首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 606 毫秒
1.
格点降水资料在中国东部夏季降水变率研究中的适用性   总被引:3,自引:2,他引:1  
姜贵祥  孙旭光 《气象科学》2016,36(4):448-456
本文使用1951~2010年PREC、CRU、APHRO和GPCC 4种格点降水资料,通过比较其与中国756站点观测降水资料在中国东部(105°E以东)夏季降水变率中的差异,检验和评估了它们的可靠性和适用性。结果表明:中国东部夏季降水变率的前3个主要模态分别是以江淮流域、长江流域和华北与东北南部为核心的经向多中心分布,有明显的年际和年代际变率特征,且干旱特征较洪涝更明显;长江流域夏季降水异常的主周期为3~7 a和20~50 a,而江淮流域和华北地区夏季降水异常的主周期则为准2 a和准10 a。另外,长江与江淮流域和华南地区分别在1970s末和1990s初发生了显著的年代际转变;4种格点降水资料都能很好地再现中国东部夏季降水的时空变率特征,但由于GPCC格点降水资料是基于更多的基站观测和更精细复杂的质量控制方案得到的,因此它具有更高的可靠性。  相似文献   

2.
 Two regional climate models have been applied to the task of generating an ensemble of realizations of the year 1982 with observed boundary conditions in areas covering parts of the Mediterranean countries. These realizations were generated by applying boundary conditions from the ECMWF ERA reanalysis project consecutively, carrying over the soil variables from the regional models from one iteration to the next. Monthly mean fields for six iterations of each model have been used as statistical ensembles in order to investigate the internal variability of the regional model dynamics. This internal variability is a necessary consequence of the non-linear physical feedback mechanisms of the RCM being active. A small value of internal variability will give better statistics for climate sensitivity signals, but will make these results less credible. The internal variability is important for the quantitative assessment of a climate sensitivity signal. With the present choice of models and integration domains the internal variabilities of surface fields and precipitation do reach levels that are less than, but in summer of comparable order of magnitude to, corresponding atmospheric variabilities of an atmospheric general circulation model. Received: 26 October 1999 / Accepted: 18 December 2000  相似文献   

3.
An objective methodology is applied to ERA-40 (European Centre for Medium-Range Weather Forecasts 40-year Reanalysis) and NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalyses, to build two storm-track databases for the Euro-Atlantic sector (85°W–70°E; 20°N–75°N), spanning the period December 1958–March 2000. The technique uses the full temporal (6-hourly) and spatial resolutions (1.125° and 2.5° regular grids, for ERA-40 and NCEP/NCAR, respectively) available. It is shown that the strong discrepancies in the number of storms in each dataset (higher for ERA-40) result from differences in the resolution of the fields subject to the storm detecting/tracking algorithm, and also from the characteristics of the integration models and assimilation schemes used for each reanalysis. An intercomparison of ERA-40 and NCEP/NCAR storm-tracks is performed for spatial distribution, and main characteristics, of the overall cyclone population and of a class of severe storms—explosive cyclones. Despite the discrepancies in storm numbers, both reanalyses agree on the main cyclone activity areas (formation, minimum central pressure, and lysis). The most pronounced differences occur where subsynoptic systems are frequent, as these are better resolved by ERA-40 data. The interannual variability of cyclone counts, analysed per intensity classes and for different regions of the domain, reveals reasonable agreement between the two datasets on the sign of trends (generally positive in northern latitudes, and negative in the Azores-Mediterranean band), but discrepancies regarding their strength in the most southern areas, where the mismatches between ERA-40 and NCEP/NCAR detected lows are greatest. Submitted to Climate Dynamics in December 2004  相似文献   

