首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
利用WRF-Chem模式对2016年12月中下旬的两次重污染过程进行模拟,定量研究外来污染输送对江苏省PM2.5的污染贡献。15—17日和22—23日两次过程都存在明显的上游污染输送特征:宿迁、扬州、无锡(自西北向东南)的PM2.5浓度先后出现峰值,峰值均出现在西北风场中,当风向转为偏北风时峰值逐渐减弱。第二次过程中地面风力更大,高空形势更有利于远距离输送,高值区范围强度明显强于第一次,重度污染层厚度达到900~1 500 m,且持续时间较长。第一次过程中江苏省内排放源贡献率为23%~79%(第二次为5%~32%),苏南仍以本地排放源污染为主,苏北外来输送贡献率超过50%。第二次过程中宿迁、扬州、无锡的PM2.5外来输送贡献分别为105.9 μg/m3、83.1 μg/m3、64.8 μg/m3(第一次为40.2 μg/m3、20.9 μg/m3、11.1 μg/m3),山东省和京津冀地区排放源是主要污染输送来源,二者贡献之和在44%~70%。两次过程中,外来输送贡献均是自北向南递减,山东省贡献率高于京津冀地区,而其余周边省份的贡献率相对较低;安徽省对江苏西部城市的贡献率较高。   相似文献   

2.
2010年长江三角洲临安本底站PM2.5理化特征   总被引:2,自引:0,他引:2       下载免费PDF全文
2010年在代表长三角区域背景地区的浙江省临安区域大气本底站开展了对大气细粒子PM2.5为期1年的地面观测,并对细粒子中水溶性离子和碳组分的季节变化特征进行了分析。临安2010年大气中PM2.5质量浓度平均为 (58.2±50.8) μg·m-3,PM2.5质量浓度季节变化明显。利用HYSPLIT4模式计算了2010年临安72 h后向轨迹,根据轨迹计算与聚类结果,结合地面观测的PM2.5数据进行了分析。研究表明:临安地区因受到长江三角洲区域及偏北气流引起的污染传输影响,呈现出高细粒子水平特征。PM2.5中总水溶性离子年平均质量浓度为 (28.5±17.7) μg·m-3,占PM2.5质量浓度的47%。其中,气溶胶组分SO42-,NO3-和NH4+所占比例最大,共占总水溶性离子的69%。PM2.5中有机碳和元素碳的年平均质量浓度分别为 (10.1±6.7) μg·m-3和 (2.4±1.8) μg·m-3。有机碳和元素碳质量浓度显著相关,表明有机碳和元素碳主要来自相同的排放源。  相似文献   

3.
临安大气气溶胶理化特性季节变化   总被引:4,自引:2,他引:4       下载免费PDF全文
分别利用碳成分分析仪、离子色谱仪和原子吸收光谱仪等获取浙江省临安地区大气气溶胶在春、夏、秋、冬四季的质量浓度、离子与碳成分特性,并对不同粒径气溶胶成分分布特点作了较详细分析。结果表明:气溶胶质量浓度、可溶性离子浓度以及碳成分浓度具有明显的季节变化趋势。整个尺度范围内,气溶胶质量浓度季节变化特点为春季浓度最高,达到534 μg/m3;冬季次之,质量浓度为117.21 μg/m3;夏季浓度最低,平均为65.7 μg/m3;秋季质量浓度98.6 μg/m3。可溶性离子成分在气溶胶中所占比例具有明显的季节性,其中夏季最高为49.4%,春季最低为11.3%。硫酸根离子SO42-和氨根离子NH4+和硝酸根离子NO3- 3种离子浓度之和约占离子总量的75%~83%。受温度影响,硝酸根离子NO3-浓度随季节变化幅度较大,夏季平均浓度为1.7 μg/m3, 冬季平均浓度为11.5 μg/m3,是夏季浓度的6.8倍。碳浓度分布特点显示,气溶胶中元素碳浓度春季最高,夏季最低。有机碳浓度春季最高,冬季最低。气溶胶粒度分布特点也非常明显。四季中粒径小于11 μm(PM11)的气溶胶均占气溶胶总量的90%以上,粒径小于2.1 μm(PM2.1)的气溶胶占到气溶胶总量的53%以上。可溶性离子在粒径小于2.1 μm气溶胶颗粒中,以硫酸根离子、氨根离子和硝酸根离子为主。碳成分尺度分布特征为颗粒越小,有机碳及元素碳浓度越高。  相似文献   

