首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 146 毫秒
1.
《Climate Policy》2001,1(1):125-133
Energy sector emissions from Russia have declined by about 33% from 1990 levels. We estimate that some 60–70% of the reduction is due to economic decline, and about 8–12% of it is due to reforms in the energy sector; the remainder being due to the wider use of natural gas and structural changes in the economy. Vigorous institutional and technological measures to promote energy efficiency could lead to savings of over 100 million t.c.e. per year by 2010, and keep CO2 emissions fairly close to current levels over the decade. In our view, international emissions trading should not lead to global emissions growth, but should facilitate the best energy saving and efficiency. Consequently, we propose that the available assigned amount should be divided into two components. That part arising from ‘type 1’ reductions, produced by special projects and measures relating to GHG reduction taken since 1990, should be freely traded; whereas the remaining ‘type 2’ surplus, without a clear link to real emission reduction activity, should only be traded if the revenues are recycled into special projects resulting in emissions reduction equal to or more than the amount of emissions sold.  相似文献   

2.
The main assumptions and findings are presented on a comparative analysis of three GHG long-term emissions scenarios for Brazil. Since 1990, land-use change has been the most important source of GHG emissions in the country. The voluntary goals to limit Brazilian GHG emissions pledged a reduction in between 36.1% and 38.9% of GHG emissions projected to 2020, to be 6–10% lower than in 2005. Brazil is in a good position to meet the voluntary mitigation goals pledged to the United Nations Framework Convention on Climate Change (UNFCCC) up to 2020: recent efforts to reduce deforestation have been successful and avoided deforestation will form the bulk of the emissions reduction commitment. In 2020, if governmental mitigation goals are met, then GHG emissions from the energy system would become the largest in the country. After 2020, if no additional mitigation actions are implemented, GHG emissions will increase again in the period 2020–2030, due to population and economic growth driving energy demand, supply and GHG emissions. However, Brazil is in a strong position to take a lead in low-carbon economic and social development due to its huge endowment of renewable energy resources allowing for additional mitigation actions to be adopted after 2020.

Policy relevance

The period beyond 2020 is now relevant in climate policy due to the Durban Platform agreeing a ‘protocol, legal instrument or agreed outcome with legal force’ that will have effect from 2020. After 2020, Brazil will be in a situation more similar to other industrialized countries, faced with a new challenge of economic development with low GHG energy-related emissions, requiring the adoption of mitigation policies and measures targeted at the energy system. Unlike the mitigation actions in the land-use change sector, where most of the funding will come from the national budgets due to sovereignty concerns, the huge financial resources needed to develop low-carbon transport and energy infrastructure could benefit from soft loans channelled to the country through nationally appropriate mitigation actions (NAMAs).  相似文献   

3.
The Australian Government policy on reduction of greenhouse gas emissions announced in 1990 includes exploring the scope for immediate, low cost reductions. Such measures can be taken as including ‘no regrets’ policies: those that, in addition to mitigating potential climate change, confer economic gains (including other environmental benefits) which exceed their costs. Some possible ‘no regrets’ opportunities and policies are identified relevant to energy use by the road transport sector over the period to 2020. The MARKALMENSA multi-period linear programming model of the Australian energy sector is used to investigate the cost-effectiveness of these policies.  相似文献   

4.
In the context of the negotiations under the United Nations Framework Convention on Climate Change and its accompanying Kyoto Protocol, participating nations have recognized the need for formulating Nationally Appropriate Mitigation Actions (NAMAs). These NAMAs allow countries to take into account their national circumstances and to construct measures to mitigate GHG emissions across economic sectors. Israel has declared to the UN that it would strive to reduce its GHG emissions by 20% in the year 2020 relative to a ‘business as usual' scenario. With its growing population and an expanding economy, the national GHG mitigation plan was developed to draw a course for steering the Israeli economy into a low-carbon future while accommodating continued economic growth. The article describes relevant policy measures, designed to aid in the implementation of the plan and compares them with measures being undertaken by different countries. Emphasis is placed on analysing the progress to date, opportunities and barriers to attaining the ultimate GHG emissions reduction goals. The objective of this article is to contribute to the knowledge base of effective approaches for GHG emissions reduction. We emphasize the integrated approach of planning and implementation that could be especially useful for developing countries or countries with economies in transition, as well as for developed countries. Yet, in the article we argue that NAMAs’ success hinges on structured tracking of progress according to emerging global consensus standards such as the GHG Protocol Mitigation Goals Standard.