4.
The heat budget is analyzed in the surface-layer (0-50 m) Pacific of the equatorial band (10°S-10°N),using the simulation of an ocean general circulation model from 1945 to 1993. The analysis indicates that downward net surface heat flux from the atmosphere and ocean advective heat fluxes play distinct roles in seasonal and interannual variabilities of surface-layer ocean temperature. The surface heat flux dominantly determines the ocean temperature in the seasonal time-scale. But, it has a negative feedback to the ocean temperature in the interannual time-scale. The interannual variability of ocean temperature is largely associated with the cold advection from off-equatorial divergent flow in the central Pacific and from upwelling in the cold tongue. Both the surface heat flux and ocean advective heat fluxes are important to the ocean temperature during an El Nino event. The ocean advective heat fluxes are further associated with local westward trade wind in the central Pacific. These results are largely consistent with some regional observational analyses.  相似文献   

5.
In this study,we investigate the decadal variability of subsurface ocean temperature anomaly(SOTA)in the tropical Pacific and associated anomalous atmospheric circulation over Asia-North Pacific-North America by analyzing 50 years of atmosphere-ocean data from the National Center for Environmental Prediction(NCEP)reanalysis project and Simple Ocean Data Assimilation(SODA).Relationship between the ENSO-Like variability and climate of China is also revealed.The results show that the decadal variability of tropical Pacific SOTA has two dominant ENSO-like modes:the primary mode is an ENSO-Like mature phase pattern,and the second mode is associated with the ENSO-like transition(developing or decaying)phase.These two modes consist of a cycle of ENSO-Like variability,which exhibits a quasi-40a fluctuation,superimposed with an oscillation of a 13a period.The ENSO-Like variability in the tropical Pacific influences the atmosphere system at the mid-and higher-latitudes and subtropical regions,resulting in decadal variability of south wind over North China,the East Asian monsoon and climate of China.During the mature phase of El Ni o-Like variability,the anomalous north wind prevails over the north part of China and the East Asian monsoon weakens,with little rain in North China but much rain in the middle-and lower-reaches of the Yangtze River.With El Ni o-Like decaying(La Ni a-Like developing),anomalous northerly wind also prevails over North China,then the East Asian monsoon weakens with drought occurring in North China.The situation during the La Ni a-Like variability is the opposite.The pattern of anomalous climate of China is primarily dominated by the first ENSO-like variability,while the second mode can modulate the contribution of the first one,depending on whether its phase agrees with that of the first mode.The climate shift in China around 1978 and successive occurrence of drought for more than 20 years in North China are primarily induced by the first two ENSO-like variabilities.The latest La Ni a-Like phase starts from 1998 and will presumably end around 2018.It is expected that more rainfall would be in North China and less rainfall would appear in the middle-and lower-reaches of the Yangtze River valley during this period.  相似文献   

6.
利用中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG/IAP)发展的耦合的气候系统模式FGOALS-s2工业革命前控制试验结果研究了大西洋经向翻转流(Atlantic Meridional Overturning Circulation,AMOC)的年代际变率及其物理机制。传统AMOC是利用深度坐标下的质量流函数来表征,本文通过对密度坐标下49.5°N的AMOC指数与其余纬度的AMOC指数作相关分析,发现AMOC的变化有从深水形成区向南传播的过程,且密度坐标下的AMOC变率在北大西洋高纬度明显大于低纬度。分析进一步表明,模式模拟的AMOC具有年代际振荡,周期约为70年。这个低频振荡主要是由与AMOC变化相关的温度和盐度的变化与海表风场之间的相互作用引起,具体机制如下:格陵兰-冰岛-挪威海有异常强的海表风场,导致蒸发增强,继而使海表盐度增加,深水形成增多,从而使AMOC增强。AMOC加强后,会使得向北的热量和盐度输送增加,减弱此处的经向温度梯度,风场随之减弱,从而完成位相的反转。  相似文献   

