首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
华文剑  陈海山 《大气科学》2011,35(1):121-133
利用“国际耦合模式比较计划” (Phase 3 of the Coupled Model Intercomparison Project, CMIP3) 12个模式对20世纪 (The Twentieth-Century Climate in Coupled Models, 20C3M) 和21世纪SRES (Special Report on Emissions Scenarios) A1B 情景下的模拟结果, 通过21世纪 (2001~2099年) 与20世纪 (1901~1999年) 陆面能量和水文变量的对比分析, 揭示了陆面过程对全球变暖响应的基本特征, 并探讨了其可能的响应机制。结果表明, 与20世纪相比, 21世纪全球陆面平均的表面温度、 地表净辐射、 潜热通量明显增加; 而感热通量有所减小。降水、 径流、 蒸发等地表水循环分量也表现出不同程度的增加, 而土壤含水量有减小趋势。通过分析近地层主要大气强迫变量与陆面变量之间的联系, 发现陆面能量平衡过程对全球变暖的响应主要受向下长波辐射和气温变化的影响, 而温度的变化对陆面水文过程的影响起决定性的作用。进一步分析表明, 陆面过程对全球变暖的响应存在明显的区域性差异, 陆面温度和感热对全球变暖响应最显著的区域位于北半球中高纬, 而净辐射和潜热对全球变暖的响应在亚洲中部和非洲大陆最显著。相对于20世纪, 21世纪主要是长波辐射和温度对陆面能量平衡过程的贡献重要。对于陆面水文过程, 径流和土壤含水量对全球变暖的响应在亚洲中部以及北美最显著。在全球变暖背景下, 21世纪相对于20世纪, 温度对陆面水循环的影响更加显著, 主要体现在北半球中纬度地区。  相似文献   

2.
姚洁  赵桂香  金磊 《干旱气象》2014,(3):346-353
山西地处气候过渡带,气候敏感、生态脆弱,在全球气候变暖背景下其陆面物理过程受气候波动影响十分明显。本文利用NCAR CCSM IPCC AR4陆面分量模式(CLM)20世纪气候模拟(20C3M)和21世纪SRES A1B排放情景下的模拟结果,对山西省21世纪(2001~2099年)与20世纪(1901~1999年)陆面能量和水文变量进行了对比分析。结果显示:(1)模式模拟出山西地区未来地面温度的空间及时间分布特征。未来山西省地面温度呈明显上升趋势,上升速率冬季大于夏季。空间上,增温幅度冬季自北向南递减,夏季自西向东递减;(2)未来山西省陆面各分量空间上,净辐射通量西北增幅大于东南,降水率和径流率则与其相反,潜热通量与蒸发率一致,西南部增加幅度大,土壤含水率冬夏分布相反,感热通量呈下降趋势,西南下降幅度大;时间上,净辐射通量、潜热通量均表现出不同程度的上升趋势,土壤热通量冬季上升,夏季下降;地表水循环的各分量均呈增加趋势。  相似文献   

3.
利用中国区域高分辨率数据集作为大气强迫场,驱动修改了热力学粗糙度参数化方案后的NoahMP陆面模式进行了2000-2018年青藏高原地区陆面过程模拟。用野外观测资料校验模拟结果后,分析了地表感热通量(SH)、潜热通量(LH)的分布及变化特征。结果表明,模式能较合理模拟高原地表感热和潜热通量。高原的中、西部为地表感热和潜热通量的年际变率较大区域。模拟的高原中、西部地区感热通量强于东部地区,且绝大部分区域的感热通量是有增强趋势的。对于整个高原,感热通量从2002年前后呈较明显的增强趋势。总体上,四个季节的平均感热都有较明显的增强,特别是在2010年以后。潜热通量在高原东部地区强于中、西部地区。潜热通量的年际变率相对于感热通量的变率要小。中部地区潜热呈减弱趋势,西部和东部都有弱的增强。对于整个高原,潜热通量在2000-2018年呈弱的增强趋势。其中,2000-2003年潜热通量是增强的,2003-2015年呈减弱趋势,主要因素为在夏季潜热通量的减弱。  相似文献   

