首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
南海-西北太平洋地区大气准双周振荡对TC生成的调节作用   总被引:3,自引:1,他引:2  
通过对南海-西北太平洋地区大气10~20 d准双周振荡(QBWO)不同位相的划分(A~D),研究了QBWO对南海-西北太平洋海域热带气旋(TC)生成的调节作用。将TC分为强热带风暴及以下级别(TS)和台风及以上级别(TY),并将QBWO分为干湿位相,发现南海海域生成的TS(TY)在干湿位相的比与西北太平洋海域生成的TS(TY)在干湿位相的比相等,这表明QBWO对TS(TY)生成的调节作用在南海和西太平洋地区可能相同。从A位相到C位相,南海和西北太平洋地区TC的生成频数均逐渐增多,D位相时期,TC生成最少,多数TC发生在QBWO的对流活动湿位相,少数TC发生在干位相。南海-西北太平洋海域TC的生成受到QBWO的明显调制。从位相A到位相C,低频对流和低频风场逐渐向西北方向移动,低频对流强度持续加强,低频风场逐渐由异常西风-东风-西风转为异常东风-西风-东风配置,西北太平洋地区季风槽加强,使得TC生成频数逐渐增多。此外,在QBWO活跃位相,非绝热加热增强和纬向风垂直切变减弱也有利于TC的生成。  相似文献   

2.
Summary Previous studies have highlighted the crucial role of sea surface temperature (SST) anomalies in the tropical Atlantic region in forcing the summer monsoon rainfall over subsaharan West Africa. Understanding the physical processes, relating SST variations to changes in the amount and distribution of African rainfall, is a key factor in improving weather and climate forecasts in this highly vulnerable region. Here, we present sensitivity experiments from a regional climate model with prescribed warmer tropical SSTs, according to enhanced greenhouse conditions at the end of the 21st century. This dynamical downscaling approach provides information about the nonlinear response of the atmosphere to oceanic heating. It has been suggested that the response is at least partly accounted for by the linear theory of tropical dynamics, involving a Kelvin and Rossby wave response to a tropical heat source. We compute the major modes of the linear Matsuno-Gill model for geopotential height and horizontal wind components and project the simulated response patterns onto these linear modes, in order to evaluate to which extent the simple linear theory may explain the SST-induced climate anomalies over Africa. A multivariate Hotelling T2 test is used to evaluate whether these anomalies are statistically significant. Forcing the regional climate model by warmer SSTs leads to substantial climate anomalies over tropical Africa: Rainfall is increases over the Guinea Coast region (GCR) and tropical East Africa, but decreases over the Congo Basin and the Sahel Zone (SHZ). At the 850 hPa level, a trough develops over southern West Africa and the Gulf of Guinea, and is associated with stronger surface wind convergence over the GCR. These changes in the atmospheric dynamics strongly project onto the leading modes of the linear Matsuno-Gill model at various zonal wave numbers. The corresponding atmospheric heating pattern is highly reminiscent of the simulated nonlinear model reponse. The T2 test statistics reveal that the SST forcing induces a statistically significant climate anomaly over tropical Africa if the climate state vector is reduced by projecting the simulated data onto the leading 10 linear modes. It is also shown that the linear response prevails in a long-term simulation with more realistic lower and lateral boundary conditions. Thus, linear tropical dynamics are assumed to be a major physical process on the ground of the prominent SST-African rainfall relationship.  相似文献   

3.
Mechanisms for convective initiation of the Madden–Julian oscillation (MJO) remain poorly understood. During recent years, <50 % of large-scale convectively active episodes over the tropical Indian Ocean have led to MJO initiation. This study explores the structure and evolution of precipitation, diabatic heating, and potential vorticity (PV) that might be used to tell whether an MJO event will be initiated once such a convection episode occurs. Three different cases are studied. As convection becomes active in a large area over the tropical Indian Ocean, early signs favorable for MJO initiation are apparent: a persistent basin-scale coverage in the zonal direction by positive anomalies in precipitation and diabatic heating (in a swallowtail pattern), a persistent vertical dipole of PV generation with cyclonic (anticyclonic) PV generation in the lower (upper) troposphere covering a zonally extended area, and a cyclonic PV anomaly in the midtroposphere with a cyclonic PV pair straddling the equator immediately west of the diabatic heating center. All these signs are robust in the MJO composite but rarely occur all together in a given MJO case. The likelihood of an MJO event following a convective episode over the tropical Indian Ocean depends on how many of these signs occur and how persistent they are. While a preexisting MJO signal is neither a necessary nor a sufficient sign for MJO initiation, an active convective episode over the tropical Indian Ocean is necessary but insufficient for MJO initiation. MJO initiation depends on detailed convective behaviors over the tropical Indian Ocean.  相似文献   

