首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Droughts are major natural disasters for many parts of the world. Dry areas, where the precipitation pattern is markedly seasonal, or is otherwise highly variable, are the most susceptible. The Canadian Prairies, together with the U.S. Great Plains, are one such area. While immediate loss of life is seldom a feature of most droughts, malnutrition and even starvation do follow severe droughts in some parts of the world. In Canada, economic losses, particularly in the agricultural sector, may reach several hundred millions of dollars in a drought year, with major socio‐economic repercussions affecting the entire region. Environmental damages include soil degradation and erosion, vegetation damage, slough and lake deterioration and wildlife loss. Unlike most other natural disasters, drought onset is difficult to identify. Droughts develop slowly, and until human activity begins to be affected by an on‐going reduction of precipitation, their existence is unrecognized. Development and application of specific soil moisture and drought indices based on cumulative precipitation deficits have enhanced drought monitoring programs. These in turn provide guidance on the need for mitigative measures that can be initiated early in the course of a drought. Any improvement in the timely application of these measures is, however, strongly dependent on being able to determine the drought's course, extent and likely severity at the earliest stage possible. The identification of precursor conditions for past drought has raised the possibility that the likelihood of a drought occurring in a particular year or growing season might be predictable. Teleconnections between North American precipitation patterns and ENSO events and other surface boundary conditions in the North Pacific have been detected. Forecasting seasonal temperature and perhaps precipitation anomalies appears to be potentially feasible using a suitable merging of precursor parameters and modelling methodologies. Clearly, future research must focus both on those precursors that have been identified and on a search for possible new ones. Development of better forecasting methodology is also essential. Research activity to identify and evaluate new mitigative measures should also be increased to keep pace with the prospects of drought predictability.  相似文献   

2.
An assessment of Canadian prairie drought: past, present, and future   总被引:1,自引:1,他引:0  
Within Canada, the Canadian Prairies are particularly drought-prone mainly due to their location in the lee of the western cordillera and distance from large moisture sources. Although previous studies examined the occurrence of Canadian Prairie droughts during instrumental, pre-instrumental and to a lesser extent, future periods, none have specifically focused on all time three scales. Using two different drought indicators, namely the Palmer Drought Severity Index (PDSI) and Standardized Precipitation Index (SPI), this investigation assesses the variability of summer drought duration and intensity over a core region of the Prairies during (a) the pre-instrumental record extending back several centuries (inferred from tree rings), (b) the instrumental record (1901–2005), and (c) the twenty-first century using statistically downscaled climate variables from several Atmosphere–Ocean Global climate models with multiple emission scenarios. Results reveal that observed twentieth century droughts were relatively mild when compared to pre-settlement on the Prairies, but these periods are likely to return (and even worsen) in the future due to the anticipated warming during the course of the twenty-first century. However, future drought projections are distinctly different between the two indices. All PDSI-related model runs show greater drought frequency and severity mainly due to increasing temperatures. Conversely, the precipitation-based SPI indicates no significant changes to future summer drought frequency although there tends to be a higher persistence of multi-year droughts in central and southern portions of Canadian Prairies. These findings therefore stress the importance of considering anticipated warming trends when assessing future regional-scale drought, especially given the uncertainties and lack of consistency in future precipitation signals among climate models. This study can be considered an initial step toward quantifying and understanding Canadian Prairie drought occurrence and severity over several centuries as determined from paleo, instrumental, and climate model data sources.  相似文献   

3.
Abstract

The National Drought Model (NDM) is an amalgamation of the atmospheric component of the original Palmer Drought and Versatile Soil Moisture Budget (VSMB) models. The NDM uses locally derived coefficients from the station or gridded climate data to calculate a calibration factor for comparing locations in time and space. A modular approach is used to model major processes such as evapotranspiration, biometeorological time, snowmelt, and the cascading of soil moisture down to the root zone. The modular approach allows modifications to be made to specific sections without making structural changes to the entire model or the data inputs. The NDM is an operational tool, integrating data from the climate, soil, and plant sciences to monitor agroclimatic risks such as drought and excess moisture. In this paper, the capacity of the NDM to monitor extreme agroclimatic risks, such as drought and flooding of agricultural soils, was assessed. Using the Palmer Drought Severity Index component of the NDM, the mapping of the spatial extent and severity of the 2001 and 2002 droughts across Canada and the excess moisture conditions on the Canadian Prairies in 2010 agreed with other assessments. The validation study of soil moisture at two Alberta locations (Lethbridge and Beaverlodge) showed that the VSMB tracked the soil moisture flux in the root zone successfully in response to changing environmental conditions. The VSMB explained about 70 and 60% of the variance in observed soil moisture at the two respective locations.  相似文献   