4.
基于普林斯顿大学1948-2006年3h一次、1 °×1 °空间分辨率的全球陆面驱动数据,利用NCAR系列陆面模式CLM3.0、CLM3.5、CLM4.0,分别对全球近50 a的陆面状况进行了offline模拟试验.在此基础上,对比分析了不同版本模式对全球土壤温度、土壤湿度、地表感热、潜热和地表径流气候态的模拟结果,揭示了不同版本模式对全球陆面变量模拟的差异及主要特征.结果表明:1)CLM系列模式模拟的土壤温度、湿度在全球范围内存在一定差异.与CLM4.0相比,CLM3.0和CLM3.5模拟的1月、7月的浅层和深层土壤温度在北半球中高纬度存在明显的暖偏差.CLM3.0模拟的土壤湿度在北半球高纬地区均存在不同程度的偏湿,而在热带及中纬度地区则以偏干为主,尤其是对热带地区深层土壤湿度的模拟存在严重偏干的现象;相比之下,CLM3.5模拟的浅层土壤湿度仅在北半球高纬地区存在偏湿的现象;二者对深层土壤湿度的模拟差异较小.2)CLM系列模式模拟的地表能量通量和地表水文变量也存在较明显的差异.模式对潜热通量和感热通量的明显差异主要出现在热带地区,与CLM4.0相比,CLM3.0模拟的潜热(感热)通量总体偏小(大),而CLM3.5模拟的潜热(感热)通量以偏大(小)为主.CLM3.0模拟的地表径流在热带地区明显偏大,CLM3.5在一定程度上改善了上述区域径流偏大的问题,但过分低估了上述地区的地表径流.3)模式模拟结果的差异具有明显的季节变化和区域性特点.总体而言,CLM3.0对不同地区的土壤湿度和冠层蒸散的季节变化模拟都存在较大偏差,其模拟的土壤湿度明显偏低,而对冠层蒸腾作用在冠层蒸散过程中所做的贡献估计不足;CLM3.5和CLM4.0对上述结果有了较明显的改进.对于其他陆面因子的季节变化而言,CLM3.0的模拟能力也存在一定程度的不足,而CLM3.5和CLM4.0的模拟结果则更为合理.  相似文献   

5.
张果  周广胜 《高原气象》2012,31(4):942-951
基于Noah陆面过程模式,利用内蒙古荒漠草原陆—气通量长期定位观测资料,模拟了地表反照率日变化对该荒漠草原感热和潜热通量的影响。结果表明,地表反照率的日变化将改善Noah陆面过程模式对内蒙古荒漠草原感热通量的模拟,但对受水分制约的潜热通量的改善效果不明显,表明准确地模拟地表反照率的日变化对模拟稀疏植被的感热通量至关重要。  相似文献   

6.
青藏高原作为世界第三极,其热力强迫作用不仅对亚洲季风系统的发展和维持十分重要,也会对大气环流场产生深远影响。利用欧洲中期天气预报中心(ECMWF)的ERA-Interim中1979-2016年3-10月青藏高原及其周边地区的地表热通量月平均再分析资料,通过分析得出以下结论:3-5月青藏高原主体由感热占据,感热强度快速上升且呈西高东低的分布态势,潜热强度较小但随时间而增强。季风爆发后的6-8月,青藏高原感热强度减弱,潜热强度迅速增强且呈东高西低的分布特征。季风消退后的9-10月,感热与潜热强度相当,但感热呈现出西高东低的分布特征。过去38年,青藏高原地表感热总体呈现微弱下降趋势,潜热呈较弱上升趋势。青藏高原西部地区感热呈微弱下降趋势,潜热呈上升趋势。东部感热呈较为明显的下降趋势且近年来变化趋势增强,东部潜热通量则呈现较为明显的上升趋势,分析结论与近期全球变暖条件下青藏高原气候变暖变湿这一变化状况一致,通过对青藏高原地表热通量的变化分析为下一步运用第三次青藏高原大气科学试验所获资料分析青藏高原上空大气热源的变化以及地表加热场如何影响大气环流奠定基础。   相似文献   