4.
An attempt is made to find a plausible reason for the weakening of the interrelation between the variability in wind and water volume in the tropical warm pool in the western equatorial Pacific and the onset of El Niño–Southern Oscillation event (ENSO). It is demonstrated that variability in the atmospheric dynamics near the Drake Passage can affect the ENSO development. The weakening of the interrelation between ENSO and the variability in wind together with water volume in the tropical warm pool is caused by the fact that the processes of atmosphere–ocean interaction in the tropical Pacific started exerting smaller influence on the ENSO development (as compared with the processes in the Southern Ocean). This is due to warmer ocean conditions registered since the late 1990s that favored the decrease in the zonal gradient of temperature in the ocean surface layer in the tropics and led to lower atmospheric variability in the tropical Pacific whereas this variability remained the same over the Southern Ocean.  相似文献   

5.
2017年夏季(6—8月)大气环流特征为:北半球极涡仍呈单极型位于北极上空,但强度较春季明显减弱。6月,我国近海北部有弱冷空气活动。7—8月,中高纬度槽脊活动进一步减弱,副热带高压西伸北抬,热带气旋活动频繁。我国近海海域主要有15次8级以上大风过程,其中热带气旋大风过程有8次,入海温带气旋过程有5次,强对流导致雷暴大风过程2次。有11次范围较大的2 m以上的大浪过程。仅出现1次范围较大的海雾过程。西北太平洋和南海共生成15个台风,其他各大洋共有热带气旋18个,分别为:大西洋7个、东太平洋11个。海表温度整体呈上升趋势。  相似文献   

6.
西北太平洋热带气旋快速增强阶段的风速分布特征   总被引:1,自引:2,他引:1  
利用联合台风预警中心的最优路径(best-track)资料,筛选出西北太平洋地区快速增强和非快速增强两类热带气旋样本。利用美国国家海洋与大气管理局(NOAA)的多平台热带气旋表面风分析资料,对比分析了两类样本的风速和涡度的分布特征。结果显示,快速增强的热带气旋样本通常结构更紧凑,最大风速较大,最大风速半径较小,台风内区的风速较大。在涡度上表现为快速增强热带气旋样本内区的涡度和涡度梯度较大。对两类样本进行t检验,结果显示两类样本内区的切向风差异明显,说明热带气旋的内区风速分布与其发展之间存在密切联系。其物理机制可能是:当存在较大的内区涡度梯度时,涡度隔离机制有利于对流单体向涡旋中心汇聚,此外较大的涡度意味着较大的惯性稳定度,有利于非绝热加热向热带气旋动能的转换,二者共同作用有利于热带气旋的快速发展。   相似文献   

7.
In order to re-examine some trends related to tropical cyclones(TCs) over the western North Pacific since 1949,the unreliable maximum sustained wind(Vmax) recorded in the 1949-1978 TC best-track data from the Shanghai Typhoon Institute was modified based on the wind-pressure relationships(WPRs) in this study. Compared to the WPR scheme based on the cyclostrophic balance,the WPR scheme based on the gradient balance could give a better fit to TCs under higher wind speeds and could introduce smaller estimated errors for TCs locating at higher latitudes as well as TCs landing on the continent.After the Vmax modification based on minimum sea-level pressure and TC center latitude,the revised annual number of category 4-5 typhoons shows no long-term trend,while the potential destructiveness measured by power-dissipation index decreases slightly,and this trend is not significant in the period 1949-2008.  相似文献   

8.
通过对1948~2015年不同El Ni?o事件下西北太平洋季风槽变化和热带气旋(tropical cyclone,TC)生成进行分析,初步探讨了不同El Ni?o型事件对季风槽及其对TC的可能影响。分析结果表明,较东太平洋增暖(eastern Pacific warming,EPW)年,中太平洋增暖(central Pacific warming,CPW)年季风槽偏弱,位置相对偏西、偏北。在CPW年,中(西和东)太平洋海温增暖(降低)引起了从中到西太平洋热带地区的西风异常和中太平洋地区上升运动及对流活动加强,使得季风槽加强东伸,同时西太平洋副高偏弱、偏北,季风槽向北推进;而在EPW年,赤道东(西)太平洋海温增暖(降低)使得赤道地区西风异常显著加强东扩,异常Walker环流的上升支东移至东太平洋,季风活动加强,副高偏强、偏南,这使得季风槽较CPW年相比更强、更偏东。利于TC生成的大尺度环境因子随季风槽强度和位置的变化而发生改变,在CPW年,低层气旋性涡度、高层辐散、高的中层相对湿度以及低垂直风切变区随着季风槽向北移动;而在EPW年,这些因子随季风槽向南、向东偏移。这些大尺度环境因子的变化使得西北太平洋TC生成的位置在CPW年比EPW年更加偏北、偏西。  相似文献   