Policy relevance:

The study is consistent with the NAMA concept, enabling a country to adopt a ‘climate action plan’ that contributes to its sustainable development, while enabled by technology and being fiscally sound.

The analysis shows that although NAMAs have been framed in terms of projects, policies, and goals, current methodologies allow only the calculation of emission reductions that can be attributed to distinct projects. Currently, no international guidance exists for quantifying emissions reduction from policy-based NAMAs, making it difficult to track and validate progress. This gap could be addressed by an assessment framework that we have tested, as part of a World Resources Institute pilot study for an emerging voluntary global standard.  相似文献   

5.
A change in economic structure influences the total energy consumption as well as CO2 emissions of a country, given the inherent difference in levels of energy intensity and energy fuel mix of different economic sectors. Its significance has been recognized in recent literature on China’s emission mitigation which could arguably raise China’s mitigation potential and thus the possibility of keeping the 2-degree trajectory on track. This article utilizes the past trend of economic structural change of five East Asian developed economies to project the energy consumption and CO2 emissions of China in the coming decades. A special delineation of the economic sector is made, putting private consumption together with the three typical economic production sectors, to resolve the mismatch between the statistical data of energy consumption and economic production, in that residential energy consumption is typically merged into the tertiary sector, although it does not directly correspond to gross domestic product (GDP) output. Results suggest that the level of CO2 emissions would be lower if China followed a development pathway emphasizing the development of the tertiary sector and continuously shrinking her secondary sector, making it possible for China to contribute more to global carbon mitigation. The impact from the rise of private consumption would be relatively insignificant compared to deindustrialization. In addition to continuous improvement in technology, economic structural change, which reduces carbon emission intensity, would be essential for China to be able to achieve the carbon emission level pledged in the Paris Agreement.

Key policy insights

  • For China, significant economic structural reform, particularly deindustrialization, is necessary to achieve the goal of ‘peak emission by 2030’.

  • Any additional contribution from China to the global effort to maintain a 2-degree trajectory would be limited – from a ‘fair-contribution’ perspective based on share of population or GDP – because the implied mitigation targets would be almost impossible to achieve.

  • If developing countries follow the pathway of developed economies, particularly in developing energy-intensive industries, energy consumption and CO2 emissions would significantly increase, reducing the possibility of keeping global temperature rise within the 2-degree Celsius benchmark.

  相似文献   

6.
This article gives a detailed account of part of the modelling that was carried out for the assessment of the EU's proposed energy and climate targets for 2030. Using the macro-econometric simulation model, E3ME, and drawing on results from the PRIMES energy systems model, it shows that a 40% reduction in GHG emissions (compared to 1990 levels) could lead to an increase in employment of up to 0.7 million jobs in Europe. Furthermore, if the same GHG reduction target was combined with targets for renewables and energy efficiency, the net increase in jobs could be as high as 1.2 million. Both results are in contrast to the standard findings from computable general equilibrium (CGE) models, reflecting the different underlying assumptions (e.g. labour supply) to the modelling approach. Additional sensitivity testing shows that the ways in which the energy efficiency and renewable measures are funded are important factors in determining overall economic impact.

Policy relevance

In recent years there has been much debate as to whether the European Union should have a single GHG reduction target or a set of targets that also cover renewables and energy efficiency. This paper elaborates on part of the modelling that was carried out for the official assessment of the European Union's proposed energy and climate targets for 2030. Using an empirical, model-based approach, it compares a scenario where there is a single 40% GHG reduction target to a scenario that also includes a 30% renewables target and stricter energy efficiency standards. The model results show that the large investment stimulus needed to meet the combined targets leads to higher levels of GDP and employment. This suggests that there could be medium-term economic and social benefits to including all three targets in the future energy and climate package.  相似文献   

