首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 959 毫秒
1.
Flow distortion over a forested hill is asymmetric, forming a recirculation region on the lee slope that increases the complexity in understanding atmosphere–biosphere interaction. To understand the complexity, we examine the effect of the geometry of forested hills on recirculation formation, structure, and related CO2 transport by performing numerical simulations over double-forested hills. The ratio (0.8) of hill height (H) to half length (L) is a threshold value of flow patterns in the recirculation region: below 0.8, sporadic reversed flow occurs; at 0.8, one vortex is formed; and above 0.8, a pair of counter-rotating vortices is formed. The depth of recirculation increases with increasing H/L. The contribution of advection to the CO2 budget is non-negligible and topographic-dependent. Vertical advection is opposite in sign to horizontal advection but cannot exactly offset in magnitude. Height-integrated advection shows significant variation in fluxes across hills. Gentle slopes can cause larger advection error. However, the relative importance of advection to CO2 budget is slope-independent.  相似文献   

2.
Approximately half of human-induced carbon dioxide (CO2) emissions are taken up by the land and ocean, and the rest stays in the atmosphere, increasing the global concentration and acting as a major greenhouse-gas (GHG) climate-forcing element. Although GHG mitigation is now in the political arena, the exact spatial distribution of the land sink is not well known. In this paper, an estimation of mean European net ecosystem exchange (NEE) carbon fluxes for the period 1998–2001 is performed with three mesoscale and two global transport models, based on the integration of atmospheric CO2 measurements into the same Bayesian synthesis inverse approach. A special focus is given to sub-continental regions of Europe making use of newly available CO2 concentration measurements in this region. Inverse flux estimates from the five transport models are compared with independent flux estimates from four ecosystem models. All inversions detect a strong annual carbon sink in the southwestern part of Europe and a source in the northeastern part. Such a dipole, although robust with respect to the network of stations used, remains uncertain and still to be confirmed with independent estimates. Comparison of the seasonal variations of the inversion-based net land biosphere fluxes (NEP) with the NEP predicted by the ecosystem models indicates a shift of the maximum uptake period, from June in the ecosystem models to July in the inversions. This study thus improves on the understanding of the carbon cycle at sub-continental scales over Europe, demonstrating that the methodology for understanding regional carbon cycle is advancing, which increases its relevance in terms of issues related to regional mitigation policies.  相似文献   

3.
为提高集装箱“公转铁”减排潜力评估结果的准确性,在分析“公转铁”减排原理的基础上,综合考虑空箱调运和重箱运输“门到门”运输链的干线运输、端点装卸、电力设备作业、集卡短驳、公铁中转等排放,引入反映活动类型、设备结构、能源生命周期排放的参数,对作业活动-方式结构-能耗强度-排放因子(ASIF)方法进行改进,建立“公转铁”减排潜力评估框架。以义乌—宁波港域出口集装箱运输为例,通过实地调研和公开文献获取数据,进行实证研究。结果表明,如果忽略必要因素将会导致每TEU运输需求“公转铁”的CO2减排率被高估0.50~36.73个百分点;最佳“公转铁”情景可减排3.42万t CO2,相应减排率为13.58%。研究结果可为政府相关部门客观评估“公转铁”的减排潜力、制定有效的“公转铁”政策措施提供理论支持。  相似文献   

4.
Flux densities of carbon dioxide were measured over an arid, vegetation-free surface by eddy covariance techniques and by a heat budget-profile method, in which CO2 concentration gradients were specified in terms of mixing ratios. This method showed negligible fluxes of CO2, consistent with the bareness of the experimental site, whereas the eddy covariance measurements indicated large downward fluxes of CO2. These apparently conflicting observations are in quantitative agreement with the results of a recent theory which predicts that whenever there are vertical fluxes of sensible or latent heat, a mean vertical velocity is developed. This velocity causes a mean vertical convective mass flux (= cw for CO2, in standard notation). The eddy covariance technique neglects this mean convective flux and measures only the turbulent flux c w. Thus, when the net flux of CO2 is zero, the eddy covariance method indicates an apparent flux which is equal and opposite to the mean convective flux, i.e., c w = – c w. Corrections for the mean convective flux are particularly significant for CO2 because cw and c w are often of similar magnitude. The correct measurement of the net CO2 flux by eddy covariance techniques requires that the fluxes of sensible and latent heat be measured as well.  相似文献   

5.
6.
A regional chemical transport model, RAMS-CMAQ, was employed to assess the impacts of biosphere–atmosphere CO2 exchange on seasonal variations in atmospheric CO2 concentrations over East Asia. Simulated CO2 concentrations were compared with observations at 12 surface stations and the comparison showed they were generally in good agreement. Both observations and simulations suggested that surface CO2 over East Asia features a summertime trough due to biospheric absorption, while in some urban areas surface CO2 has a distinct summer peak, which could be attributed to the strong impact from anthropogenic emissions. Analysis of the model results indicated that biospheric fluxes and fossil-fuel emissions are comparably important in shaping spatial distributions of CO2 near the surface over East Asia. Biospheric flux plays an important role in the prevailing spatial pattern of CO2 enhancement and reduction on the synoptic scale due to the strong seasonality of biospheric CO2 flux. The elevation of CO2 levels by the biosphere during winter was found to be larger than 5ppm in North China and Southeast China, and during summertime a significant depletion( 7 ppm) occurred in most areas,except for the Indo-China Peninsula where positive bioflux values were found.  相似文献   