7.
利用1979—2012年Hadley中心海表温度、中国2 474个台站逐日降水和NCEP/NCAR全球再分析资料,分析了不同类型ENSO事件秋冬季和次年春季中国南方地区10~30 d降水低频变率的变化特征。结果表明,中国南方地区10~30 d降水低频变率对不同类型ENSO事件的响应存在显著的季节差异。EP型El Ni1o的冬季和次年春季,低频降水变率显著增强; CP型El Ni1o秋冬季低频降水强度呈现相反的异常,秋季低频降水偏弱,而冬季则偏强; La Ni1a事件期间中国南方低频降水变率的变化较小且不稳定。进一步分析发现,ENSO对南方地区10~30 d低频降水变率的影响与西北太平洋地区季节平均大气环流背景场对ENSO的响应密切相关。相比正常年份,EP型El Ni1o冬春季菲律宾反气旋性异常环流的强度较强且范围较大,其西侧的异常西南风向中国南方地区输送了大量水汽,从而有利于低频降水的增强; CP型El Ni1o年秋季西北太平洋表现为气旋性环流异常,抑制了热带水汽向东亚大陆的输送,而冬季却产生了与EP型El Ni1o年类似的异常反气旋环流,只是强度有所减弱,因此中国南方地区低频降水强度在秋冬季呈相反异常。La Ni1a年菲律宾附近虽然存在气旋性环流异常,但强度较弱,因而我国南方地区低频降水变率的响应也较弱。  相似文献   

8.
An 8-wavelength sun-photometer has been operated at Hefei (31.31°N, 117.17°E) to monitoroptical properties of atmospheric aerosols. Altogether 133 solar spectral extinction data were ob-tained on clear days during the period from September 1993 through September 1994, In this pa-per, the feature of the sun-photometer is briefly described. A relative aureole method is intro-duced. which can be used to monitor temporal evolution of aerosol loading during the sun-pho-tometer calibration period. Temporal variabilities of spectral aerosol optical depths and Angstromturbidity parameters are presented. Relation of these variabilities with synoptic and local meteoro-logical conditions are analyzed and discussed, From measured spectral aerosol optical depths undersome representative atmospheric conditions, columnar aerosol size distributions have been retrievedby a linearly constrained inversion method. These typical columnar aerosol size distributions are al-so presented and discussed.  相似文献   

9.
In-situ measurement of atmospheric CO2 was made at the top of the Waliguan Mountain(36°17'N,100°54'E,3816 m asl).where the air is not directly affected by the local anthropogenic and natural sources,by using a nondispersive infrared(NDIR)analyzer and following the procedures proposed by WMO.The CO2 in the flask samples collected on the mountain was also analyzed in a laboratory.The measurements uncover the daily,monthly and seasonal variabilities and the baseline level of the CO2 in the air over the "clean" area of Chinese hinterland.Results suggest that the CO2 concentration over the East Asia continent has evident periodical variation,similar to that of global distribution.In 1992,an annual mean baseline CO2 concentration of 356.4 ppm over the continent was obtained.The annual mean value was 357.2 ppm for 1993.Some relationships between the CO2 concentration at Waliguan and the weather conditions,especially,wind speed and direction are found through the observation.  相似文献   

10.
In this study, empirical orthogonal function was applied to analyze rainfall variability in the Nile basin based on various spatio-temporal scales. The co-occurrence of rainfall variability and the variation in selected climate indices was analyzed based on various spatio-temporal scales. From the highest to the lowest, the cumulative amount of variance explained by the first two principal components (PCs) for any selected size of the spatial domain was obtained for the annual, seasonal, and monthly rainfall series respectively. The variability in the annual rainfall of 1° × 1° spatial coverage explained by only the first PC was about 55% on average. However, this percentage reduced to about 40% on average across the study area when the size of the spatial domain was increased from 1° × 1° to 10° × 10°. The variation in climate indices was shown to explain rainfall variability more suitably at a regional than location-specific spatial scale. The magnitudes and sometimes signs of the correlation between rainfall variability and the variation in climate indices tended to vary from one time scale to another. These findings are vital in the selection of spatial and temporal scales for more considered attribution of rainfall variability across the study area.  相似文献   

