首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
付炜  唐明晖  叶成志 《气象》2020,46(8):1001-1014
利用常规观测资料、FY-2G卫星黑体亮温(TBB)资料、多普勒天气雷达资料以及ERA-Interim再分析资料,对2016年5月5日(以下简称"16·5"过程)和2018年4月23日(以下简称"18·4"过程)两次强西南急流背景下的暖区暴雨预报失败案例进行对比分析。结果表明:两次暖区暴雨过程的水汽分别来源于925 hPa西南急流和显著西南风,"16·5"过程的水汽辐合强度及范围较"18·4"过程更强、更广,导致暴雨出现的范围更广;超低空急流断裂处的辐合区叠加在湘桂边界南岭山脉特殊地形上,动力抬升触发及维持作用更加明显。大气层结稳定度对暖区暴雨的发生具有重要指示作用,"16·5"过程大气不稳定度更大导致了更强的暖区暴雨;两次暖区暴雨的湿层厚度较锋面暴雨浅薄,中低层的显著湿区导致了暴雨或大暴雨的出现;"16·5"暖区暴雨发生过程中能量长时间的维持,是西南低空急流暖湿输送导致高温、高湿、高能的对流不稳定层结反复重建的结果,最终导致强降水持续,进而导致了更大的总降水量。"18·4"过程冷锋前100 km外相对较弱的水汽辐合区,是暖区暴雨的一个重要预报指标;两次过程中高空槽的经向度是决定暖区暴雨范围大小的重要因子。地形在两次暖区暴雨过程中的降水增幅作用明显,降水中心主要出现在山谷或盆地的迎风坡位置;两次暖区暴雨与边界层的动力辐合、水汽供应关系密切,边界层辐合抬升和地形的作用明显,短期预报需重点关注边界层辐合区及特殊地形位置,对数值预报进行适当订正。雷达风廓线资料揭示了两次暖区暴雨过程西南风厚度的差异对降水强度的影响;垂直风切变的增强、环境风偏弱特征在这两次过程中分别提供了强降水持续维持的信息,对暴雨的预报预警的升级有一定的指示作用。  相似文献   

2.
利用多普勒雷达、气象卫星、自动气象站等监测数据以及NCEP再分析资料,对桂林2019年6月6-12日接连3次强降水天气过程的环流背景、影响系统与形成原因进行了对比分析。结果表明:(1)3次过程按影响系统分属暖区暴雨、低涡暴雨和锋面暴雨过程,均发生在高空急流右侧辐散、低空急流左侧辐合叠加区。(2)3次过程均受500 hPa短波槽和地面中尺度辐合线影响,但第1次过程中西南急流及地形等、第2次过程中低涡切变线、第3次过程中冷锋也起到重要作用。(3)3次过程的触发系统不同,第1次暖区暴雨过程迎风坡地形对其起触发作用,西南急流使得后向传播的对流云带维持;第2次低涡暴雨过程的触发系统为低层位于贵州一带的西南涡,西部冷空气侵入与西南急流加强是低涡对流云团维持较长时间的原因;第3次锋面暴雨的触发系统为冷锋,锋面配合锋前暖湿气流使对流云带加强。(4)第1次过程暖区暴雨MCS模态主要为线状后向扩建类,极端强降水出现在线对流中后端;第2次过程低涡暴雨MCS模态为涡旋类,极端强降水出现在涡旋中心附近;第3次过程锋面暴雨MCS模态由前期后部层云区线状对流转为层状云包裹对流系统,强降水发生在线对流弯曲或中心强回波处。  相似文献   