9.
On the basis of climate and reanalysis data, a contribution is estimated of tropical cyclones (TCs) to the fluxes of heat, moisture, momentum, and mechanical energy of wind over the seas of Japan and Okhotsk. The estimates are obtained for two TCs that passed over these areas. It is shown that when TCs move over both seas, the heat and moisture exchange between the sea surface and the atmosphere increases approximately by a factor of 3. Also, a significant dynamic effect of tropical cyclones on the upper ocean layer is noted, so that the flux of mechanical wind energy exceeds the background monthly mean values by a factor of 10 or more. On the example for the Far East seas, a well-pronounced dependence of disturbances in the upper ocean on intensity, size, and dynamics of the cyclone is shown.  相似文献   

10.
Using tropical cyclone (TC) observations over a 58-yr period (1949-2006) from the China Meteorological Administration, the 40-year ECMWF Reanalysis (ERA-40), NCEP-NCAR reanalysis, and the Hadley Centre sea ice and sea surface temperature (HadISST) datasets, the authors have examined the behaviors of tropical cyclones (TCs) in the western north Pacific (WNP) in boreal winter (November-December-January-February). The results demonstrate that the occurrences of wintertime TCs, including super typhoons, have decreased over the 58 years. More TCs are found to move westward than northeastward, and the annual total number of parabolic-track-type TCs is found to be decreasing. It is shown that negative sea surface temperature anomalies (SSTAs) related to La Nifia events in the equatorial central Pacific facilitate more TC genesis in the WNP region. Large-scale anomalous cyclonic circulations in the tropical WNP in the lower troposphere are observed to be favorable for cyclogenesis in this area. On the contrary, the positive SSTAs and anomalous anticyclonic circulations that related to E1 Nifio events responsible for fewer TC genesis. Under the background of global warming, the western Pacific subtropical high tends to intensify and to expand more westward in the WNP, and the SSTAs display an increasing trend in the equatorial eastern-central Pacific. These climate trends of both atmospheric circulation and SSTAs affect wintertime TCs, inducing fewer TC occurrences and causing more TCs to move westward.  相似文献   

11.
In the past three decades, the strongest central Pacific (CP) El Niño event was observed in 2009–2010 by satellites. When intensity of this CP El Niño reached its maximum, large diurnal variations of sea surface temperature (SST) were also observed from tropical atmosphere ocean moorings in the central equatorial Pacific. Solar radiation in the equatorial central Pacific is larger than 140 W/m2, which leads to the amplitude of diurnal cycle of SST primarily determined by large-scale wind patterns. Intraseasonal westerly wind events (WWEs) can lead to an eastward displacement of the warm pool and also can weaken the trade winds in central Pacific. When the occurrence of equatorial WWEs is more than 20 days in a month, monthly mean wind speed in central equatorial Pacific has high possibility of wind speed less than 3 m/s, thus has pronounced diurnal cycle of SST. The diurnal cycle of SST will rectify daily mean SST. Reduced mixing at the base of the mixed layer and suppression of entrainment due to the accumulated effect of diurnal cycle may lead to warmer SST in the following month. This study suggests the occurrence of more diurnal SST events may contribute to the increasing intensity of the CP El Niño events.  相似文献   

12.
Tropical zonally symmetric atmospheric warming occurs during ENSO’s warm phase, and lags the equa- torial east Pacific sea surface temperatures (SSTs) by 3–4 months. The role of the Indian and Atlantic oceans on the atmospheric delayed response has been pointed out by earlier studies. For 1951–2004, a regression analysis based on the observed SST data shows the western Pacific has a similarly important role as the Indian and Atlantic. Nevertheless, there is time mismatch of around 1–2 months between the zon...  相似文献   