4.
北京地区大气中VHCs观测结果的初步分析   总被引:3,自引:1,他引:3       下载免费PDF全文
采用Tenax TA和碳分子筛吸附富集— 热脱附— 毛细管柱气相色谱法, 测定了北京地区大气中C2~C10可挥发性烃类化合物(简称VHCs)的浓度变化。从2001年9月到2003年8月, 先后采集到有效样品113个。检出55个VHCs组分, 其中烷烃26个, 烯烃19个,芳香烃10个。TVHCs的平均浓度为364.3 ±99.3 μg/ m3;11月份浓度最高, 为546.9 ±353.5 μg/m3, 8月份浓度最低, 为251.8 ±152.4 μg/m3;采暖季比非采暖季高30%, 城区比郊区高10%;有明显的日变化。初步分析发现, 机动车尾气排放和天气气象条件是造成北京地区大气VHCs污染的两个最主要因素。  相似文献   

5.
太原冬季PM2.5中有机碳和元素碳的变化特征   总被引:4,自引:2,他引:4       下载免费PDF全文
2005年12月—2006年2月在太原市区持续观测了气溶胶细粒子PM2.5, 并应用Sunset碳分析仪进行了有机碳 (organic carbon, OC) 和元素碳 (elemental carbon, EC) 的测定。结果表明:太原冬季PM2.5, OC和EC浓度均较高, 其中PM2.5日平均浓度变化范围为25.4~419.0 μg/m3, 日平均浓度为193.4±102.3 μg/m3, OC平均浓度为28.9±14.8 μg/m3, EC平均浓度为4.8±2.2 μg/m3, OC/EC平均比值是7.0±3.9, 即太原市冬季PM2.5和碳气溶胶污染严重。OC在PM 2.5中占18.6%, EC占2.9%, 这表明碳气溶胶是太原大气细粒子污染控制的关键组分。在太原市冬季, 采暖燃烧的煤是OC和EC的主要贡献源, 造成OC大大高于EC, 从而使OC/EC比值增大。各种气象条件对PM2.5, OC, EC和OC/EC比值的变化都有不同程度的影响, 特别是大雾天气、相对湿度、风速和降雪是影响碳气溶胶浓度变化的重要因素。  相似文献   

6.
采用卫星监测的火点燃烧排放数据,利用区域化学传输模式WRF-Chem模拟分析了2017年5月华北地区细颗粒物(PM2.5)质量浓度分布,通过生物质燃烧排放源(华北区域以秸秆燃烧为主)开关的敏感性试验定量计算了燃烧排放对北京及其周边地区PM2.5质量浓度的影响。卫星监测结果显示,2017年5月华北地区有大量的秸秆焚烧现象,对该地区空气质量造成一定影响的燃烧天数为20 d,占全月总日数的65%左右。数值模拟结果表明:该地区秸秆燃烧排放导致PM2.5浓度升高的区域集中在华北平原农作物产区,其分布位置与卫星监测的火点分布吻合。秸秆燃烧导致这些地区PM2.5浓度月平均值上升幅度普遍超过3 μg/m~3,高值区超过了11 μg/m~3,上升比例可达10%以上;此外,来自华北平原及长三角地区的燃烧排放对北京(特别是东南部地区)污染物浓度的影响是不容忽视的,其中河南、山东、天津等地的秸秆燃烧在合适风场的作用下会严重影响北京,可导致丰台及通州等地PM2.5小时浓度上升超过17 μg/m~3,上升幅度超过40%。  相似文献   

