effect of these climate drivers on rainfall. This paper analysed the role of these combined climate drivers and their interaction on the rainfall in NSW using Bayesian Model Averaging (BMA) to account for model uncertainty by considering each of the linear models across the whole model space which is equal to the set of all possible combinations of predictors to find the model posterior probabilities and their expected predictor coefficients. Using BMA for linear regression models, we are able to corroborate and confirm the results from many previous studies. In addition, the method gives the ranking order of importance and the probability of the association of each of the climate drivers and their interaction on the rainfall at a site. The ability to quantify the relative contribution of the climate drivers offers the key to understand the complex interaction of drivers on rainfall, or lack of rainfall in a region, such as the three big droughts in southeastern Australia which have been the subject of discussion and debate recently on their causes.  相似文献   

2.
Southeast Australia is a region of high rainfall variability related to major climate drivers, with a long-term declining trend in cool-season rainfall. Projections of future rainfall trends are uncertain in this region, despite projected southward shifts in the subtropical ridge and mid-latitude westerlies. This appears to be related to a poor representation of the spatial relationships between rainfall variability and zonal wind patterns across southeast Australia in the latest Coupled Model Intercomparison Project ensemble, particularly in the areas where weather systems embedded in the mid-latitude westerlies are the main source of cool-season rainfall. Downscaling with regional climate models offers improvements in the mean rainfall climatology, and shows some ability to correct for poor modelled relationships between rainfall and zonal winds along the east coast of Australia. However, it provides only minor improvements to these relationships in southeast Australia, despite the improved representation of topographic features. These results suggest that both global and regional climate models may fail to translate projected circulation changes into their likely rainfall impacts in southeast Australia.  相似文献   

3.
Inter-decadal modulation of the impact of ENSO on Australia   总被引:23,自引:2,他引:21  
 The success of an ENSO-based statistical rainfall prediction scheme and the influence of ENSO on Australia are shown to vary in association with a coherent, inter-decadal oscillation in surface temperature over the Pacific Ocean. When this Inter-decadal Pacific Oscillation (IPO) raises temperatures in the tropical Pacific Ocean, there is no robust relationship between year-to-year Australian climate variations and ENSO. When the IPO lowers temperature in the same region, on the other hand, year-to-year ENSO variability is closely associated with year-to-year variability in rainfall, surface temperature, river flow and the domestic wheat crop yield. The contrast in ENSO’s influence between the two phases of the IPO is quite remarkable. This highlights exciting new avenues for obtaining improved climate predictions. Received: 21 October 1998 / Accepted: 27 November 1998  相似文献   

4.
This study presents the first multi-proxy reconstruction of rainfall variability from the mid-latitude region of south-eastern Australia (SEA). A skilful rainfall reconstruction for the 1783–1988 period was possible using twelve annually-resolved palaeoclimate records from the Australasian region. An innovative Monte Carlo calibration and verification technique is introduced to provide the robust uncertainty estimates needed for reliable climate reconstructions. Our ensemble median reconstruction captures 33% of inter-annual and 72% of decadal variations in instrumental SEA rainfall observations. We investigate the stability of regional SEA rainfall with large-scale circulation associated with El Niño–Southern Oscillation (ENSO) and the Inter-decadal Pacific Oscillation (IPO) over the past 206 years. We find evidence for a robust relationship with high SEA rainfall, ENSO and the IPO over the 1840–1988 period. These relationships break down in the late 18th–early 19th century, coinciding with a known period of equatorial Pacific Sea Surface Temperature (SST) cooling during one of the most severe periods of the Little Ice Age. In comparison to a markedly wetter late 18th/early 19th century containing 75% of sustained wet years, 70% of all reconstructed sustained dry years in SEA occur during the 20th century. In the context of the rainfall estimates introduced here, there is a 97.1% probability that the decadal rainfall anomaly recorded during the 1998–2008 ‘Big Dry’ is the worst experienced since the first European settlement of Australia.  相似文献   