3.
《高原气象》2021,40(4):815-828
首先对2008-2019年4-9月湖南弱天气尺度背景下暖区暴雨依据500 hPa环流形势分为强西南急流型和副高型,然后对2018年4月30日(简称"4·30"过程)和2016年7月17日(简称"7·17"过程)两次不同类型暖区暴雨过程进行对比分析。结果表明:(1)两类暖区暴雨具有明显季节差异,强西南急流型和副高型分别发生在春季和夏季。强西南急流型一天任何时刻均会出现,夜间降水频次增多。副高型的日变化明显,降水峰值出现在上午。强西南急流型降水范围广,多出现在湘南地区,西南急流北推到长江中下游地区时,湘北也会出现暴雨。副高型降水分散,在湘西北、湘北及湘东南地区均出现强降水,局地性强,对流性明显。(2)"4·30"过程暴雨区处于上下一致西南风中,在切变线南侧辐合上升、西南急流和地面辐合线共同影响下湘东北出现暴雨,属于强西南急流型暖区暴雨;而"7·17"过程,副高脊线控制湖南,受中低层弱切变和地面中尺度气旋影响,湘西北出现暴雨,属于副高型暖区暴雨。(3)"4·30"过程暴雨区上空垂直螺旋度均为负值,700 hPa存在负值中心,意味着700 hPa切变线造成暴雨区强辐合上升,导致强降水发生;"7·17"过程,垂直螺旋度呈"上正下负"结构,900 hPa高度强气旋性旋转辐合最强,表征近地层中小尺度系统影响造成暴雨。"4·30"过程水汽输送和辐合比"7·17"过程更强。"7·17"过程比"4·30"过程低层热力不稳定能量更大且热力不稳定层结更强。β中尺度辐合线和γ小尺度气旋分别为"4·30"过程和"7·17"过程的触发机制。  相似文献   

4.
利用micaps常规观测资料和多普勒雷达产品,对2014年5月10日至11日广西出现的一次强降水天气过程进行分析,结果表明:强降水天气过程是西南季风暴发,加强多空横切变线及地面冷空气共同影响造成的,过程前期的降水为暖区暴雨特征,后期转为锋面暴雨特征;强降水过程的天气条件,动力抬升条件过程不稳定条件十分充足;中尺度系统在暖区强烈发展。  相似文献   

5.
利用常规气象观测资料、NCEP FNL1°×1°间隔6 h再分析资料,对2017年7—8月榆林市相继出现的两场区域性暴雨过程(7月26日暴雨过程,简称“7·26暴雨”;8月22日暴雨过程,简称“8·22暴雨”)的热力、动力机制进行对比分析。结果表明:两次暴雨与高低空急流关系密切,当高低空急流加强,出现强动力抬升时出现强降水,暴雨落区位于低空急流左前侧的强水汽辐合区。“7·26暴雨”低空急流和水汽辐合更强,大暴雨出现在高低空急流耦合的强上升区。两次降水过程热力机制有所不同,“7·26暴雨”过程中层有冷空气卷入,中低层存在强对流不稳定,低层切变线触发不稳定能量释放,产生强降水;“8·22暴雨”过程大气整层饱和,锋面作用显著,暖湿空气被冷空气抬升,低层存在对流不稳定,大尺度稳定降水系统伴随中小尺度对流发展,降水加强。对流层低层VMP1(湿正压项)负高值中心对暴雨落区有较好的预报指示意义。  相似文献   

6.
采用常规观测资料、地面加密观测资料、逐时云顶亮温TBB资料和1°×1°NCEP/NCAR再分析资料,对2013年7月8~11日四川盆地持续性暴雨天气过程的中尺度对流系统活动及其发生发展的物理机制进行了分析。结果表明:(1)暴雨过程发生在对流层中层中高纬度两槽一脊稳定维持的环流背景下,由活跃的高原低值系统以及异常稳定的副高西侧偏南气流配合低层冷空气作用造成。(2)极端降水过程分为暖区强对流性降水和相对稳定的锋面降水两个阶段;暖区对流性降水阶段,偏南暖湿气流源源不断向盆地输送水汽和能量,为暴雨发生提供了高能高湿条件,大气层结极不稳定,中尺度对流云团发展旺盛;锋面降水阶段层结趋于稳定,对流云团有所减弱,但仍有充足的水汽输送且降水云系稳定少动,致使盆地西部产生持续性降水。(3)500h Pa高原低槽前的正涡度平流诱发盆地西部低层气旋性涡度增加、低涡生成和发展,致使暖湿气流持续在盆地西部形成辐合上升,为暴雨的维持提供了很好的动力条件,两个降水阶段均为明显的低层辐合高层辐散的特征,暖区对流性降水阶段正涡度发展较锋面降水阶段更强。(4)青藏高原东侧的地形作用强迫气流在盆地西部强烈辐合上升,使得暖湿水汽更加有效率地形成降水,是此次极端强降水天气出现的一个重要动力因素。   相似文献   