11.
ABSTRACT Canopy resistance substantially affects the partitioning of available energy over vegetated surfaces. This study analyzed the variability of canopy resistance and associated driving environmental factors over a desert steppe site in Inner Mongolia, China, through the use of eddy-flux and meteorological data collected from 2008 to 2010. Distinct seasonal and interannual variabilities in canopy resistance were identified within those three years, and these variabilities were controlled primarily by precipitation. Strong interannual variability was found in vapor pressure deficit (VPD), similar to that of air temperature. Based on the principal component regression method, the analysis of the relative contribution of five major environmental factors [soil-water content (SWC), leaf-area index (LAI), photosynthetically active radiation (Kp), VPD, and air temperature] to canopy resistance showed that the canopy-resistance variation was most responsive to SWC (with 〉 35% contribution), followed by LAI, especially for water-stressed soil conditions (〉 20% influence), and VPD (consistently with an influence of approximately 20%). Canopy-resistance variations did not respond to Kp due to the small interannual variability in Kp during the three years. These analyses were used to develop a new exponential function of water stress for the widely used Jarvis scheme, which substantially improved the calculation of canopy resistance and latent heat fluxes, especially for moist and wet soils, and effectively reduced the high bias in evaporation estimated by the original Jarvis scheme. This study highlighted the important control of canopy resistance on plant evaporation and growth for the investigated desert steppe site with a relatively low LA1.  相似文献   

12.
智协飞  田笑  朱丹  宋斌  侯美夷 《大气科学》2017,41(5):999-1009
根据NCEP/NCAR再分析资料,采用客观判定和追踪方法,研究了1948~2013年欧亚地区冬季温带反气旋的年代际气候变化的活动特征。结果发现,反气旋的高频分布区也是反气旋气候变化最大的区域,其中蒙古高原和伊朗高原的反气旋最活跃。反气旋的频数和强度既有长期趋势也有年代际变化。蒙古高原和伊朗高原的反气旋频数具有明显的年代际变化特征。反气旋频数具有2~6年和16~30年周期,且具有变频特征。EOF分解发现蒙古高原和伊朗高原的反气旋频数分布均在较高纬度和较低纬度地区呈现显著相反的偶子极态分布形式。蒙古高原的反气旋强度的变化基本可以体现欧亚大陆反气旋强度的变化。反气旋分布和强度的年代际变化可以用对流层低层经向温度梯度表示的斜压锋的位置和强度的年代际变化来解释,但斜压锋对欧亚反气旋的影响具有区域性。蒙古高原的反气旋在1960~1975年50°N以北较多,1990~2005年50°N以南较多的偶极子态变化与80°~120°E区域的斜压锋纬度位置自55°N南移到45°N有密切关系,30°~80°E区域的斜压锋纬度位置变化不能单独解释伊朗高原反气旋偶极子态年代际变化。自21世纪00年代中期斜压锋偏强对反气旋强度偏强有重要影响。  相似文献   

13.
Summary An earlier developed multidecadal database of Northern Hemisphere cut-off low systems (COLs), covering a 41 years period (from 1958 to 1998) is used to study COLs interannual variability in the European sector (25°–47.5° N, 50° W–40° E) and the major factors controlling it. The study focus on the influence on COLs interannual variability, of larger scale phenomena such as blocking events and other main circulation modes defined over the Euro-Atlantic region. It is shown that there is a very large interannual variability in the COLs occurrence at the annual and seasonal scales, although without significant trends. The influence of larger scale phenomena is seasonal dependent, with the positive phase of the NAO favoring autumn COL development, while winter COL occurrence is mostly related to blocking events. During summer, the season when more COLs occur, no significant influences were found.  相似文献   

14.
1961~2009年中国季风区范围和季风降水变化   总被引:4,自引:2,他引:2  
姜江  姜大膀  林一骅 《大气科学》2015,39(4):722-730
东亚季风对中国气候和环境有重要影响, 以往研究多关注于季风环流和人为给定区域内夏季降水的变化, 对于季风区域变化本身及其相伴的季风降水鲜有涉及。本文使用四套降水观测资料, 其中包括基于2416个台站最新资料所得到的中国区域高分辨率降水格点数据, 集中分析了1961~2009年中国季风区范围、季风区西北边界、季风降水及其强度变化。结果表明, 季风区约占中国陆地面积的60%, 研究时段内总体上在缩少;季风降水无趋势性变化而是表现为一定的年际和年代际变率;中国季风降水强度平均为4.46 mm d-1。季风区西北部的东、西边界间区域属于典型的干湿交错带, 季风区西北边界在40°N以南整体上表现为-0.026°/a的西进趋势, 而在其北部则表现为0.041°/a的东退, 这主要是源于区域尺度热力对比、大气环流和水汽通量的变化所致。  相似文献   