5.
Pascal Terray 《Climate Dynamics》2011,36(11-12):2171-2199
The main goal of this paper is to shed additional light on the reciprocal dynamical linkages between mid-latitude Southern Hemisphere climate and the El Ni?o-Southern Oscillation (ENSO) signal. While our analysis confirms that ENSO is a dominant source of interannual variability in the Southern Hemisphere, it is also suggested here that subtropical dipole variability in both the Southern Indian and Atlantic Oceans triggered by Southern Hemisphere mid-latitude variability may also provide a controlling influence on ENSO in the equatorial Pacific. This subtropical forcing operates through various coupled air?Csea feedbacks involving the propagation of subtropical sea surface temperature (SST) anomalies into the deep tropics of the Atlantic and Indian Oceans from boreal winter to boreal spring and a subsequent dynamical atmospheric response to these SST anomalies linking the three tropical basins at the beginning of the boreal spring. This atmospheric response is characterized by a significant weakening of the equatorial Atlantic and Indian Inter-Tropical Convergence Zone (ITCZ). This weakened ITCZ forces an equatorial ??cold Kelvin wave?? response in the middle to upper troposphere that extends eastward from the heat sink regions into the western Pacific. By modulating the vertical temperature gradient and the stability of the atmosphere over the equatorial western Pacific Ocean, this Kelvin wave response promotes persistent zonal wind and convective anomalies over the western equatorial Pacific, which may trigger El Ni?o onset at the end of the boreal winter. These different processes explain why South Atlantic and Indian subtropical dipole time series indices are highly significant precursors of the Ni?o34 SST index several months in advance before the El Ni?o onset in the equatorial Pacific. This study illustrates that the atmospheric internal variability in the mid-latitudes of the Southern Hemisphere may significantly influence ENSO variability. However, this surprising relationship is observed only during recent decades, after the so-called 1976/1977 climate regime shift, suggesting a possible linkage with global warming or decadal fluctuations of the climate system.  相似文献   

6.
使用NCEP/NCAR再分析资料、中国气象局台站降水资料和GPCC降水资料,系统研究了在冬季平流层准两年振荡(Quasi-Biennial Oscillation, QBO)调制下,厄尔尼诺-南方涛动(El Ni?o-Southern Oscillation, ENSO)不同阶段与中国夏季降水的可能联系。根据两者的位相和强度,可将它们的配置分为QBO西风/El Ni?o、QBO西风/La Ni?a、QBO东风/El Ni?o、QBO东风/La Ni?a。研究结果表明,在年际时间尺度上,ENSO和QBO无显著相关关系。冬季QBO西风位相时,El Ni?o发展年夏季,我国整体偏旱,而华南偏涝;衰减年夏季,华南、华东北部偏旱,东北、长江流域偏涝。La Ni?a发展年夏季,我国东部降水异常呈负-正-负的三极分布;衰减年夏季,东南沿海偏涝。冬季QBO东风位相时,El Ni?o发展年夏季,长江以北偏旱;衰减年夏季,我国东部降水异常呈负-正-负的三极分布。La Ni?a发展年夏季,江淮和华南南部偏旱;衰减年夏季,我国东部沿海偏涝。ENSO是影响我国夏季降水异常的重要因子,而QBO的调制作用在ENSO衰减年夏季更为显著。相比冬季QBO东(西)风位相,QBO西(东)风位相时El Ni?o (La Ni?a)期间赤道西太平洋负(正)海温异常更强,衰减年夏季位于西太平洋的异常下沉(上升)运动和印度洋的异常上升(下沉)运动更强更深厚,西太平洋副热带高压范围更大(小),南亚高压更偏东(西)。   相似文献   