4.
Recent and potential future increases in global temperatures are likely to be associated with impacts on the hydrologic cycle, including changes to precipitation and increases in extreme events such as droughts. We analyze changes in drought occurrence using soil moisture data for the SRES B1, A1B and A2 future climate scenarios relative to the PICNTRL pre-industrial control and 20C3M twentieth century simulations from eight AOGCMs that participated in the IPCC AR4. Comparison with observation forced land surface model estimates indicates that the models do reasonably well at replicating our best estimates of twentieth century, large scale drought occurrence, although the frequency of long-term (more than 12-month duration) droughts are over-estimated. Under the future projections, the models show decreases in soil moisture globally for all scenarios with a corresponding doubling of the spatial extent of severe soil moisture deficits and frequency of short-term (4–6-month duration) droughts from the mid-twentieth century to the end of the twenty-first. Long-term droughts become three times more common. Regionally, the Mediterranean, west African, central Asian and central American regions show large increases most notably for long-term frequencies as do mid-latitude North American regions but with larger variation between scenarios. In general, changes under the higher emission scenarios, A1B and A2 are the greatest, and despite following a reduced emissions pathway relative to the present day, the B1 scenario shows smaller but still substantial increases in drought, globally and for most regions. Increases in drought are driven primarily by reductions in precipitation with increased evaporation from higher temperatures modulating the changes. In some regions, increases in precipitation are offset by increased evaporation. Although the predicted future changes in drought occurrence are essentially monotonic increasing globally and in many regions, they are generally not statistically different from contemporary climate (as estimated from the 1961–1990 period of the 20C3M simulations) or natural variability (as estimated from the PICNTRL simulations) for multiple decades, in contrast to primary climate variables, such as global mean surface air temperature and precipitation. On the other hand, changes in annual and seasonal means of terrestrial hydrologic variables, such as evaporation and soil moisture, are essentially undetectable within the twenty-first century. Changes in the extremes of climate and their hydrological impacts may therefore be more detectable than changes in their means.  相似文献   

5.
Abstract

Using GATE A/B‐scale U.S.S.R. ship data, heat and moisture budget analyses have been carried out for the three‐day period: 0000 GMT, 7 September to 2400 GMT, 9 September, 1974. The period has been subdivided into an undisturbed period (0000 GMT, 7 September ‐1800 GMT, 8 September) and a disturbed period (1800 GMT, 8 September ‐ 2400 GMT, 9 September) based on surface precipitation and satellite cloud observations. During the undisturbed period, precipitation was very light (1–3 mm day‐1). On the other hand, the precipitation rate became well over 10 mm day‐1 during the disturbed period. A/B‐scale heat and moisture budget results for both periods are presented.

It is found that during the undisturbed period, cumulus clouds have heating and moistening effects in the lower troposphere below 700 mb, and cooling and moistening effects in the upper troposphere above 600mb. In the disturbed period, clouds have strong heating and drying effects throughout the entire cloud layer.

Using the diagnostic scheme developed by Cho (1977), the collective properties of cumulus clouds for both the undisturbed and the disturbed periods are also determined. During the undisturbed period, some clouds reached as high as the 300‐mb level, however, little precipitation was produced. The total cloud mass flux is found to be negative in the upper troposphere and can be attributed to downdrafts induced by the evaporation of cloud liquid water. On the other hand, total cloud mass flux for the disturbed period is positive throughout the entire troposphere.  相似文献   

6.
Little is known about clouds during drought. From 1999 to 2005 the Canadian Prairies experienced one of the most severe and prolonged droughts in the historical record. This study characterizes clouds during drought in the Canadian Prairie provinces with a particular focus on this recent drought.