15.
Fully and accurately studying temperature variations in montane areas are conducive to a better understanding of climate modeling and climate-growth relationships on regional scales. To explore the spatio-temporal changes in air and soil temperatures and their relationship in montane areas, on-site monitoring over 2 years (2015 and 2016) was conducted at nine different elevations from 2040 to 2740 m a.s.l. on Luya Mountain in the semiarid region of China. The results showed that the annual mean of air temperature lapse rate (ATLR) was 0.67 °C/100 m. ATLR varied obviously in different months within a range of 0.57~0.79 °C/100 m. The annual mean of the soil temperature lapse rate (STLR) was 0.48 °C/100 m. Seasonally, monthly mean soil temperature did not show a consistent pattern with regard to elevation. The relationships between air and soil temperatures showed piecewise changes. Soil was decoupled from the air temperature in cold winter and early spring. The parameters of the growing season based on the two temperature types had no corresponding relations, and seasonal mean of soil temperature showed the smallest value at mid-elevation rather than in the treeline ecotone. Based on these changes, our results emphasized that altitudinal and seasonal variability caused by local factors (such as snow cover and soil moisture) should be taken into full consideration in microclimate extrapolation and treeline prediction in montane areas, especially in relation to soil temperature.  相似文献   

16.
This work presents a methodology to study the interannual variability associated with summertime months in which extremely hot temperatures are frequent. Daily time series of maximum and minimum temperature fields (T max and T min, respectively) are used to define indexes of extreme months based on the number of days crossing thresholds. An empirical orthogonal function (EOF) analysis is applied to the monthly indexes. EOF loadings give information about the geographical areas where the number of days per month with extreme temperatures has the largest variability. Correlations between the EOF principal components and the time series of other fields allow plotting maps highlighting the anomalies in the large scale circulation and in the SSTs that are associated with the occurrence of extreme events. The methodology is used to construct the “climatology” of the extremely hot summertime months over Europe. In terms of both interannual and intraseasonal variability, there are three regions in which the frequency of the extremely hot days per month homogeneously varies: north-west Europe, Euro-Mediterranean and Eurasia region. Although extremes over those regions occur during the whole summer (June to August), the anomalous climatic conditions associated with frequent heatwaves present some intraseasonal variability. Extreme climate events over the north-west Europe and Eurasia are typically related to the occurrence of blocking situations. The intraseasonal variability of those patterns is related to the amplitude of the blocking, the relative location of the action centre and the wavetrain of anomalies downstream or upstream of the blocking. During June and July, blocking situations which give extremely hot climate conditions over north-west Europe are also associated with cold conditions over the eastern Mediterranean sector. The Euro-Mediterranean region is a transition area in which extratropical and tropical systems compete, influencing the occurrence of climate events: blockings tend to be related to extremely hot months during June while baroclinic anomalies dominate the variability of the climate events in July and August. We highlight that our method could be easily applied to other regions of the world, to other fields as well as to model outputs to assess, e.g. the potential change of extreme climate events in a warmer climate.  相似文献   

17.
Summary Spatial scales of variability in seasonal rainfall over Africa are investigated by means of statistical and numerical techniques. In the statistical analysis spatial structure is studied using gridded 0.5° resolution monthly data in the period 1948–1998. The de-seasonalized time series are subjected to successive principal component (PC) analysis, allowing the number of modes to vary from 10 to 24, producing cells of varying dimension. Then the original rainfall data within each cell are cross-correlated (internal), then averaged and compared with the adjacent cells (external) for each PC solution. By considering the ratio of internal to external correlation, the spatial scales of rainfall variability are evaluated and an optimum solution is found whose cell dimensions are approximately 106 km2. The aspect of scale is further studied for southern Africa by consideration of numerical model ensemble simulations over the period 1985–1999 forced with observed sea surface temperatures (SSTs). The hindcast products are compared with observed January to March (JFM) rainfall, based on a station-satellite merged analysis of precipitation (CMAP) data at 2.5° resolution. Validations for different sized areas indicate that cumulative standardized errors are greatest at the scale of a single grid cell (104 km2) and decrease 20–30% by averaging over successively larger areas (106 km2).  相似文献   