7.
Australian climate-proxy reconstructions based on tree rings from tropical and subtropical forests have not been achieved so far due to the rarity of species producing anatomically distinct annual growth rings. Our study identifies the Australian Red Cedar (Toona ciliata) as one of the most promising tree species for tree-ring research in Australasia because this species exhibits distinct annual tree rings, a prerequisite for high quality tropical dendroclimatology. Based on these preliminary studies, we were able, for the first time in subtropical and tropical Australia, to develop a statistically robust, precisely dated and annually resolved chronology back to AD1854. We show that the variability in ring widths of T. ciliata is mainly dependent on annual precipitation. The developed proxy data series contains both high- and low-frequency climate signals which can be associated with the El Niño Southern Oscillation (ENSO) and the Interdecadal Pacific Oscillation (IPO). A comparison of different data sets (Brisbane precipitation, tree rings, coral luminescence record from the Great Barrier Reef, ENSO and IPO) revealed non-stationary correlation patterns throughout the twentieth century but little instability between the new tree-ring chronology and Brisbane precipitation.  相似文献   

8.
Anticipating and mitigating wave-related hazards rely heavily on understanding wave variability drivers. Here, we describe wave conditions related to concurrent Southern Annular Mode (SAM) and El Niño–Southern Oscillation (ENSO) phases during the austral summer. To identify such conditions, significant wave height (Hs) and peak wave period (Tp) daily anomalies were composited during different SAM–ENSO phase combinations over the last four decades (1979–2018). Surface wind anomalies were also composited to assist in the interpretation of wave conditions. The composites show significant wave variability across all ocean basins and in several semi-enclosed seas throughout the different SAM–ENSO phase combinations. The Southern, Indian, and Pacific Oceans generally experience the strongest Tp anomalies during combinations of SAM phases with El Niño, and the weakest Tp anomalies during combinations of SAM phases with La Niña. The anomalously large waves observed in the south-western Pacific, Tasman Sea, and the Southern Ocean, previously ascribed to ENSO conditions, seem to be instead associated with the SAM variability. SAM-related atmospheric conditions are found to be able to modulate the intensity of ENSO-related winds over the South China Sea, which, in turn, alter the magnitude of waves in that region. These and other wave anomaly structures described here, especially those contrasting the behaviour expected for a given ENSO phase, such as the one found along the California coast, stress the importance of understanding relationships between wave parameters and climate patterns interactions.  相似文献   

9.
Observations and simulations link anthropogenic greenhouse and aerosol emissions with rapidly increasing Indian Ocean sea surface temperatures (SSTs). Over the past 60?years, the Indian Ocean warmed two to three times faster than the central tropical Pacific, extending the tropical warm pool to the west by ~40° longitude (>4,000?km). This propensity toward rapid warming in the Indian Ocean has been the dominant mode of interannual variability among SSTs throughout the tropical Indian and Pacific Oceans (55°E?C140°W) since at least 1948, explaining more variance than anomalies associated with the El Ni?o-Southern Oscillation (ENSO). In the atmosphere, the primary mode of variability has been a corresponding trend toward greatly increased convection and precipitation over the tropical Indian Ocean. The temperature and rainfall increases in this region have produced a westward extension of the western, ascending branch of the atmospheric Walker circulation. Diabatic heating due to increased mid-tropospheric water vapor condensation elicits a westward atmospheric response that sends an easterly flow of dry air aloft toward eastern Africa. In recent decades (1980?C2009), this response has suppressed convection over tropical eastern Africa, decreasing precipitation during the ??long-rains?? season of March?CJune. This trend toward drought contrasts with projections of increased rainfall in eastern Africa and more ??El Ni?o-like?? conditions globally by the Intergovernmental Panel on Climate Change. Increased Indian Ocean SSTs appear likely to continue to strongly modulate the Warm Pool circulation, reducing precipitation in eastern Africa, regardless of whether the projected trend in ENSO is realized. These results have important food security implications, informing agricultural development, environmental conservation, and water resource planning.  相似文献   