Drought severity was determined using the Standardized Precipitation Index (SPI) based on monthly precipitation on a 1° × 1° grid. Cloud fields from the National Aeronautics and Space Administration/Global Energy and Water Experiment's (NASA/GEWEX) Surface Radiation Budget database were used to examine overall cloud amount, optical thickness, and top-of-the-atmosphere albedo. Anomalies in monthly precipitation in the satellite record from 1984 to 2004, with an emphasis on the recent drought from 1999 to 2004, were related to anomalies in cloud fields.

During drought, a decrease in cloud amount was observed. During the spring and summer months of the 1999–2004 drought, for example, the observed cloud cover fraction decreased by approximately 7% between severely wet and severely dry conditions. There was, however, large month-to-month and spatial variability, and the correlation of cloud cover fraction anomaly with precipitation was weak. A higher correlation was found between the top-of-the-atmosphere albedo and precipitation. The occurrence of thick clouds and clouds of medium thickness did decrease with drought severity. These trends also applied to subregions within the overall domain. These observations further the understanding of the role of clouds in feedback mechanisms during drought.

R ésumé ?[Traduit par la rédaction] On sait peu de choses à propos des nuages durant les sécheresses. De 1999 à 2005, les Prairies canadiennes ont connu l'une des périodes de sécheresse les plus longues et les plus intenses depuis que l'on tient des relevés. La présente étude porte sur les nuages durant les périodes de sécheresse dans les Prairies canadiennes, en mettant l'accent sur les sécheresses récentes.

Nous avons déterminé l'intensité des sécheresses au moyen de l'indice de précipitations normalisé (SPI) fondé sur les précipitations mensuelles sur une grille de 1° × 1°. Nous avons étudié les champs de nuages obtenus de la base de données du bilan radiatif de la surface du GEWEX (Expérience mondiale sur les cycles de l'énergie et de l'eau) de la NASA pour examiner l'étendue générale des nuages, l'épaisseur optique et l'albédo du sommet de l'atmosphère. Nous avons mis en relation les anomalies dans les précipitations mensuelles d'après les données satellitaires de 1984 à 2004, en mettant l'accent sur la sécheresse récente de 1999 à 2004, avec les anomalies dans les champs de nuages.

Pendant les sécheresses, nous avons noté une diminution de l'étendue des nuages. Durant les mois de printemps et d'été de la période de sécheresse de 1999 à 2004, par exemple, la fraction de couverture du ciel observée a diminué d'environ 7 % entre les conditions très humides et très sèches. Cependant, la variabilité intermensuelle et spatiale est grande, et la corrélation de l'anomalie de la fraction de couverture nuageuse avec les précipitations est faible. Nous avons trouvé une meilleure corrélation entre l'albédo du sommet de l'atmosphère et les précipitations. La quantité de nuages épais et de nuages d'épaisseur moyenne diminuait quand l'intensité de la sécheresse augmentait. Ces tendances s'observent aussi dans les sous-régions à l'intérieur domaine général. Ces observations permettent de mieux comprendre le rôle des nuages dans les mécanismes de rétroaction au cours des sécheresses.  相似文献   

7.
Abstract

The passage of a winter storm is accompanied by changes in many surface and near‐surface parameters including temperature, humidity, wind, pressure, precipitation rate and type, cloud base height, visibility and accretion. These parameters were measured in association with the passage of precipitation‐type transitions over Newfoundland during the Canadian Atlantic Storms Program II field experiment. Three simple summaries of the observed weather events were developed. These summaries depend on the observed large‐scale synoptic conditions, which include warm fronts, a cold front and a trough.  相似文献   

8.
A catastrophic rain event occurred in early June 2002 during a major drought over the Canadian Prairies. The storm brought record-breaking rainfall and major flooding to many locations in the region. Given the importance of this event, this study's overall objectives are to characterize and to understand the physical nature of the rainstorm better. The event was associated with a major extratropical cyclone which acted in concert with the Great Plains low-level jet to transport a tremendous amount of moisture into the eastern Prairies producing intense diurnal mesoscale convective systems over the region. At the same time, moisture was transported to the western Prairies by a strong easterly low-level jet which produced heavy and long-lived orographic precipitation near the foothills. Several working hypotheses were developed to explain the severity and longevity of the rainstorm; it was found that the Rockies played a central role in the organization and development of the system.