13.
2017年春季(3—5月)大气环流特征为:北半球极涡呈单极型分布,主体位于北冰洋上空,中高纬西风带呈5波型分布。3月,地面冷高压偏强,冷空气活动频繁。4月,环流由纬向型向经向型逐渐调整,冷空气势力减弱。5月,东北气旋明显加强,冷暖势力相当,入海气旋增多。春季,我国近海海域主要有16次8级以上大风过程,其中冷空气大风过程有7次,冷空气和温带气旋共同影响的大风过程有1次,入海温带气旋过程有4次,东北冷涡影响大风过程有3次,强对流导致雷暴大风过程1次;且有8次明显的浪高在2 m以上的大浪过程。春季共有6次比较明显的海雾过程,分别为3月1次、4月2次、5月3次。西北太平洋和南海共生成1个台风“梅花”和1个热带低压,其他各大洋共有热带气旋15个,分别为大西洋1个、东太平洋1个、南太平洋5个、南印度洋6个、北印度洋2个。  相似文献   

14.
In order to provide an operational reference for tropical cyclone precipitation forecast,this study investigates the spatial distributions of precipitation associated with landfalling tropical cyclones(TCs) affecting China using Geostationary Meteorological Satellite 5(GMS5)-TBB dataset.All named TCs formed over the western North Pacific that made direct landfall over China during the period 2001-2009 are included in this study.Based on the GMS5-TBB data,this paper reveals that in general there are four types of distribution of precipitation related to landfalling TCs affecting China.(a) the South-West Type in which there is a precipitation maximum to the southwestern quadrant of TC;(b) the Symmetrical South Type in which the rainfall is more pronounced to the south side of TC in the inner core while there is a symmetrical rainfall distribution in the outer band region;(c) the South Type,in which the rainfall maxima is more pronounced to the south of TC;and(d) the North Type,in which the rainfall maxima is more pronounced to the north of TC.Analyses of the relationship between precipitation distributions and intensity of landfalling TCs show that for intensifying TCs,both the maximum and the coverage area of the precipitation in TCs increase with the increase of TC intensity over northern Jiangsu province and southern Taiwan Strait,while decreasing over Beibu Gulf and the sea area of Changjiang River estuary.For all TCs,the center of the torrential rain in TC shifts toward the TC center as the intensity of TC increases.This finding is consistent with many previous studies.The possible influences of storm motion and vertical wind shear on the observed precipitation asymmetries are also examined.Results show that the environmental vertical wind shear is an important factor contributing to the large downshear rainfall asymmetry,especially when a TC makes landfall on the south and east China coasts.These results are also consistent with previous observational and numerical studies.  相似文献   

15.
This study reexamines the correlation between the size and intensity of tropical cyclones (TCs) over the western North Pacific from the perspective of individual TCs, rather than the previous large-sample framework mixing up all TC records. Statistics show that the positive size-intensity correlation based on individual TCs is relatively high. However, this correlation is obscured by mixing large samples. The weakened correlation based on all TC records is primarily due to the diversity in the size change relative to the same intensity change among TCs, which can be quantitatively measured by the linear regression coefficient (RC) of size against intensity. To further explore the factors that cause the variability in RCs that weakens the size-intensity correlation when considering all TC records, the TCs from 2001 to 2020 are classified into two groups according to their RC magnitudes, within which the high-RC TCs have a larger size expansion than the low-RC TCs given the same intensity change. Two key mechanisms responsible for the RC differences are proposed. First, the high-RC TCs are generally located at higher latitudes than the low-RC TCs, resulting in higher planetary vorticity and thus higher planetary angular momentum import at low levels. Second, the high-RC TCs are susceptible to stronger environmental vertical wind shear, leading to more prolific outer convection than the low-RC TCs. The positive feedback between outer diabatic heating and boundary layer inflow favors the inward import of absolute angular momentum in the outer region, thereby contributing to a larger size expansion in the high-RC TCs.  相似文献   

16.
This study examines the emerging role of Indian Ocean sea surface temperature (SST) on the inter-annual variability (IAV) of Indian north-east monsoon rainfall (NEMR). The IAV of NEMR is associated with the warm SST anomaly over east Bay-of-Bengal (BoB) (88.5oE–98.5oE; 8.5oN–15.5oN) and cool SST anomaly over east equatorial Indian Ocean (80.5oE–103.5oE; 6.5oS–3.5oN). The gradient of SST between these boxes (i.e. northern box minus southern box) shows strong and robust association with the Indian NEMR variability in the recent decades. For establishing the teleconnections, SST, mean sea level pressure, North Indian Ocean tropical storm track, and circulation data have been used. The study reveals that during the positive SST gradient years, the inter-tropical convergence zone (ITCZ) shifts northwards over the East Indian Ocean. The tropical depressions, storms and cyclones formed in the North Indian Ocean moves more zonally and strike the southern peninsular India and hence excess NEMR. While, during the negative SST gradient years, the ITCZ shifts southwards over the Indian Ocean. The tropical depressions, storms and cyclones formed in the North Indian Ocean moves more northwestward direction and after crossing 15oN latitude re-curve to north-east direction towards head BoB and misses southern peninsular India and hence, deficient NEMR.  相似文献   