7.
为了解邢台沙河市冬季大气污染特征,选取2017年12月至2018年2月沙河市区3个省控站点(司法局、市政府、宣传中心)的逐时监测数据,分析了沙河市主要污染物的时空分布特征和潜在源区。污染物浓度特征分析表明:整个冬季司法局、市政府和宣传中心站点的细颗粒物(PM2.5)平均浓度分别为118.0 μg/m3、121 μg/m3和135 μg/m3。在大气自然活动和人为污染排放的共同作用下,PM10、PM2.5、SO2、NO2和CO均有明显的日变化特征。整个冬季沙河市的ρ(PM2.5)/ρ(PM10)、ρ(SO2)/ρ(NO2)均值分别为0.57和1.05(ρ为各物质的浓度)。且随着污染加重,ρ(PM2.5)/ρ(PM10)、ρ(SO2)/ρ(NO2)均明显升高,表明燃煤贡献增加;污染物空间分布特征分析表明:位于3个站点东北处的玻璃企业产生的污染物可能对监测站点造成了一定影响。污染物空间差异分析表明,区域污染范围越大、强度越高,大气污染的空间差异性越小;潜在源分析表明:沙河市PM2.5的强潜在源区分布在其周边区域,随着PM2.5浓度增加,强潜在源区呈缩小趋势。沙河市东南部的本地源对PM2.5浓度有主要贡献,而此处正是玻璃企业的聚集地。  相似文献   

8.
北京乡村地区分粒径气溶胶OC及EC分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用北京上甸子区域大气本底站2004年观测的分粒径大气气溶胶资料,分析了气溶胶中有机碳 (OC) 及元素碳 (EC) 的质量浓度水平、季节变化、尺度分布特征、OC与EC比值及其相关性。结果显示:上甸子站总悬浮颗粒物 (TSP) 中OC平均质量浓度为7.5~31.5 μg·m-3,EC质量浓度为1.4~6.6 μg·m-3;PM2.1(粒径小于2.1 μm) 中OC质量浓度为4.0~19.1 μg·m-3,EC质量浓度大约为0.8~4.3 μg·m-3。冬季OC及EC质量浓度明显高于其他季节,其中冬、夏、秋季OC及EC峰值粒径出现为0.65~2.1 μm,但在春季峰值粒径移至2.1~4.7 μm。观测期间,OC与EC质量浓度比值平均为4~6,该比值略高于文献报道的我国一些城市地区的观测结果。  相似文献   

9.
香港地区一次光化学污染过程的特征分析   总被引:10,自引:2,他引:10  
对2000年3月28~31日发生在香港地区的一次光化学污染过程进行了分析.在这次过程中,O3、NO2、CO、RSP、SO2的最大浓度分别达到175.2 μg/m3,333.5 μg/m3,5405 μg/m3,349.3 μg/m3,132.8 μg/m3,污染持续时间三天,影响范围覆盖香港全境.利用同步的气象资料和大气污染监测数据,进行了浓度变化分析、气象条件分析、局地光化学机制分析和输送机制分析.结果揭示了这次污染过程的基本特征,并指出造成这次大气污染的可能原因:晴天高温、低湿的气象条件和局地污染物的排放对此次光化学烟雾的形成有重要作用;外地污染物的输送对污染形成也有一定贡献.香港地区所处的地理位置、城市布局和交通状况有利于光化学污染的形成.  相似文献   

10.
基于排放因子法建立了2006-2017年安徽省人为源氨排放清单,估算人为源氨的排放水平、变化趋势及其分布特征。结果表明,安徽省2017年人为源氨排放量较高的两个地区是阜阳市和六安市,而氨排放总量最小的是马鞍山,占全省氨排放总量的1.83%。安徽省氨平均排放强度为5.34 t·km-2,其中阜阳市、淮南市及蚌埠市的排放强度均超过7 t·km-2。2006-2017年畜禽养殖源产生的氨排放量处于增加状态,尤其是肉猪、肉鸡和肉鸭的贡献分别占到畜禽源氨排放总量的34.49%~38.39%、20.31%~32.8%和10.40%~16.42%。而氮肥施用导致的氨排放量表现出先增加后下降的趋势,2017年产生的氨排放量比2013年下降了28.71 kt。生物质燃烧、人体排放和氮肥生产是非农业源氨排放的主要来源,但由机动车产生的氨的贡献呈明显增长趋势,如从2006年的1.86%增长到2017年的7.47%,这与近年来安徽省汽车保有量不断增加有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号