Atmospheric features that are critical to the development of an important class of extreme rain events in the Canadian Prairies were also identified. The severity of the June 2002 system is partly a result of the rare co-occurrence of these features during the period. Results from a preliminary analysis show that the atmospheric conditions associated with the extreme background drought enhanced the likelihood of the co-occurrence of these features during spring 2002, hence facilitating the development of the extreme rain event. In return, the tremendous precipitation from the storm alleviated the drought conditions in the southern Prairies.

R ésumé ?[Traduit par la rédaction] Un événement de pluie catastrophique s'est produit au début de juin 2002 pendant une sécheresse importante dans les Prairies canadiennes. La tempête a produit des chutes de pluie records et des inondations importantes à plusieurs endroits dans la région. Étant donné l'importance de cet événement, les objectifs généraux de la présente étude sont de mieux caractériser et de mieux comprendre la nature physique de la tempête de pluie. L'événement a été causé par une importante dépression extratropicale qui s'est associée au courant-jet à basse altitude des Grandes Plaines pour transporter une énorme quantité d'humidité dans l'est des Prairies et produire d'intenses systèmes convectifs de mésoéchelle diurne dans la région. En même temps, de l'humidité transportée dans l'ouest des Prairies par un fort courant-jet à basse altitude soufflant de l'est a produit d'intenses précipitations orographiques persistantes près des contreforts. Nous avons formulé plusieurs hypothèses de travail pour expliquer l'intensité et la persistance de la tempête de pluie; il ressort que les Rocheuses ont joué un rôle central dans l'organisation et le développement du système.

Nous avons aussi identifié les caractéristiques atmosphériques essentielles à la formation d'une catégorie importante d'événements de pluie extrêmes dans les Prairies canadiennes. L'intensité du système de juin 2002 est en partie le résultat de la rare présence simultanée de ces caractéristiques durant la période. Les résultats d'une analyse préliminaire montrent que les conditions atmosphériques liées à la sécheresse extrême qui régnait en toile de fond ont augmenté la probabilité d'une présence simultanée de ces caractéristiques au cours du printemps 2002, ce qui a favorisé la formation de l'événement de pluie extrême. En revanche, les précipitations diluviennes produites par la tempête ont atténué les conditions de sécheresse dans le sud des Prairies.  相似文献   

9.
中国夏季和冬季极端干旱年代际变化及成因分析   总被引:4,自引:0,他引:4  
刘珂  姜大膀 《大气科学》2014,38(2):309-321
依据1961~2009年中国区域540个气象站的夏、冬季气温和降水数据,首先采用气候变化趋势转折判别模型(简称PLFIM)分析了中国区域8个分区夏、冬季气温和降水的年代际变化,而后利用PDSI干旱指数研究了夏、冬季极端干旱在年代际尺度上的时空变化特征及其成因。结果表明:1961~2009年中国夏季极端干旱发生率北方大于南方,冬季则为在东部多而在西部少。夏季和冬季极端干旱发生概率在最后一次年代际转折后都呈增加趋势。在区域尺度上,夏季东北、华北和西北地区增加明显,冬季东北、华北、华南、西南地区增加显著。其中,降水在20世纪90年代以前的极端干旱变化中起主导作用,而后由于气候变暖所引起的极端干旱增加趋势逐渐增大,与降水变化的作用相互叠加。  相似文献   

10.
Abstract

Fourteen rain‐snow boundaries and freezing precipitation episodes within Canadian East Coast winter storms are examined. Radar, sounding, and surface observations are used to study the characteristics of these features. Rain‐snow boundaries and freezing precipitation episodes are coupled phenomena. The deepest radar echoes and the heaviest precipitation generally occur in the adjacent snow region, and surface wind shifts typically are associated with the transition to rain.  相似文献   