7.
利用2000年9月至2001年8月"我国西北干旱区陆-气相互作用试验(NWC-ALIEX)"敦煌站的陆面过程观测资料,基于已有的参数化结果,模拟了敦煌主要陆面特征。结果表明:典型干旱区敦煌夏季感热通量与潜热通量差异显著,感热几乎是潜热的4倍,冬季二者都很小。模式对地表温度模拟较好,但高估了浅层土壤湿度峰值;对向上辐射模拟较好,但对净辐射的模拟存在较大偏差;同时高估了地表能量的峰值。模式结果表明参数化方案对干旱区陆面过程模式具有一定的改进作用。  相似文献   

8.
曾剑  张强  王春玲 《气象学报》2016,74(6):876-888
东亚夏季风边缘摆动区既是气候敏感区,也是生态脆弱区和农牧交错带,其特殊陆面能量空间分布格局和演变特征对理解该区域天气和气候变化有重要意义。然而受限于陆面观测资料缺乏,对这部分陆面特征的认识仍非常有限。通过对34 a陆面模拟集成产品的分析,发现夏季风边缘摆动区内潜热和感热通量在空间上表现出明显的过渡特征,由摆动区外的相对均衡状态进入到摆动区内的“突变转换”;陆面能量平衡具有明显的区域特征,能量平衡各分量在纬向和经向都表现出了“阶梯型”的变化。就演变而言,区域平均感热和潜热没有表现出规律性的递减或递增趋势,波动幅度在±20%以内,但在20世纪末存在一个较为明显的摆动相位转换:1997年之前夏季风边缘摆动区夏季风相对活跃,潜热通量总体高于其气候值而感热通量则低于其气候值,之后出现了相反的现象。此外,区内感热和潜热通量对气候环境干湿性质非常敏感,两者存在明显的线性关系。   相似文献   

9.
伊朗高原和青藏高原热力作用对东亚区域气候具有重要影响。基于1979—2014年欧洲中心ERA-interim月平均再分析地表热通量资料,分析了春、夏季青藏高原与伊朗高原地表热通量的时、空分布特征以及春、夏季青藏高原与伊朗高原地表热通量的关系。结果表明,春、夏季青藏高原与伊朗高原地表热通量在季节、年际和年代际尺度上具有不同的时、空分布特征。对于青藏高原,春、夏季地表感热呈西部大东部小、地表潜热呈东部大西部小;地表感热在春季最大且大于地表潜热,地表潜热在夏季最大且大于地表感热。在年际时间尺度上,春、夏季青藏高原地表热通量异常的年际变化在东、西部不一致,青藏高原西部,地表感热与地表潜热有较强的负相关关系。青藏高原地表感热异常具有很强的持续性,当春季地表感热较强(弱)时,夏季高原地表感热同样较强(弱)。青藏高原东部与西部地表热通量的年代际变化有明显差异,春(夏)季青藏高原东部地表感热呈显著的年代际减弱趋势,1998(2001)年发生年代际转折,由正异常转为负异常;而青藏高原西部地表感热在春季则有显著的增大趋势,2003年发生年代际转折,由负异常转为正异常。青藏高原东部地表潜热仅在春季为显著减弱趋势,2003年出现年代际转折,由正异常转为负异常;青藏高原西部地表潜热在春、夏季都有显著减弱趋势,年代际转折出现在21世纪初,由正异常转为负异常。对于伊朗高原,春、夏季地表热通量的空间分布在整个区域较一致,地表感热在夏季最大,地表潜热在春季大、夏季小,但各季节地表感热都大于地表潜热。相对于青藏高原地表感热,伊朗高原地表感热在各月都更大。在年际时间尺度上,春、夏季伊朗高原各区域地表热通量异常的年际变化较一致;地表感热与潜热有很强的负相关关系;伊朗高原地表感热、潜热异常都具有持续性,当春季地表感热(潜热)通量较强(弱)时,夏季地表感热(潜热)通量同样较强(弱)。伊朗高原北部与南部地表热通量的年代际变化存在差异。其中,春、夏季伊朗高原北部地表感热(潜热)呈显著增强(减弱)趋势,在20世纪末发生了年代际转折,春、夏季北部地表感热(潜热)由负(正)异常转为正(负)异常。而伊朗高原南部春、夏季地表热通量无显著变化趋势,但春季地表感热、潜热与夏季地表感热同样在20世纪末存在年代际转折,地表感热(潜热)由负(正)异常转为正(负)异常。春、夏季两个高原地区地表热通量的关系主要表现为:就春季同期变化而言,伊朗高原地表感热与青藏高原西部地表感热具有同相变化关系,与青藏高原东部地表感热具有反相变化关系,伊朗高原地表潜热与青藏高原东部地表潜热具有同相变化关系;就非同期变化而言,春季伊朗高原地表感热与夏季青藏高原东部地表感热存在反相变化关系。   相似文献   