7.
This paper provides a detailed analysis of the Tokyo Metropolitan Emissions Trading Scheme (Tokyo ETS), Japan’s first emissions trading scheme with mandatory cap initiated by the government of Tokyo. Unlike trading schemes in other countries, the Tokyo ETS covers indirect emissions from the commercial sector. It is well known that a variety of market barriers impede full realization of energy efficiency opportunities, especially in the commercial sector. Experiences with the Tokyo ETS should therefore provide important lessons for the design of climate change mitigation policies, especially when targeting the commercial sector. The emissions from covered entities have been drastically reduced from those at the scheme’s outset, with an average 14% reduction as of the end of the first commitment period of five years (2010–2014) compared with 2009 levels. This paper shows that the Tokyo ETS alone did not cause these reductions; there were other drivers. Among them, the energy savings triggered by the Great East Japan Earthquake in 2011 were crucial. The contribution of credit trading, in contrast, was limited since most of the covered entities reduced emissions by themselves. Through an investigation of official reports, an assessment of the emissions data from the covered entities compared to those of uncovered entities and in-depth interviews with firms covered by the scheme, this paper confirms that the main drivers of emissions reductions by covered entities were separate from the ETS. In fact, the advisory aspect of the scheme seems to be much more important in encouraging energy-saving actions.

Key policy insights

  • Most of the observed emission reductions were not caused by the Tokyo ETS alone.

  • An advisory instrument was crucial to the effectiveness of the Tokyo ETS.

  • The experience of the Tokyo ETS suggests that making full use of the advantages of emissions trading is difficult in the case of the commercial sector.

  • Price signals have not provided a stimulus to climate change mitigation actions, which implies that establishing a cap to yield effective carbon prices poses a challenge.

  相似文献   

8.
《Climate Policy》2013,13(1):19-33
Abstract

The two project-based Kyoto mechanisms, joint implementation (JI) and the clean development mechanism (CDM), require a determination of the “baseline”, the development of greenhouse gas (GHG) emissions in the absence of the project. This paper examines, whether absolute (given in tCO2 equivalent) or relative baselines (“benchmarks”, given, e.g. in tCO2 equivalent/MWh) should be applied for JI/CDM projects in the energy sector. Accuracy of the GHG emission reduction and manageability of GHG emission balances are used as evaluation criteria. The results show that relative baselines are a more accurate instrument for the estimation of emission reductions in JI/CDM projects in the energy sector without posing significant additional risks to the management of GHG emission balances for large entities. In comparison to absolute baselines, relative baselines indicate in a more realistic and conservative manner the amount of emission reductions obtained in the energy system and give more appropriate incentives to project sponsors. The additional risks of relative baselines are likely to be small compared to the normal deviation of the domestic/internal GHG emissions. The findings are in line with the Marrakesh Accords, which set restrictions to application of absolute baselines.  相似文献   

9.
This article shows the potential impact on global GHG emissions in 2030, if all countries were to implement sectoral climate policies similar to successful examples already implemented elsewhere. This assessment was represented in the IMAGE and GLOBIOM/G4M models by replicating the impact of successful national policies at the sector level in all world regions. The first step was to select successful policies in nine policy areas. In the second step, the impact on the energy and land-use systems or GHG emissions was identified and translated into model parameters, assuming that it would be possible to translate the impacts of the policies to other countries. As a result, projected annual GHG emission levels would be about 50 GtCO2e by 2030 (2% above 2010 levels), compared to the 60 GtCO2e in the ‘current policies’ scenario. Most reductions are achieved in the electricity sector through expanding renewable energy, followed by the reduction of fluorinated gases, reducing venting and flaring in oil and gas production, and improving industry efficiency. Materializing the calculated mitigation potential might not be as straightforward given different country priorities, policy preferences and circumstances.

Key policy insights

  • Considerable emissions reductions globally would be possible, if a selection of successful policies were replicated and implemented in all countries worldwide.

  • This would significantly reduce, but not close, the emissions gap with a 2°C pathway.

  • From the selection of successful policies evaluated in this study, those implemented in the sector ‘electricity supply’ have the highest impact on global emissions compared to the ‘current policies’ scenario.

  • Replicating the impact of these policies worldwide could lead to emission and energy trends in the renewable electricity, passenger transport, industry (including fluorinated gases) and buildings sector, that are close to those in a 2°C scenario.

  • Using successful policies and translating these to policy impact per sector is a more reality-based alternative to most mitigation pathways, which need to make theoretical assumptions on policy cost-effectiveness.