11.
In the last decade, a series of severe and extensive droughts have swept across Southwest China, resulting in tremendous economic losses, deaths, and disruption to society. Consequently, this study is motivated by the paramount importance of as- sessing future changes in drought in Southwest China. Precipitation is likely to decrease over most parts of Southwest China around the beginning of the century, followed by widespread precipitation increases; the increase in potential evapotran- spiration (PET), due to the joint effects of increased temperature and surface net radiation and decreased relative humidity, will overwhelm the whole region throughout the entire 21st century. In comparative terms, the enhancement of PET will outweigh that of precipitation, particularly under Representative Concentration Pathway (RCP) 8.5, resulting in intensified drought. Generally, the drying tendency will be in the southeast portion, whereas the mountainous region in the northwest will become increasingly wetter owing to abundant precipitation increases. Droughts classified as moderate/severe according to historical standards will become the norm in the 2080s under RCP4.5/RCP8.5. Future drought changes will manifest different characteristics depending on the time scale: the magnitude of change at a time scale of 48 months is nearly twice as great as that at 3 months. Furthermore, we will see that not only will incidences of severe and extreme drought increase dramatically in the future, but extremely wet events will also become more probable.  相似文献   

12.
RCP4.5情景下中国未来干湿变化预估   总被引:5,自引:0,他引:5  
刘珂  姜大膀 《大气科学》2015,39(3):489-502
本文采用国际耦合模式比较计划第五阶段(CMIP5)中21个气候模式的试验数据, 利用土壤湿度以及由其他8个地表气象要素计算所得的干旱指数, 预估了RCP4.5(Representative Concentration Pathway 4.5)情景下21世纪中国干湿变化。结果表明:全球气候模式对1986~2005年中国现代干湿分布具备模拟能力, 尽管在西部地区模式与观测间存在一定的差异。在RCP4.5情景下, 21世纪中国区域平均的标准化降水蒸散发指数和土壤湿度均有减小趋势, 与之对应的是短期和长期干旱发生次数增加以及湿润区面积减小。从2016到2100年, 约1.5%~3.5%的陆地面积将从湿润区变成半干旱或半湿润区。空间分布上, 干旱化趋势明显的区域主要位于西北和东南地区, 同时短期和长期干旱发生次数在这两个地区的增加幅度也最大, 未来干旱化的发生时间也较其他地区要早;只在东北和西南地区未来或有变湿倾向, 但幅度较小。在季节尺度上, 北方地区变干主要发生在暖季, 南方则主要以冷季变干为主。造成中国干旱化的原因主要是由降水与蒸散发所表征的地表可用水量减少。  相似文献   

13.
Recent drought and precipitation tendencies in Ethiopia   总被引:3,自引:0,他引:3  
In 2011, drought in the Horn of Africa again made news headlines. This study aims to quantify the meteorological component of this and other drought episodes in Ethiopia since 1971. A monthly precipitation data set for 14 homogeneous rainfall zones was constructed based on 174 gauges, and the standardized precipitation index was calculated on seasonal, annual, and biannual time scales. The results point to 2009 as a year of exceptionally widespread drought. All zones experienced drought at the annual scale, although in most zones, previous droughts were more extreme. Nationally, 2009 was the second driest year, surpassed only by the historic year 1984. Linear regression analysis indicates a precipitation decline in southern Ethiopia, during both February–May and June–September. In central and northern Ethiopia, the analysis did not provide evidence of similar tendencies. However, spring droughts have occurred more frequently in all parts of Ethiopia during the last 10–15 years.  相似文献   

14.
Abstract

Bogusing errors associated with estimating rainfalls for ungauged points on Canada's eastern Prairies based on the near real‐time network have been determined for growing season totals, summer monthly amounts and summer daily values. The bogusing errors as a percentage of the concurrent area‐average amount or the coefficients of variation decreased as the measurement period increased. Growing season precipitation totals can be approximated to within 20%. The error associated with bogused summer monthly amounts was more than twice as large. The field of summer daily rainfall amounts cannot be estimated accurately. It can be concluded, therefore, that the precipitation network on the eastern Prairies is not sufficient for applications requiring the input of summer daily or monthly precipitation amounts from points other than the gauged locations. The network does, nevertheless, provide relatively accurate estimates of the growing season's precipitation field to assist in defining the climate.