10.
藏北高原地表能量和边界层结构的数值模拟   总被引:2,自引:1,他引:1  
利用耦合了NCAR LSM陆面过程的中尺度模式MM5V3.7和2002年8月CAMP/Tibet加强期的观测资料,对藏北高原地区地气交换过程进行了48 h模拟研究。模式较好地模拟了该地区的山谷风环流;并将模拟的地表通量在中尺度区域上与NCEP/NCAR全球大气再分析格点资料(NNRP)获得的结果进行了比较,同时也与单站的实测值进行了比较,结果显示:模拟的地表通量与NNRP得到的结果比较吻合,同时可以得到雨季时藏北、藏东地区潜热通量大于感热通量,而高原西部感热通量大于潜热通量,这与观测试验分析结果一致;与单站试验结果比较,模拟的感热通量与实测值一致,潜热通量的模拟值和实测值有一定差别。模拟的边界层位温廓线与实测值比较,模式模拟的对流混合层和夜间残留层都与实测结果吻合,但模拟的混合层高度较实测值高。由此来看,中尺度模式MM5V3.7能够较好地模拟藏北高原的地表能量和边界层结构特征,但还需要进一步完善陆面过程和物理过程参数化方案。  相似文献   

11.
利用IPCC发布的5个全球气候模式在高(SRES A2)、低(SRES B1)两种不同排放情景下的预报集成结果,对21世纪大尺度环境进行分析,进而对西北太平洋夏季热带气旋(TC)的频数进行预估。结果表明:两种情景下热带西北太平洋均呈现500 hPa位势高度偏高、太平洋东部海表温度偏高、低层菲律宾以东为异常反气旋性环流控制的特征。这种大尺度环境不利于TC生成,在高排放情景下或21世纪中叶后该环境特征更显著。未来TC频数总体呈减少的趋势,低排放情景下的TC频数变化趋势比高排放情境下平缓,TC频数存在年代际和年际变化。  相似文献   

12.
21世纪重庆最大连续5d降水的预估分析   总被引:3,自引:0,他引:3       下载免费PDF全文
 利用用于IPCC第四次评估报告的全球气候模式产品,验证其对重庆地区最大连续5 d降水(R5d)的模拟能力的基础上,对模拟能力较好的模式进行组合,预估温室气体排放高(A2)、中(A1B)、低(B1)3种情景下未来21世纪重庆地区R5d的变化。与目前(1980-1999年)气候相比,不同情景下21世纪重庆地区R5d均可能增加,尤其是21世纪后期相比21世纪前、中期增加更为显著。  相似文献   