17.
热带海温异常影响夏季环流的机制研究   总被引:1,自引:0,他引:1  
利用正压涡度方程模式对赤道东太平洋和赤道西太平洋暖池区海温异常影响夏季大气环流的机制进行了研究,结果表明:太平洋海温异常会对大气环流产生明显的影响,我国上空环流受其直接影响较小,大气对赤道东太平洋海温升高的响应比对西太平洋暖池海温降低响应明显.西太平洋暖池海温降低和赤道东太平洋海温升高都使极涡明显减弱,对中低纬度大气高度场的影响相反.赤道东太平洋海温升高,中低纬度地区槽脊活动表现不明显,而西太平洋暖池海温降低,会使大气高度场产生明显的槽脊扰动.西太平洋暖池海温降低和赤道东太平洋海温升高,会使涡度场、经向风形成沿驻波波列传播的扰动场.西太平洋暖池海温降低和赤道东太平洋海温升高同时发生时,经向风场使北半球所有的地方都产生了扰动(两条波列路径仍然清楚),沿纬圈和经向都呈有规律的正负相间的分布,扰动表现为驻波特征.  相似文献   

18.
Summary This paper reviews the interannual and interdecadal variations in tropical cyclone (TC) activity over the western North Pacific (WNP) and the possible physical mechanisms responsible for such variations. Interannual variations can largely be explained by changes in the planetary-scale flow patterns. Sea-surface temperatures (SSTs) in the WNP, however, do not contribute to such variations. Rather, SSTs in the central and eastern equatorial Pacific are significantly correlated with TC activity over the WNP. Causality can be established: changes in the SST in the equatorial Pacific are related to the El Niño/Southern Oscillation (ENSO) phenomenon, and modifications of the planetary-scale flow associated with ENSO alter the conditions over the WNP and hence TC activity there. Variations in annual TC activity are also associated with different phases of the stratospheric quasi-biennial oscillations due to its modification of the vertical wind shear of the environment in which TCs form. Interdecadal variations in TC activity are apparently related to the location, strength and extent of the North Pacific subtropical high. However, the mechanisms responsible for modifying these characteristics of the subtropical high have yet to be identified.  相似文献   

19.
Cyclonic storms having maximum winds of 34 knots and above that had genesis in north Indian Ocean have been studied with respect to the eastward passage of Madden–Julian Oscillation (MJO). In the three decades (1979–2008), there were a total of 118 cyclones reported in which 96 formed in the region chosen (0–15oN, 60oE–100oE) for the study. Although the percentage of MJO days inducing cyclogenesis is small, it is found that tropical cyclone genesis preferentially occurred during the convective phase of MJO. This accounted for 44 cyclones of the total 54 cyclones (i.e., 81.5%) formed under MJO amplitude 1 and above. The study has shown that, when the enhanced convection of MJO is over the maritime continent and the adjoining eastern Indian Ocean, it creates the highest favorable environment for cyclogenesis in the Bay of Bengal. During this phase, westerlies at 850 hPa are strong in the equatorial region south of Bay of Bengal creating strong cyclonic vorticity in the lower troposphere along with the low vertical wind shear.  相似文献   

20.
The atmospheric and oceanic conditions are examined during different stages of the lifecycle of western North Pacific tropical cyclones (TCs), with the intention to understand how the environment affects the intensity change of TCs in this area. It is found that the intensification usually occurs when the underlying sea surface temperature (SST) is higher than 26℃. TCs usually experience a rapid intensification when the SST is higher than 27.5℃ while lower than 29.5℃. However, TCs decay or only maintain its intensity when the SST is lower than 26℃. The intensifying TCs usually experience a low-to-moderate vertical wind shear (2-10 ms-1 ). The larger the vertical wind shear, the slower the TCs strengthen. In addition, the convective available potential energy (CAPE) is much smaller in the developing stage than in the formation stage of TCs. For the rapidly intensifying TCs, the changes of SST, CAPE, and vertical wind shear are usually small, indicating that the rapid intensification of TCs occurs when the evolution of the environment is relatively slow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号