Reductions in the magnitude of the bogusing errors associated with estimated precipitation amounts can be achieved by adding new stations to the network. While additional sites provide data at the newly gauged points, they do little to improve the network's representation of the rainfall field unless the new stations are added in fairly large numbers.  相似文献   

15.
利用TWP-ICE试验资料对比两种边界层参数化方案   总被引:1,自引:1,他引:0       下载免费PDF全文
利用高分辨率WRF单气柱模式,选取了两种边界层参数化方案(YSU,MYJ),对TWP-ICE(Tropical Warm Pool International Cloud Experiment)试验期间的个例进行数值模拟,比较了两种方案对边界层结构、云和降水模拟的影响。结果表明:季风活跃期,YSU方案模拟的湍流交换系数较小,湍流混合偏弱,边界层内热通量偏小,使地表热量和水汽不易向上输送,水汽含量在近地表明显偏多,而在边界层及其以上大气层具有显著的干偏差,因此该方案模拟的云中液态水和固态水含量偏低,云量偏少,降水率偏小;MYJ方案对于季风活跃期的边界层结构具有较好的模拟能力,其模拟的云和降水更为准确。季风抑制期,MYJ方案模拟的夜间边界层结构存在较大误差,这是因为该方案模拟的夜间湍流交换系数较大,湍流混合偏强,边界层内热通量偏大,模拟的位温和水汽混合比在边界层内随高度变化较小,而观测廓线在边界层内存在较大梯度。季风抑制期两种方案模拟的云和降水均比观测值偏多,方案之间的差异较小。  相似文献   

16.
Cambodia is one of the most vulnerable countries to climate change impacts such as floods and droughts. Study of future climate change and drought conditions in the upper Siem Reap River catchment is vital because this river plays a crucial role in maintaining the Angkor Temple Complex and livelihood of the local population since 12th century. The resolution of climate data from Global Circulation Models (GCM) is too coarse to employ effectively at the watershed scale, and therefore downscaling of the dataset is required. Artificial neural network (ANN) and Statistical Downscaling Model (SDSM) models were applied in this study to downscale precipitation and temperatures from three Representative Concentration Pathways (RCP 2.6, RCP 4.5 and RCP 8.5 scenarios) from Global Climate Model data of the Canadian Earth System Model (CanESM2) on a daily and monthly basis. The Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) were adopted to develop criteria for dry and wet conditions in the catchment. Trend detection of climate parameters and drought indices were assessed using the Mann-Kendall test. It was observed that the ANN and SDSM models performed well in downscaling monthly precipitation and temperature, as well as daily temperature, but not daily precipitation. Every scenario indicated that there would be significant warming and decreasing precipitation which contribute to mild drought. The results of this study provide valuable information for decision makers since climate change may potentially impact future water supply of the Angkor Temple Complex (a World Heritage Site).  相似文献   

17.
基于CMIP5中的5个全球气候模式统计降尺度的降水、最高和最低气温等数据,利用标准降水蒸发指数(SPEI)和强度-面积-持续时间(IAD)方法识别全球升温1.5℃与2.0℃情景下中亚地区干旱事件,结合30 m分辨率土地利用数据,探讨中亚干旱事件的演变及耕地暴露度变化。结果表明:相比基准期(1986—2005年),中亚地区的降水和潜在蒸发量均有所增加;全球升温1.5℃与2.0℃情景下,中亚地区的干旱事件频次、强度和面积均将增加,其中重旱和极旱事件的频次和影响面积大幅上升,而中旱事件的频次和影响面积持续下降;1986—2005年中亚地区年均干旱耕地暴露度约11.5万km2,全球升温1.5℃和2.0℃情景下,干旱耕地暴露度将分别上升到17.9万km2和28.6万km2,且暴露在极旱下的耕地面积增加最明显。全球升温1.5℃与2.0℃情景下,增加的干旱事件将会严重威胁当地农业生产和粮食安全,中亚地区需对干旱事件采取长期的减缓与适应措施。  相似文献   