7.
2013年5月华南强降水与中国南海夏季风爆发   总被引:2,自引:0,他引:2  
赵欢  张人禾  温敏 《气象学报》2015,73(3):442-458
利用2013年"华南季风强降水外场试验与研究"的外场试验数据、美国NCEP FNL资料和卫星云顶黑体辐射温度资料,对2013年5月7—17日华南地区出现的两次强降水过程(7—12日和14—17日)中的高低空环流以及相关气象要素场的变化进行了对比分析。中国南海夏季风于5月第3候建立,两次过程分处于夏季风爆发前后。通过对比影响两次强降水过程的主要环流系统如南亚高压、高空副热带西风急流、500 hPa环流型、水汽来源等,指出影响两次强降水过程大尺度环流场之间的显著区别,说明南海季风爆发前后大尺度环流场对暴雨影响的典型差异。7—12日过程主要受北方锋面影响和南方暖湿气流辐合作用,导致华南地区出现南北两条雨带。14—17日过程则由于季风爆发后强的暖湿空气活动致使华南地区对流活跃,从而形成一条位于广东北部的雨带,此次过程强降水比第1次过程集中且对流性更强。两次降水过程的内在物理机制是一个准平衡态的热力适应过程,由于第2次过程降水更强,导致热源作用明显增强,动力向热力的适应过程也更显著。利用探空资料揭示出两次过程暖区暴雨大气热力和动力条件存在显著区别,7—12日南海季风爆发前的暖区暴雨主要受低层强垂直风切变导致的大气斜压不稳定影响;14—17日南海季风爆发后的暖区暴雨主要受高低空急流的强耦合作用影响。  相似文献   

8.
两次不同类型暖区暴雨的对比分析   总被引:1,自引:0,他引:1  
2014年5月8-12日,华南发生了连续暴雨天气过程,为了探究回流暖区暴雨和锋前暖区暴雨的成因,加深这两类不同类型暴雨的认识,利用NCEP/,NCAR的1°×1°再分析资料、多普勒天气雷达、风廓线仪、自动站资料等,分析了回流暴雨与锋前暖区暴雨的特征及主要物理差异。得出:(1)8日暴雨发生在变性高压脊后部,未受冷空气影响,属于回流型暖区暴雨过程,10-11日暴雨发生在锋面低槽中,属于锋前型暖区暴雨。(2)两种类型暴雨不仅降水的分布、中尺度云团活动、雷达特征等存在明显的差异,而且在天气形势、水汽输送、动力机制、中尺度环境条件以及与暴雨的触发机制存在着不同点,这些差异可能是造成两类暖区暴雨降水落区及量级差异的主要原因。  相似文献   

9.
《湖北气象》2021,40(1)
基于2012—2016年西南低涡年鉴资料、欧洲中心ERA-Interim再分析资料、湖南省站点降水数据及热带测雨卫星TRMM格点降水产品,对西南涡影响下的湖南省暴雨天气过程进行了普查与分析,并进一步利用多变量EOF法和k均值聚类法对西南涡暴雨天气进行了客观分类。结果表明:(1)西南涡暴雨占湖南总暴雨日数的三分之一,大多由偏东路径的盆地涡和九龙涡造成。(2)湖南省西南涡暴雨天气主要分为暖区类、回流类和锋面类,其中暖区类暴雨强度最强,回流类和锋面类强度相当。(3)西南涡暖区暴雨发生在西南涡槽前深厚的暖湿气流中,落区集中在湘中以北。回流暴雨主要形成于低空高压后部东风回流和西南涡槽前西南气流耦合区,落区集中在湘东南,该类是秋季西南涡暴雨的主要天气形势。锋面暴雨因锋区与西南涡槽前耦合叠加,落区位于锋面附近并沿切变线分布。  相似文献   

10.
高层动力强迫对回流型华南暖区暴雨影响的个例研究   总被引:4,自引:6,他引:4  
应用NCEP再分析资料,分析了2014年5月8—9日发生在华南的一次暖区暴雨过程,研究高层动力强迫对此次华南暖区暴雨的影响。此次暴雨过程发生在暖湿的西南气流中,无明显天气尺度锋面系统影响,属于华南暖区暴雨过程。根据中尺度对流系统(MCS)的生消发展特征,可以将其分为5月8日与9日两个阶段,第一阶段具有显著的回流型暖区暴雨的特征,主要研究该阶段。研究发现,高PV扰动沿对流层高层南亚高压东北侧的西北气流下滑东移,导致IPV正异常,其东侧的辐散气流显著发展,在高层辐散气流的抽吸作用下,上升运动首先从中上层发展起来。在过程发展前期,IPV正异常主要是由平流作用引起,且在其东侧诱发出南风异常,进而导致辐散气流发展。当降水发生后,潜热加热反馈作用使高层辐散气流进一步加强,此时,辐散增强是对流发展的结果。此外,低层浅薄偏东风是本次暖区暴雨发生的低层背景场,其与西南风气流汇合,提供有利的低层辐合条件。   相似文献   