13.
5个IPCC AR4全球气候模式对东北三省降水模拟与预估   总被引:3,自引:0,他引:3  
利用IPCC AR4中5个全球气候模式数据集和中国东北三省162个站降水实测资料,评估5个全球气候模式和多模式集合平均对中国东北三省降水的模拟能力,并对SRES B1、A1B和A2三种排放情景东北三省未来降水变化进行预估。结果表明:全球气候模式能较好再现东北三省降水的月变化,但存在系统性湿偏差;多模式集合平均能较好模拟东北三省年降水量的空间分布,但模拟中心偏北,强度略强,模式对东北三省夏季降水的模拟效果优于冬季降水;预估结果表明,三种排放情景下21世纪中前期和末期东北三省降水均将增多,21世纪末期增幅高于21世纪中前期,冬季增幅高于其他季节;就排放情景而言,SRES A1B和A2排放情景增幅相当,高于B1排放情景增幅;不同排放情景东北三省降水量增率分布呈较一致变化,A2排放情景下,增幅最显著的辽宁环渤海地区年降水量在21世纪中前期将增加7%以上,21世纪末期将增加16%。  相似文献   

14.
1. IntroductionFor the latest 15 years, the climate change hasbeen paid more attention by the policy-makers, scien-tists, and the public. The global warming of 0.4-0.8°Cfor the 20th century has been measured by the instru-mental observations. The atmospheric concentrationof CO2 increased from 280 ppm for the period 1000-1750 to 368 ppm in the year 2000 with an increase of27%-35%. In the light of new evidence and taking intoaccount the remaining uncertainties, most of the ob-served warming o…  相似文献   

15.
21世纪重庆中雨以上天数的预估分析   总被引:1,自引:0,他引:1  
利用用于IPCC-AR4的全球气候模式产品,验证其对重庆地区极端降水指数中雨以上天数(dR10)模拟能力的基础上,对模拟能力较好的模式进行组合,预估高(A2)、中(A1B)、低(B1)三种排放情景下未来21世纪重庆地区dR10的变化。不同排放情景下未来重庆dR10的变化不太一致。与目前气候(1980—1999年)相比,不同情景下未来21世纪重庆地区dR10在多数时期将可能减少。21世纪的后90a(2011—2100年),A2情景下重庆dR10减少最多,平均减少1.3d;3种情景平均将减少0.5d。21世纪初期(2011—2040年)、中期(2041—2070年)和后期(2071—2100年),A2情景下重庆dR10减少都最多,分别平均减少1.6d、1.6d和0.7d;3种情景平均分别减少0.8d、0.6d和0.1d。  相似文献   

16.
利用政府间气候变化委员会(IPCC)第4次评估报告提供的13个新一代气候系统模式的模拟结果,分析了不同情景下(高排放SRESA2、中等排放SRESA1B和低排放SRESB1)重庆地区21世纪的气候变化。结果表明:21世纪重庆气候总体有显著变暖、变湿趋势,年平均气温变暖趋势为每100年2.3~4.2℃,年降水增加趋势为每100年5.9%~8.8%。冬季变暖最明显,春季降水增加较显著、秋季减少较明显。在A2、A1B和B1情景下,21世纪后期气温分别比常年偏高3.68、3.28、2.26℃,年降水分别比常年偏多5.24%、5.77%和3.43%。  相似文献   

17.
使用观测和多模式集合平均的降水资料,评估全球气候模式对中国降水时空分布特征的模拟能力,并给出21世纪的预估。结果表明:全球气候模式在一定程度上能够再现中国地区降水的分布型,也能模拟出降水的区域性差异。对年降水10年、20年尺度上的周期变化模拟效果较好。21世纪SRES A1B情景下中国年及夏季降水主要模态以全国一致型为主,2045年前后由少雨型转为多雨型;冬季降水为少雨型与多雨型交替出现。  相似文献   

18.
利用耦合模式比较计划(CMIP3)提供的20世纪气候模拟试验(20C3M)及A1B情景预估试验,讨论了全球增暖情景下21世纪中期中国气候的可能变化。结果表明,A1B情景下,中国夏季降水变化在-0.1~1.1mm/d,冬季降水变化在-0.2~0.2mm/d。模式对降水变化的预估存在较大不确定性。无论冬夏,预估的全国表面气温都将升高,升温幅度在1.2~2.8℃;随纬度升高,增暖幅度相应增大。模式对表面气温变化的预估能力强于对降水变化的预估能力。在A1B情景下,东亚夏季风增强,而冬季风则略为减弱,东亚夏季风雨带到达最北后南撤的时间较之20C3M滞后约一个月。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号