18.
Extreme weather conditions can strongly affect agricultural production, with negative impacts that can at times be detected at regional scales. In France, crop yields were greatly influenced by drought and heat stress in 2003 and by extremely wet conditions in 2007. Reported regional maize and wheat yields where historically low in 2003; in 2007 wheat yields were lower and maize yields higher than long-term averages. An analysis with a spatial version (10?×?10?km) of the EPIC crop model was tested with regards to regional crop yield anomalies of wheat and maize resulting from extreme weather events in France in 2003 and 2007, by comparing simulated results against reported regional crops statistics, as well as using remotely sensed soil moisture data. Causal relations between soil moisture and crop yields were specifically analyzed. Remotely sensed (AMSR-E) JJA soil moisture correlated significantly with reported regional crop yield for 2002–2007. The spatial correlation between JJA soil moisture and wheat yield anomalies was positive in dry 2003 and negative in wet 2007. Biweekly soil moisture data correlated positively with wheat yield anomalies from the first half of June until the second half of July in 2003. In 2007, the relation was negative the first half of June until the second half of August. EPIC reproduced observed soil dynamics well, and it reproduced the negative wheat and maize yield anomalies of the 2003 heat wave and drought, as well as the positive maize yield anomalies in wet 2007. However, it did not reproduce the negative wheat yield anomalies due to excessive rains and wetness in 2007. Results indicated that EPIC, in line with other crop models widely used at regional level in climate change studies, is capable of capturing the negative impacts of droughts on crop yields, while it fails to reproduce negative impacts of heavy rain and excessively wet conditions on wheat yield, due to poor representations of critical factors affecting plant growth and management. Given that extreme weather events are expected to increase in frequency and perhaps severity in coming decades, improved model representation of crop damage due to extreme events is warranted in order to better quantify future climate change impacts and inform appropriate adaptation responses.  相似文献   

19.
A fuzzy hierarchical clustering technique using the pairwise similarity matrix is employed to find the homogenous climate subregions over southwest Iran, based on the similarity of meteorological drought characteristics (i.e., duration, intensity, onset, and ending dates). The representative subregions are recognized for different rainy seasons; for each, the regional rainfall anomalies are computed. To find appropriate drought predictors, the lag relationships of regional rainfall with seasonal Southern Oscillation Index (SOI) and North Atlantic Oscillation (NAO) are examined using a conditional probability approach. The results suggest a significant negative correlation between autumn rainfall and June–August SOI. The NAO is also negatively correlated with autumn rainfall such that it is least likely for an extreme autumn drought to occur when June–August NAO is negative. A spring drought is preceded by an October–December NAO greater than 0.5. However, winter droughts do not appear to be lag-correlated with either SOI or NAO. In addition to the findings for droughts, these indices also emerged having considerable influence on wet seasons. A wet autumn tends to occur when either May–July SOI is less than ?0.5 or June–August NAO is less than about ?0.3. It is also apparent that the extreme wet springs are absent when October–December NAO is positive. This season is influenced most by NAO in both dry and wet spells. However, similar to droughts, the wet winter seasons are not found to be associated with either SOI or NAO.  相似文献   

20.
Ecosystems have increasingly been subject to the challenge of heavy drought under global warming. To quantitatively evaluate the impacts of drought on ecosystems, it is necessary to develop a drought index that can sensitively depict the response of vegetation to drought evolution at a biological time scale. For the ability of direct connection between climate and ecosystem by deficit of evapotranspiration, in the present study, a drought index was defined based on standardized evapotranspiration deficit (SEDI), according to the difference between actual and potential evapotranspiration, to meet the need for highlighting drought impacts on ecological processes. Comparisons with traditional indices show that SEDI can reasonably detect droughts and climatic dry and wet transitions, especially at a monthly time scale, and can also regenerate long-term trends. Moreover, SEDI can more sensitively capture the biological changes of ecosystems in response to the dynamics of drought intensity, compared with the indices of precipitation and temperature. SEDI is more practical than the precipitation and temperature indices to highlight signals of biological effects in climate droughts. Hence, it has potential for use in assessments of climate change and its impact on ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号