11.
利用常规气象资料、FNL再分析及雷达卫星资料等对2015年5月26—27日发生在贵州一次区域性暖区暴雨进行分析,结果表明:此次特大暴雨发生前期副高稳定少动,暴雨临近时高空影响槽东移,中低层切变线南压及暖湿气流辐合加强触发了暴雨的发生,暴雨发生在辐合线附近,无明显的冷空气影响,为典型的暖区暴雨;雷公山地形增强了气流辐合和地形抬升使其西南气流垂直上升运动较强,低空为强辐合区;低层高温高湿高能环境,有利于降水效率的提高,切变线两侧风速风向的辐合为暴雨的发生发展提供了充足的动力条件;降水过程强回波呈低质心、降水效率高的热带降水型特征,多个对流单体不断生消发展,在黔东南西部表现为明显的"列车效应";卫星云图显示特大暴雨落区及强度与TBB的变化有很好的对应关系。  相似文献   

12.
利用ECMWF、NCEP全球预报产品和BJ-RUC区域预报产品,对比了不同模式对北京市"7·21"特大暴雨暖区降水、锋面降水的预报效果,同时利用WRF高分辨率中尺度模式同化常规观测资料和雷达资料,对此次过程进行数值模拟试验。结果表明:NCEP和ECMWF的全球集合预报产品都能预报出北京市"7·21"特大暴雨过程,但在暖区降水阶段和锋面降水阶段存在6 h左右的时间滞后,且降水量偏小;BJ-RUC区域模式预报出了整个强降水过程,且较好地预报了暖区降水,优于NCEP和ECMWF预报,但锋面降水较之实况锋面阶段降水偏南,预报的降水量小于实况。对于此次特大暴雨过程的模拟,暖区降水和锋面降水的预报要优于业务预报,且暖区降水接近实况降水,但整个锋面降水过程存在3 h的时间滞后。  相似文献   

13.
贵州初夏两次暖区暴雨的对比分析   总被引:9,自引:3,他引:6  
周明飞  杜小玲  熊伟 《气象》2014,40(2):186-195
利用常规气象观测资料、NCEP 1°×1°格点再分析资料和FY 2D卫星红外云图云顶亮温TBB资料,对贵州2008年5月25—26日(简称08.05)和2010年6月28—29日(简称10.06)初夏两次暖区暴雨天气过程进行对比分析,探讨两次暴雨发生发展的天气学条件差异。结果表明:暖区暴雨形成时,地面均为热低压控制,地面辐合线加强触发暖区暴雨发生;850 hPa低空急流明显加强,暴雨区位于低空急流左前侧。所不同的是:两次暴雨过程中高层影响天气系统不同,08.05暴雨中层影响系统为高原槽,10.06暴雨中层影响系统为两高切变低涡,高层为南亚高压脊。08.05暴雨过程中,多个β中尺度对流单体独立发展逐渐合并为一个α中尺度对流系统,对流云发展旺盛、伸展高度较高、具有混合相层和暖云层剖面结构,属于积状云为主的混合降水。10.06暴雨,经历了两次β中尺度对流系统的发展和减弱,对流云团呈东北—西南向的带状和椭圆状,对流发展高度较低,具有深厚的暖云层,回波在暴雨区持续时间较长,属于层状云和积状云混合降水。通过对两次暴雨触发机制讨论得出,贵州暖区暴雨预报应着眼于影响贵州的低空急流的建立和加强以及地面低压中辐合线的加强锋生。  相似文献   