  相似文献   

10.
Abstract

This article investigates future greenhouse gas emission scenarios for Russia's electricity sector, a topic of importance since Russia's ratification of the Kyoto Protocol in November 2004. Eleven scenarios are constructed to the year 2020 considering economic and technological details in both the demand and supply sides of the sector. The scenarios are based upon a thorough review of the different factors controlling carbon dioxide emissions, including potential economic growth, changes in energy efficiency and technological development, and that Russia may export large amounts of natural gas to European and Asian markets. The most likely scenario is that Russia will double industrial output over the next 10 years, increase energy efficiency in the demand sector, will remain consistent to the goals of the Energy Strategy 2020 and will implement more efficient technology in the electricity supply sector. Consequently, carbon dioxide emissions will still be 102 million tonnes below 1990 levels in 2010, representing a significant source for emission reduction credits available to be sold on international markets or transferred to the next crediting period.  相似文献   

11.
1.5℃温升目标下中国碳排放路径研究   总被引:1,自引:0,他引:1  
《巴黎协定》提出1.5℃目标以及中国2060年前达到碳中和的目标背景下,为研究实现1.5℃目标的技术路径,构建了综合性的能源-经济-环境系统模型,研究中国在2℃情景基础上实现1.5℃目标的额外减排要求、部门贡献和关键减排措施。结果显示,1.5℃情景要求到2050年CO2排放量减少到6亿t。一次能源消费总量2045年达峰,峰值控制在68亿tce。能源结构实现大幅度优化,非化石能源占比达到67%,煤炭比例下降到16%。与2℃情景相比,2015—2050年1.5℃情景需要额外累积减排380亿t CO2,额外减排量主要来自电力部门。在减排措施方面,额外减排主要来自新型低碳能源与生物质能结合碳捕集与封存(BECCS)技术。不同部门的主要减排措施存在差异,电力部门更多依赖BECCS等减排技术以实现较大幅度负排放,是实现1.5℃目标路径的关键因素。工业部门主要依赖能效提高。建筑和交通部门则更多依赖终端能源结构调整,氢能在其中发挥了较大作用。  相似文献   

12.
The energy sector is the main contributor to GHG emissions in Saudi Arabia. The tremendous growth of GHG emissions poses serious challenges for the Kingdom in terms of their reduction targets, and also the mitigation of the associated climate changes. The rising trend of population and urbanization affects the energy demand, which results in a faster rate of increase in GHG emissions. The major energy sector sources that contribute to GHG emissions include the electricity generation, road transport, desalination plants, petroleum refining, petrochemical, cement, iron and steel, and fertilizer industries. In recent years, the energy sector has become the major source, accounting for more than 90% of national CO2 emissions. Although a substantial amount of research has been conducted on renewable energy resources, a sustainable shift from petroleum resources is yet to be achieved. Public awareness, access to energy-efficient technology, and the development and implementation of a legislative framework, energy pricing policies, and renewable and alternative energy policies are not mature enough to ensure a significant reduction in GHG emissions from the energy sector. An innovative and integrated solution that best serves the Kingdom's long-term needs and exploits potential indigenous, renewable, and alternative energy resources while maintaining its sustainable development stride is essential.

Policy relevance

The main contributor to GHG emissions in Saudi Arabia is the energy sector that accounts for more than 90% of the national CO2 emissions. Tremendous growth of GHG emissions poses serious challenges for the Kingdom in their reduction and mitigating the associated climate changes. This study examines the changing patterns of different activities associated with energy sector, the pertinent challenges, and the opportunities that promise reduction of GHG emissions while providing national energy and economic security. The importance of achieving timely, sustained, and increasing reductions in GHG emissions means that a combination of policies may be needed. This study points to the long-term importance of making near- and medium-term policy choices on a well-informed, strategic basis. This analytical paper is expected to provide useful information to the national policy makers and other decision makers. It may also contribute to the GHG emission inventories and the climate change negotiations.  相似文献   

13.
The Netherlands has ratified The Kyoto protocol and agreed to reduce its emissions of greenhouse gases. Since 1990 the goals were made less ambitious several times, but still the last goal for 2000 was not met. Economic growth surely has been one of the main culprits. The main reason economic growth results in higher CO2 emissions, is the fact that it causes higher energy consumption. So far policy measures to reduce CO2 emissions, including many energy efficiency and energy reduction measures, did not succeed in beating the effects of economic growth. The Netherlands did not manage to decouple economic growth and environmental pressure (measured here as CO2 emissions). Absolute decoupling will require an economy that has a fuel mix with a large proportion of renewables, and a much higher energy efficiency level, and probably some major technological breakthroughs. It is not very likely that current policy measures will lead to the Kyoto goals. Therefore, it is concluded that emission trading and levies would offer good, and efficient options for further reductions of CO2 equivalents. It might, however, make it difficult for The Netherlands to realise 50% of its reduction domestically, as CO2 reduction abroad will most likely be at least five times cheaper. The Ministry of VROM will have to invent new policy measures to meet the Kyoto goals.  相似文献   