10.
李建平  李艳杰  冯娟 《大气科学》2011,35(5):801-817
西澳大利亚州西南部(SWWA)是西澳大利亚州首府Perth的所在地,也是西澳州政治、经济、文化、教育和旅游的中心.自20世纪中期以来,SWWA地区雨季降水持续减少.本文利用近60年的观测及再分析数据,分析了已知的影响澳大利亚降水的热带海洋模态:厄尔尼诺—南方涛动(ENSO)、印度洋偶极子(IOD)和ENSOModoki...  相似文献   

11.
Climatic variability has profound effects on the distribution, abundance and catch of oceanic fish species around the world. The major modes of this climate variability include the El Niño-Southern Oscillation (ENSO) events, the Pacific Decadal Oscillation (PDO) also referred to as the Interdecadal Pacific Oscillation (IPO), the Indian Ocean Dipole (IOD), the Southern Annular Mode (SAM) and the North Atlantic Oscillation (NAO). Other modes of climate variability include the North Pacific Gyre Oscillation (NPGO), the Atlantic Multidecadal Oscillation (AMO) and the Arctic Oscillation (AO). ENSO events are the principle source of interannual global climate variability, centred in the ocean–atmosphere circulations of the tropical Pacific Ocean and operating on seasonal to interannual time scales. ENSO and the strength of its climate teleconnections are modulated on decadal timescales by the IPO. The time scale of the IOD is seasonal to interannual. The SAM in the mid to high latitudes of the Southern Hemisphere operates in the range of 50–60 days. A prominent teleconnection pattern throughout the year in the Northern Hemisphere is the North Atlantic Oscillation (NAO) which modulates the strength of the westerlies across the North Atlantic in winter, has an impact on the catches of marine fisheries. ENSO events affect the distribution of tuna species in the equatorial Pacific, especially skipjack tuna as well as the abundance and distribution of fish along the western coasts of the Americas. The IOD modulates the distribution of tuna populations and catches in the Indian Ocean, whilst the NAO affects cod stocks heavily exploited in the Atlantic Ocean. The SAM, and its effects on sea surface temperatures influence krill biomass and fisheries catches in the Southern Ocean. The response of oceanic fish stocks to these sources of climatic variability can be used as a guide to the likely effects of climate change on these valuable resources.  相似文献   

12.
The ability of coupled climate models from the WCRP-CMIP3 multi-model dataset to reproduce the interannual seasonal variability of precipitation in South America and the influence of the Southern Annular Mode (SAM) and El Niño-Southern Oscillation (ENSO) on such variability is examined. Models are able to reproduce the northward migration of the precipitation variability maximum during autumn and winter and its later return towards the south during spring and summer as well as the high variability throughout the year in southern Chile. Nevertheless, most of them have problems in representing accurately the variability associated with the South Atlantic convergence zone during summer and the typical maximum of variability in the subtropical continent during autumn and winter. The annular-like structure characteristic of the SAM influence on the Southern Hemisphere circulation is basically simulated by all models, but they have serious deficiencies in representing the observed relationship between SAM and both precipitation and circulation anomalies in South America. In addition, most of the models are not able to reproduce the typical wavetrains observed in the circulation anomalies in the Southern Hemisphere associated to ENSO. Only few models, previously identified as those with reasonable ENSO representation at the equatorial Pacific, have evidences of such wavetrains. Coherently, they exhibit the best representation of the ENSO signal in the South American precipitation. Results show that considerable improvement in the model representation of the climate variability in South America and in the associated large-scale teleconnections is still needed.  相似文献   