14.
文中利用NCEP再分析资料、FY-2E红外云图TBB资料和加密观测资料,对浙江中部地区2018年5月7—8日(简称“5.7”暴雨)、5月18—19日(简称“5.18”暴雨)两次暴雨天气过程进行对比分析,研究暴雨发生发展的环流特征与中尺度条件差异。结果表明:地面辐合线加强触发暖区暴雨发生,且地面辐合线的强度、移向与新生单体的发展密切相关,强回波在地面辐合线附近合并加强形成“列车效应”。金衢盆地内地形辐合与阻挡产生强迫上升运动对MCS的发展起到促进和加强作用。“5.7”暴雨对流发展高度较低,暖云层深厚,降水回波在暴雨区稳定维持,属于积状和层状云混合降水;“5.18”暴雨对流云发展旺盛、具有混合相层与暖云层剖面结构,属于积状云为主的混合降水。“5.7”暴雨属冷锋前部型暴雨,“5.18”暴雨为暖切变型暖区暴雨。暖区暴雨预报可着眼于浙中地区低空急流发展,中层的干侵入和地面辐合线的加强维持作用。  相似文献   

15.
2013年重庆秋季连阴雨期间暴雨过程对比分析   总被引:1,自引:0,他引:1  
2013年8月29日9月11日,重庆各地出现不同程度的连续降水天气,持续614天,降水日数多、日雨量大,连阴雨期间重庆出现两次区域性暴雨天气过程,为较严重连阴雨天气。利用NCEP 1°×1°的再分析资料及重庆地区逐日、逐时降水资料及雷达回波资料,对连阴雨天气期间两次暴雨过程进行对比分析。结果表明:此次连阴雨过程中欧亚地区中高纬500 hPa呈“两脊一槽”型,连阴雨过程中两次暴雨过程的500 hPa中高纬形势有所不同,但影响系统均为短波槽;两次过程都存在强大的水汽输送带,因副热带高压位置不同,暴雨区水汽来源也不同,一次来源于南海,一次来源于南海与孟加拉湾。近地层弱冷空气及中层暖湿气流的持续影响使连阴雨天气得以维持,两次暴雨过程产生前或产生时都伴有低层冷空气和中层暖湿气流的加强。由于“9·10”暴雨过程在暴雨区附近有明显的θse锋区,而“9·2”暴雨却不存在θse锋区,因此连阴雨过程中两次暴雨的降水性质不同。在对流并不特别强的暴雨过程中,雷达资料对影响系统强度的判断同样有指导意义。  相似文献   

16.
利用常规观测资料、Micaps资料、NCEP 1°×1°再分析资料和雷达风廓线资料,对2015年肇庆市开汛暴雨过程的环境条件及雷达风廓线产品特征进行分析。结果表明:暴雨发生在200 h Pa高空气流分流区、700 h Pa显著西南气流前方、850 h Pa切变线以南风速辐合区、925 h Pa风场辐合区和地面锋面低槽的重叠区域。暴雨发生前伴随着CAPE值激增,在大气层结极不稳定条件下,西南暖湿气流北上在广东中部地区辐合汇聚,为暴雨提供大量水汽和不稳定能量。暴雨过程低层气旋式涡度和高层反气旋式涡度使得低层辐合和高层辐散更加深厚,进一步增强上升运动。暴雨期间雷达风廓线资料直观地显示了中小尺度系统引起的风场变化,中层波动对应过程中的几个强降水时段。当上空处于中层西风波动槽前时,西南暖湿气流层次深厚,降水加强;当6 km以上高度西北气流向下发展时,降水处于减弱阶段。  相似文献   

17.
贵州初夏两次暖区暴雨的对比分析   总被引:3,自引:0,他引:3  
利用常规气象观测资料、NCEP 1°×1°格点再分析资料和FY-2D卫星红外云图云顶亮温TBB资料,对贵州2008年5月25—26日(简称08.05)和2010年6月28—29日(简称10.06)初夏两次暖区暴雨天气过程进行对比分析,探讨两次暴雨发生发展的天气学条件差异。结果表明:暖区暴雨形成时,地面均为热低压控制,地面辐合线加强触发暖区暴雨发生;850 hPa低空急流明显加强,暴雨区位于低空急流左前侧。所不同的是:两次暴雨过程中高层影响天气系统不同,08.05暴雨中层影响系统为高原槽,10.06暴雨中层影响系统为两高切变低涡,高层为南亚高压脊。08.05暴雨过程中,多个β中尺度对流单体独立发展逐渐合并为一个α中尺度对流系统,对流云发展旺盛、伸展高度较高、具有混合相层和暖云层剖面结构,属于积状云为主的混合降水。10.06暴雨,经历了两次β中尺度对流系统的发展和减弱,对流云团呈东北—西南向的带状和椭圆状,对流发展高度较低,具有深厚的暖云层,回波在暴雨区持续时间较长,属于层状云和积状云混合降水。通过对两次暴雨触发机制讨论得出,贵州暖区暴雨预报应着眼于影响贵州的低空急流的建立和加强以及地面低压中辐合线的加强锋生。  相似文献   