14.
The role of market mechanisms was far from certain in the lead up to the 2015 Paris Climate Conference. The use of ‘constructive ambiguity’ led to Article 6 of the Paris Agreement, with Article 6.2 specifying a mechanism with limited international oversight, and Article 6.4 establishing a ‘Sustainable Development Mechanism’ (SDM) subject to detailed rules. Clear operationalization of these mechanisms remains a challenge, especially regarding the critical accounting issue that could not be resolved at the 2018 Katowice Climate Conference (COP24) – how to apply corresponding adjustments, especially regarding sectors not covered by targets under nationally-determined contributions (NDCs). By using fictitious examples, we explain two possible approaches to using Internationally Transferred Mitigation Outcomes (ITMOs) under Article 6.2 for achieving NDCs: a ‘target-based’ one where the acquiring Party adds the ITMO amount to the target level of its NDC; and a ‘tally-based’ one where the acquiring Party removes the ITMO amount from the final tally of its NDC. We discuss how these approaches influence the way to make corresponding adjustments and to avoid ‘double counting’. The first one leads to ‘target/budget-based accounting’, the second one to ‘emission-based accounting’. For mitigation outside the scope of the host Party's NDC, we propose using a tally-based interpretation of ITMO use, as opposed to the target-based variety used in the 1997 Kyoto Protocol, and stress the need for additionality testing. This interpretation allows for mandatory corresponding adjustments for all ITMO usage, while the host Party NDC level remains unchanged. A buffer registry is created for corresponding non-NDC adjustments of the selling party.

Key policy insights

  • Under the Paris Agreement, transfers of emissions units between two countries through the Article 6 mechanisms need a corresponding adjustment on both sides to prevent double counting.

  • Corresponding adjustments can be applied either to emissions targets under NDCs or measured emissions levels.

  • The transfer of emissions reduction credits generated outside an NDC should lead to a corresponding adjustment of a buffer registry of the selling country, but not its emissions level/NDC target. Such credits should only be generated if additionality of the reductions is shown.

  相似文献   

15.
《Climate Policy》2013,13(3):309-326
Abstract

Carbon dioxide emissions from UK energy use have fallen by more than 20% over the last 30 years, and carbon intensity—carbon emissions per unit of GDP—has halved. These reductions have been achieved by a combination of decarbonisation of the energy system and substantial improvements in energy efficiency. Use of natural gas in power generation has been a big factor in recent years, but energy efficiency improvements in households and particularly industry have been more important over a longer period. Government policies designed primarily to address climate change have not been important contributors, until recently.

Future reductions in emissions will require more proactive policies. However, they are possible without any economic difficulties, notably by adopting cost-effective energy efficiency measures, using new renewable energy sources and reducing dependence on private cars. These policies will improve economic efficiency. The new UK Climate Change Programme includes policies that combine regulation, investment, fiscal measures and other economic instruments. By working with the grain of other social, environmental and economic policies, they can achieve far more than a carbon tax alone, set at any politically acceptable level. Modelling the costs of emission reductions using a carbon tax as the only instrument would not only massively over-estimate costs, it would bear little resemblance to real world politics.

The paper demonstrates that a more diverse set of policy instruments is likely to be an effective and politically acceptable approach in a mature industrial economy. It is concluded that the UK's Kyoto target of a 12.5% reduction in greenhouse gas emissions is not challenging. The UK Government's target of reducing carbon dioxide emissions by 20% between 1990 and 2010 is also achievable. By 2010 per capita emissions from the UK will be well below 2.5 tC per year. Claims that some countries, notably the USA, could not reduce per capita emissions below 6 tC per year seem inconsistent with this experience.  相似文献   

16.
This article assesses Japan's carbon budgets up to 2100 in the global efforts to achieve the 2?°C target under different effort-sharing approaches based on long-term GHG mitigation scenarios published in 13 studies. The article also presents exemplary emission trajectories for Japan to stay within the calculated budget.