13.
Prior to the 20th century Northern Hemisphere average surface air temperatures have varied in the order of 0.5 °C back to AD 1000. Various climate reconstructions indicate that slow cooling took place until the beginning of the 20th century. Subsequently, global-average surface air temperature increased by about 0.6 °C with the 1990s being the warmest decade on record. The pattern of warming has been greatest over mid-latitude northern continents in the latter part of the century. At the same time the frequency of air frosts has decreased over many land areas, and there has been a drying in the tropics and sub-tropics. The late 20th century changes have been attributed to global warming because of increases in atmospheric greenhouse gas concentrations due to human activities. Underneath these trends is that of decadal scale variability in the Pacific basin at least induced by the Interdecadal Pacific Oscillation (IPO), which causes decadal changes in climate averages. On interannnual timescales El Niño/Southern Oscillation (ENSO) causes much variability throughout many tropical and subtropical regions and some mid-latitude areas. The North Atlantic Oscillation (NAO) provides climate perturbations over Europe and northern Africa. During the course of the 21st century global-average surface temperatures are very likely to increase by 2 to 4.5 °C as greenhouse gas concentrations in the atmosphere increase. At the same time there will be changes in precipitation, and climate extremes such as hot days, heavy rainfall and drought are expected to increase in many areas. The combination of global warming, superimposed on decadal climate variability (IPO) and interannual fluctuations (ENSO, NAO) are expected lead to a century of increasing climate variability and change that will be unprecedented in the history of human settlement. Although the changes of the past and present have stressed food and fibre production at times, the 21st century changes will be extremely challenging to agriculture and forestry.  相似文献   

14.
The inverse relationship between the warm phase of the El Ni?o Southern Oscillation(ENSO) and the Indian Summer Monsoon Rainfall(ISMR) is well established. Yet, some El Ni?o events that occur in the early months of the year(boreal spring) transform into a neutral phase before the start of summer, whereas others begin in the boreal summer and persist in a positive phase throughout the summer monsoon season. This study investigates the distinct influences of an exhausted spring El Ni?o(springtime)...  相似文献   

15.
The hydro-climatic variability of the Colombian Andes associated with El Ni?o?CSouthern Oscillation (ENSO) is reviewed using records of rainfall, river discharges, soil moisture, and a vegetation index (NDVI) as a surrogate for evapotranspiration. Anomalies in the components of the surface water balance during both phases of ENSO are quantified in terms of their sign, timing, and magnitude. During El Ni?o (La Ni?a), the region experiences negative (positive) anomalies in rainfall, river discharges (average and extremes), soil moisture, and NDVI. ENSO??s effects are phase-locked to the seasonal cycle, being stronger during December?CFebruary, and weaker during March?CMay. Besides, rainfall and river discharges anomalies show that the ENSO signal exhibits a westerly wave-like propagation, being stronger (weaker) and earlier (later) over the western (eastern) Andes. Soil moisture anomalies are land-cover type dependant, but overall they are enhanced by ENSO, showing very low values during El Ni?o (mainly during dry seasons), but saturation values during La Ni?a. A suite of large-scale and regional mechanisms cooperating at the ocean?Catmosphere?Cland system are reviewed to explaining the identified hydro-climatic anomalies. This review contributes to an understanding of the hydro-climatic framework of a region identified as the most critical hotspot for biodiversity on Earth, and constitutes a wake-up call for scientists and policy-makers alike, to take actions and mobilize resources and minds to prevent the further destruction of the region??s valuable hydrologic and biodiversity resources and ecosystems. It also sheds lights towards the implementation of strategies and adaptation plans to coping with threats from global environmental change.  相似文献   

16.
ENSO 与中国东部夏季降水的关联   总被引:8,自引:1,他引:7  
计算1 月减6 月El Niño 3.4 指数与6—8 月平均200、850 hPa 风场的相关矢量,分析中等或强ElNiño/La Niña 事件后的夏季(6—8 月)中国东部降水异常分布、西太平洋副热带高压异常特征。结果表明,对ENSO 的响应,无论高、底层大气环流还是西太平洋副热带高压,1970 年代中期气候突变后变为更敏感。主要表现在:对衰减的El Niño 的响应,夏季南亚高压偏东,西太平洋副热带高压偏强、偏西、偏南,印度季风、南海季风减弱,黄河下游以南副热带季风增强。黄河中下游及以南形成异常环流辐合带,由El Niño 导致的降水正异常最有可能出现在这一西南-东北的带状区域。对衰减的La Niña 响应大致相反。   相似文献   