18.
一次华南暴雨的中尺度结构及复杂地形的影响   总被引:42,自引:15,他引:42  
孙健  赵平  周秀骥 《气象学报》2002,60(3):333-342
文中选取了 1998年 6月 8~ 9日的一次发生在华南的强降雨过程 ,利用观测资料和MM5中尺度模式对这个过程进行了诊断分析和数值模拟 ,研究了该暴雨过程的中尺度结构及华南地区复杂地形的影响。分析表明这次华南暴雨由锋面暴雨和暖区暴雨组成 ,具有不同的中尺度结构 ,其中广西梧州地区暴雨是准静止锋面上的中尺度对流系统造成 ,具有持续时间短 ,强度大的特征 ,MM5模拟的雷达回波强度超过 30dBz ,高度超过 2 0 0hPa ,并在其东、北侧出现闭合的次级垂直环流 ;珠江三角洲的暴雨是暖区暴雨 ,发生在深厚的暖湿气流内 ,85 0hPa上强度超过 16m/s的西南低空急流是影响降水的主要系统 ,该中心暴雨持续时间较长 ,降水强度也达到了暴雨标准 ,模拟雷达回波不明显 ,没有出现局地的次级环流。华南地区的复杂地形在这次华南暴雨过程中主要为动力性作用 ,具体表现在一支冷空气在低层由苗岭和南岭之间南下 ,南海上空一支暖湿气流北上直接到达梧州地区 ,另一支次暖湿空气在南岭的阻挡下由武夷山以南沿南岭和云开大山之间折而向西 ,这三支气流在梧州地区附近汇合 ,形成广西梧州地区的暴雨 ;同时南海上空北上的低层气流被迫向东北绕行海南岛 ,形成一个尺度为 2 0 0km左右的背风面气旋 ,这个气旋的东北部分加强了在珠江三角洲地  相似文献   

19.
利用常规观测资料、加密自动站降水资料和NCEP 1°×1°再分析资料对比分析了2010年8月12~13日(简称“8·12”过程)和2012年8月16~17日(简称“8·16”过程)青藏高原东坡发生的两次暖区强降水过程,探讨两次暖区强降水发生发展的天气学异同条件。结果表明:两次暖区强降水发生前及过程中均受副高的影响,地面有热低压发展和维持,利于能量的积累、不稳定层结和非绝热加热形成,进而引起上升运动;过程期间低层均有垂直于青藏高原东坡的偏东南气流的建立与增强,地形强迫上升运动和低层暖平流引起的上升运动增大和维持。主要差异在于,“8·16”过程中台风“启德”外围的偏东南风持续时间更长,影响区域更偏北,其降水持续时间更长,累计雨量更大。两次暖区强降水过程显示,低层垂直于青藏高原东坡地形的偏东南气流的建立、增强、持续及减弱在此类暖区强降水发生、发展及消亡过程起中着关键性作用。   相似文献   

20.
利用常规观测资料、地面加密自动站资料、FY-2E红外卫星云图、多普勒天气雷达产品以及NCEP/NCAR逐6 h再分析资料,对2012年7月21日北京特大暴雨过程暖区降水与锋面降水阶段进行了细致划分,并对其不同阶段降水的时空分布特征作了比较分析。结果表明:以锋面相对于该过程总降水量中心的锋面移动情况作为降水阶段划分的主要依据,降水可划分为三个阶段,第一阶段(21日08—16时)主要为锋前暖区降水,降水中心位于河北省拒马河流域,北京西南部为次大值降水中心;第二阶段(21日16—20时)主要为锋面过境降水,降水中心位于北京西南部的房山区;第三阶段(21日20时—22日03时),北京西南部有显著锋后降水,降水中心与过境锋面相对应,位于北京东南部与河北交界处。该过程暴雨中心降水由暖区降水、锋面过境降水和锋后降水构成,其分别约占总降水量的40%、46%、14%。北京西北部、东北部和东南部降水主要由锋面降水构成,暖区降水所占比例在15%以下。河北省拒马河流域洪涝灾害主要由暖区暴雨引起,北京西南部洪涝灾害既有暖区降水的作用,又有锋面过境降水的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号