The literature data allow for an in-depth analysis of four effort-sharing categories. For a 450?ppm CO2e stabilization level, the remaining carbon budgets for 2014–2100 were negative for the effort-sharing category that emphasizes historical responsibility and capability. For the other three, including the reference ‘Cost-effectiveness’ category, which showed the highest budget range among all categories, the calculated remaining budgets (20th and 80th percentile ranges) would run out in 21–29 years if the current emission levels were to continue. A 550?ppm CO2e stabilization level increases the budgets by 6–17 years-equivalent of the current emissions, depending on the effort-sharing category. Exemplary emissions trajectories staying within the calculated budgets were also analysed for ‘Equality’, ‘Staged’ and ‘Cost-effectiveness’ categories. For a 450?ppm CO2e stabilization level, Japan's GHG emissions would need to phase out sometime between 2045 and 2080, and the emission reductions in 2030 would be at least 16–29% below 1990 levels even for the most lenient ‘Cost-effectiveness’ category, and 29–36% for the ‘Equality’ category. The start year for accelerated emissions reductions and the emissions convergence level in the long term have major impact on the emissions reduction rates that need to be achieved, particularly in the case of smaller budgets.

Policy relevance

In previous climate mitigation target formulation processes for 2020 and 2030 in Japan, neither equity principles nor long-term management of cumulative GHG emissions was at the centre of discussion. This article quantitatively assesses how much more GHGs Japan can emit by 2100 to achieve the 2?°C target in light of different effort-sharing approaches, and how Japan's GHG emissions can be managed up to 2100. The long-term implications of recent energy policy developments following the Fukushima nuclear disaster for the calculated carbon budgets are also discussed.  相似文献   

17.
Global climate change mitigation action is hampered by systematic under-assessment of national ‘fair shares’, largely on the basis of perceived national interests. This paper aims to inform discussions centred on South Africa’s nationally determined contribution (NDC) by estimating (1) emissions reduction pathways for the country using the Climate Equity Reference Calculator (CERC) assuming a maximum 2°C aggregate warming target and (2) the likely economy-wide net mitigation costs or savings associated with reaching these pathways if known lower-cost mitigation measures, identified through the national mitigation potential analysis, are prioritised. The cumulative net savings associated with achieving the CERC ‘fair share’ emissions pathway, assuming the moderate use of low carbon power generation measures, would reach $5.3 billion by 2030. Net savings could be substantially greater reaching $46.8 billion by 2030 assuming power generation focuses on moving towards full decarbonisation. An unconditional commitment to the mitigation action implied by the ‘fair share’ emissions pathway therefore seems reasonable and prudent purely from the point of view of net country-wide savings. Only if power generation moves towards full decarbonisation would there be a reasonable chance of achieving the more ambitious CERC domestic emissions pathway. However, the significant additional cost associated with achieving the domestic emissions pathway should be conditional on international assistance.

Key policy insights

  • South Africa can only achieve its ‘fair share’ of the global mitigation effort if greater use is made of renewable energy options, and can realise significant net savings if it does so.

  • Further emissions reductions would incur costs and require significant upscaling of the share of renewable energy and full implementation of all non-power generation mitigation measures available.

  • Committing to this further mitigation action contingent on international finance would both strengthen the nation’s position in climate negotiations and support the provision of finance for those vulnerable developing nations that bear little or no responsibility for climate change.

  相似文献   

18.
《Climate Policy》2001,1(3):309-326
Carbon dioxide emissions from UK energy use have fallen by more than 20% over the last 30 years, and carbon intensity — carbon emissions per unit of GDP — has halved. These reductions have been achieved by a combination of decarbonisation of the energy system and substantial improvements in energy efficiency. Use of natural gas in power generation has been a big factor in recent years, but energy efficiency improvements in households and particularly industry have been more important over a longer period. Government policies designed primarily to address climate change have not been important contributors, until recently.Future reductions in emissions will require more proactive policies. However, they are possible without any economic difficulties, notably by adopting cost-effective energy efficiency measures, using new renewable energy sources and reducing dependence on private cars. These policies will improve economic efficiency. The new UK Climate Change Programme includes policies that combine regulation, investment, fiscal measures and other economic instruments. By working with the grain of other social, environmental and economic policies, they can achieve far more than a carbon tax alone, set at any politically acceptable level. Modelling the costs of emission reductions using a carbon tax as the only instrument would not only massively over-estimate costs, it would bear little resemblance to real world politics.The paper demonstrates that a more diverse set of policy instruments is likely to be an effective and politically acceptable approach in a mature industrial economy. It is concluded that the UK’s Kyoto target of a 12.5% reduction in greenhouse gas emissions is not challenging. The UK Government’s target of reducing carbon dioxide emissions by 20% between 1990 and 2010 is also achievable. By 2010 per capita emissions from the UK will be well below 2.5 tC per year. Claims that some countries, notably the USA, could not reduce per capita emissions below 6 tC per year seem inconsistent with this experience.  相似文献   