17.
Climatic features related to Eastern China summer rainfalls in the NCAR CCM3   总被引:21,自引:1,他引:20  
1. IntroductionThe broadly defined Asian monsoon actually consists of the indian monsoon and theEast Asian monsoon. The indian summer monsoon, as well as its connection with some otherclimatic variabilities. such as the ENSO event, has been studied extensively (Rasmusson andCarpenter, 1983; Shukla and Paolino, 1983; Shukla and Mooley, 1987; Ju and Slingo, 1995).To the East Asian monsoon, with its main part over the eastern China, its relationship withENSO and other large scale climati…  相似文献   

18.
This study examines regional atmospheric circulation changes associated with a reversal in the sign of the relationship between the Southern Annular Mode (SAM) and near-surface temperatures at Halley station, East Antarctica, during the 1980s. We show that the key factor affecting the regional SAM?Ctemperature relationship (STR) is the relative magnitude of two climatological low pressure centres to the west and east of the area, which determines the source region of air masses advected into the locality. The principal difference affecting the STR is shown to be a trend towards a significantly weaker climatological low (higher pressure) at ~20°E during a positive phase of the SAM. Specifically, it is variations in the phase and magnitude of the wave number three patterns of atmospheric circulation, the non-annular component of the SAM, which are the principal factors governing the regional STR. A similar reversal is observed in the sign of the correlation between the SAM and oxygen-isotope values from an ice core located some 1,200?km east of Halley. This relationship is examined throughout the 20th Century, by comparing the isotope data to SAM reconstructions, and demonstrates marked decadal variability. Thus, these data suggest that switches in the STR are more likely to reflect natural variability in the long-wave patterns over the Southern Ocean rather than the influence of an anthropogenic forcing. This finding is important when considering the potential utility of Antarctic isotope data as a proxy for the SAM.  相似文献   

19.
Guangzhou spring rainfall mainly exhibits interannual variation of Quasi-biannual and interdecadal variation of 30 yrs, and is in the period of weak rainfall at interdecadal time scale. SST anomalies (SSTA) of Nino3 are the strongest precursor of Guangzhou spring rainfall. They have significant positive correlation from previous November and persist stably to April. Nino3 SSTA in the previous winter affects Guangzhou spring rainfall through North Pacific subtropical high and low wind in spring. When Nino3 SSTA is positive in the previous winter, spring subtropical high is intense and westward, South China is located in the area of ascending airflow at the edge of the subtropical high, and water vapor transporting to South China is intensified by anticyclone circulation to the east of the Philippines. So Guangzhou spring rainfall is heavy. When Nino3 SSTA is negative, the subtropical high is weak and eastward, South China is far away from the subtropical high and is located in the area of descending airflow, and water vapor transporting to South China is weak because low-level cyclonic circulation controls areas to the east of the Philippines and north wind prevails in South China. So Guangzhou spring rainfall is weak and spring drought is resulted.  相似文献   

20.
Using a high-resolution precipitation dataset,the present study detected that the mountainous area of central China(MACA)is a hotspot of ENSO’s impact on the summer rainfall variability.Further analysis suggests that both ENSO and atmospheric forcing make contributions to the summer rainfall variability in MACA.The dominant rainfall-related SST mode features as a seasonal transition from an El Niño-like warming in the preceding winter to a La Nina-like cooling in the following autumn,and it explains about 29%of the total variance of the rainfall during 1951–2018.It indicates that ENSO with a rapid phase transition is responsible for inducing summer rainfall anomalies in MACA.Besides,an upperlevel circumglobal wave mode in the Northern Hemisphere during summer also explains about 29%of the summer rainfall variance.Contributions of both the SST and the atmospheric modes have experienced interdecadal changes.The influence of the SST mode gradually increases and plays a dominant role in the recent decades,suggesting that ENSO with a rapid phase transition becomes more important for rainfall prediction in MACA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号