18.
利用ERA-Interim再分析资料分析了夏秋季西北太平洋季风槽的气候特征以及季节和年际变化特征及其对西北太平洋热带气旋和台风(TCs)生成大尺度环境因子的影响。研究结果表明了西北太平洋季风槽有很明显的季节变化,在6~7月,季风槽和强对流活动区在5°N~15°N的南海和西北太平洋西侧上空,并逐渐东伸;到了8~9月,季风槽和强对流活动区向北移动、并向东扩展,一般位于10°N~20°N的南海和西北太平洋西侧、中部上空,有的年份可东伸到西北太平洋东侧,强度加强;到了10~11月,季风槽迅速减弱,并成为涡旋,强对流活动区也向南移和向西收缩。同时,研究还表明了西北太平洋季风槽有明显的年际变化。在季风槽强的年份,季风槽和强对流活动区可以从南海经西北太平洋西侧和中部东伸到西北太平洋的东侧上空;而在季风槽弱的年份,季风槽和强对流活动区主要位于南海和西北太平洋西侧和中部上空,季风槽强度的年际变化对它的季节变化也有重要影响。此外,研究还表明了随着季风槽的季节和年际变化,西北太平洋TCs生成的大尺度环境因子分布也发生很明显的变化。  相似文献   

19.
任曼琳  张文君  耿新  刘超 《气象学报》2020,78(2):199-209
基于1960—2017年中国国家气象信息中心整编的753站逐日平均温度资料、美国国家海洋大气中心(NOAA)重建的逐月海表温度资料以及美国国家环境预测中心/国家大气研究中心(NCEP/NCAR)提供的再分析大气环流资料,分析了ENSO对中国冬季天气尺度气温变率的影响。结果表明,ENSO与中国东部大部分地区的冬季天气尺度气温变率呈显著正相关,即厄尔尼诺年冬季,中国气温波动幅度增大,天气尺度气温变率明显较强;而拉尼娜年冬季,气温变化相对平稳,天气尺度温度变率较小。进一步研究发现,厄尔尼诺事件加强了冬季欧亚大陆中高纬度地区的经向温度梯度,根据热成风原理,局地大气斜压性增强,西伯利亚地区的风暴活动和下游东亚地区大气环流的天气尺度变异也随之加强,因而有利于中国大部分地区天气尺度温度变率的增大。拉尼娜年冬季,异常情况与之大致相反。   相似文献   

20.
The spatial variability of both turbulent flow statistics in the roughness sublayer (RSL) and temperature profiles within and above the canopy layer (CL) were investigated experimentally in a densely built-up residential area in Tokyo, Japan. Using five towers with measuring devices, each tower isolated from the others by at least 200 m, we collected high-frequency measurements of velocity and temperature at a height z=1.8 z H, where z H, the mean building height in the area, is 7.3 m. Also, temperature profiles were measured from z=0.4 to 1.8 z H. The ‘areal mean’ geometric parameters that were obtained for the areas within 200 m of each tower were fairly homogeneous among the tower sites. The main results are as follows: (1) The spatial variability of all RSL turbulent statistics, except the sensible heat flux, was comparable to that reported in a pine forest. Also, the variability decreased with increasing friction velocity. (2) The spatial variability of the RSL sensible heat flux was larger than that reported in a pine forest. Also, the variability depended on the time of the day and became larger in the morning. The difference among the sites was well related to the areal fraction of vegetation. (3) The spatial variability of the CL temperature profile depended on the time of the day and became larger in the morning. Nevertheless, the spatial standard deviation of CL temperature was always below 0.7 K. (4) It is suggested that the “warming-up” process in the morning when heat storage is dominant increases the spatial variation of RSL sensible heat flux and CL temperature according to the local properties around each tower and the variation decreases once there is further convective mixing in the midday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号