19.
Achieving the international 2 °C limit climate policy requires stringent reductions in GHG emissions by mid-century, with some countries simultaneously facing development-related challenges. South Africa is a middle-income developing country with high rates of unemployment and high levels of poverty, as well as an emissions-intensive economy. South Africa takes into account an assessment of what a fair contribution to reducing global emissions might be, and is committed to a ‘peak, plateau and decline' emissions trajectory with absolute emissions specified for 2025 and 2030, while noting the need to address development imperatives. This work utilizes an economy-wide computable general equilibrium model (e-SAGE) linked to an energy-system optimization model (TIMES) to explore improving development metrics within a 14 GtCO2e cumulative energy sector carbon constraint through to 2050 for South Africa. The electricity sector decarbonizes by retiring coal-fired power plants or replacing with concentrated solar power, solar photovoltaics and wind generation. Industry and tertiary-sector growth remains strong throughout the time period, with reduced energy intensity via fuel-switching and efficiency improvements. From 2010 to 2050, the model results in the unemployment rate decreasing from 25% to 12%, and the percentage of people living below the poverty line decreasing from 49% to 18%. Total energy GHG emissions were reduced by 39% and per capita emissions decreased by 62%.

Policy relevance

Lower poverty and inequality are goals that cannot be subordinated to lower GHG emissions. Policy documents in South Africa outline objectives such as reducing poverty and inequality with a key focus on education and employment. In its climate policy and Intended Nationally Determined Contribution (INDC), South Africa is committed to a peak, plateau and decline GHG emissions trajectory. As in many developing countries, these policy goals require major transformations in the energy system while simultaneously increasing affordable access to safe and convenient energy services for those living in energy poverty. The modelled scenario in this work focuses on employment and poverty reduction under a carbon constraint, a novel combination with results that can provide information for a holistic climate and development policy framework. This study has focused on the long term, which is important in generating clear policy signals for the necessary large-scale investments.  相似文献   

20.
Studies show that the ‘well below 2°C’ target from the Paris Agreement will be hard to meet without large negative emissions from mid-century onwards, which means removing CO2 from the atmosphere and storing the carbon dioxide in biomass, soil, suitable geological formations, deep ocean sediments, or chemically bound to certain minerals. Biomass energy combined with Carbon Capture and Storage (BECCS) is the negative emission technology (NET) given most attention in a number of integrated assessment model studies and in the latest IPCC reports. However, less attention has been given to governance aspects of NETs. This study aims to identify pragmatic ways forward for BECCS, through synthesizing the literature relevant to accounting and rewarding BECCS, and its relation to the Paris Agreement. BECCS is divided into its two elements: biomass and CCS. Calculating net negative emissions requires accounting for sustainability and resource use related to biomass energy production, processing and use, and interactions with the global carbon cycle. Accounting for the CCS element of BECCS foremost relates to the carbon dioxide capture rate and safe underground storage. Rewarding BECCS as a NET depends on the efficiency of biomass production, transport and processing for energy use, global carbon cycle feedbacks, and safe storage of carbon dioxide, which together determine net carbon dioxide removal from the atmosphere. Sustainable biomass production is essential, especially with regard to trade-offs with competing land use. Negative emissions have an added value compared to avoided emissions, which should be reflected in the price of negative emission ‘credits’, but must be discounted due to global carbon cycle feedbacks. BECCS development will depend on linkages to carbon trading mechanisms and biomass trading.

Key policy insights

  • A standardized framework for sustainable biomass should be adopted.

  • Countries should agree on a standardized framework for accounting and rewarding BECCS and other negative emission technologies.

  • Early government support is indispensable to enable BECCS development, scale-up and business engagement.

  • BECCS projects should be designed to maximize learning across various applications and across other NETs.

  • BECCS development should be aligned with modalities of the Paris Agreement and market mechanisms.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号