7.
The meridional energy flux modelled by the Bureau of Meteorology Research Centre general circulation model is examined. It is divided into atmospheric and oceanic components, and the resolved atmospheric components in turn into mean and eddy circulations. Comparison with observations shows the modelled total planetary meridional energy transport to be low, but shows better agreement for the resolved atmospheric component alone. The overall patterns of the individual circulation and energy components of the model also agree well, although strengths and locations do show some discrepancies. The doubled CO2 climate change is analyzed in terms of the changes in each of the circulation and energy components. It is found that the changes are the relatively small residual of larger, and generally opposing changes in sensible heat and potential energy fluxes. Despite the general decrease in poleward energy flux, the poleward latent heat flux is found to increase. The reduction in poleward transport is found to be dominated by changes in the mean meridional circulation at low southern latitudes, and changes in both mean circulations and eddy fluxes elsewhere.  相似文献   

8.
The OSU global coupled atmosphere-ocean general circulation model has been used to investigate a 2xCO2-induced climate change. A previous analysis of the simulated 2xCO2–1xCO2 temperature differences showed that the CO2-induced warming penetrated into the ocean and thereby caused a delay in the equilibration of the climate system with an estimatede-folding time of 50–75 years. The objective of the present study is to determine by what pathways and through which physical processes the simulated ocean general circulation produces the penetration of the CO2-induced warming into the ocean.A global-mean oceanic heat budget analysis shows that the ocean gains heat at a rate of 3 W/m2 due to the CO2 doubling, and that this heat penetrates downward into the ocean predominantly through the reduction in the convective overturning. A zonal-mean oceanic heat budget analysis shows that the surface warming increases from the tropics toward the midlatitudes of both hemispheres and gradually penetrated into the deeper ocean, with a greater penetration in the subtropics and midlatitudes than in the equatorial region. The zonal-mean heat budget analysis also shows that the CO2-induced warming of the ocean occurs predominantly through the down-ward transport of heat, with the meridional heat flux being only of secondary importance. In the tropics the penetration of the CO2-induced heating is minimized by the upwelling of cold water. In the subtropics the heating is transported down-ward more readily by the downwelling existing there. In the high latitudes the suppressed convection plays the dominant role in the downward penetration of the CO2-induced heating. The latter result should be considered as tentative, however, as the ocean component of the coupled model employed a prescribed surface salinity field and did not include the mechanism of brine rejection when sea water freezes into sea ice.  相似文献   

9.
Over three years, we found a consistent CO2 efflux from forest tundra of the Russian North throughout the year, including a large (89 g C m–2 yr–1) efflux during winter. Our results provide one explanation for the observations that the highest atmospheric CO2 concentration and greatest seasonal amplitude occur at high latitudes rather than over the mid-latitudes, where fossil fuel sources are large, and where high summer productivity offset by winter respiration should give large seasonal oscillations in atmospheric CO2. Winter respiration probably contributed substantially to the boreal winter CO2 efflux. Respiration is an exothermic process that produces enough heat to warm soils and promote further decomposition. We suggest that, as a result of this positive feedback, small changes in surface heat flux, associated with human activities in the North or with regional or global warming, could release large quantities of organic carbon that are presently stored in permafrost.  相似文献   

10.
A coupled carbon cycle-climate model is used to compute global atmospheric CO2 and temperature variation that would result from several future CO2 emission scenarios. The model includes temperature and CO2 feedbacks on the terrestrial biosphere, and temperature feedback on the oceanic uptake of CO2. The scenarios used include cases in which fossil fuel CO2 emissions are held constant at the 1986 value or increase by 1% yr–1 until either 2000 or 2020, followed by a gradual transition to a rate of decrease of 1 or 2% yr–1. The climatic effect of increases in non-CO2 trace gases is included, and scenarios are considered in which these gases increase until 2075 or are stabilized once CO2 emission reductions begin. Low and high deforestation scenarios are also considered. In all cases, results are computed for equilibrium climatic sensitivities to CO2 doubling of 2.0 and 4.0 °C.Peak atmospheric CO2 concentrations of 400–500 ppmv and global mean warming after 1980 of 0.6–3.2 °C occur, with maximum rates of global mean warming of 0.2–0.3 °C decade–1. The peak CO2 concentrations in these scenarios are significantly below that commonly regarded as unavoidable; further sensitivity analyses suggest that limiting atmospheric CO2 to as little as 400 ppmv is a credible option.Two factors in the model are important in limiting atmospheric CO2: (1) the airborne fraction falls rapidly once emissions begin to decrease, so that total emissions (fossil fuel + land use-induced) need initially fall to only about half their present value in order to stabilize atmospheric CO2, and (2) changes in rates of deforestation have an immediate and proportional effect on gross emissions from the biosphere, whereas the CO2 sink due to regrowth of forests responds more slowly, so that decreases in the rate of deforestation have a disproportionately large effect on net emission.If fossil fuel emissions were to decrease at 1–2% yr–1 beginning early in the next century, emissions could decrease to the rate of CO2 uptake by the predominantly oceanic sink within 50–100 yrs. Simulation results suggest that if subsequent emission reductions were tied to the rate of CO2 uptake by natural CO2 sinks, these reductions could proceed more slowly than initially while preventing further CO2 increases, since the natural CO2 sink strength decreases on time scales of one to several centuries. The model used here does not account for the possible effect on atmospheric CO2 concentration of possible changes in oceanic circulation. Based on past rates of atmospheric CO2 variation determined from polar ice cores, it appears that the largest plausible perturbation in ocean-air CO2 flux due to changes of oceanic circulation is substantially smaller than the permitted fossil fuel CO2 emissions under the above strategy, so tieing fossil fuel emissions to the total sink strength could provide adequate flexibility for responding to unexpected changes in oceanic CO2 uptake caused by climatic warming-induced changes of oceanic circulation.  相似文献   

11.
龚知本  吴际华 《大气科学》1980,4(4):319-326
本文给出了大气二氧化碳对CO_2激光辐射各谱线吸收的计算公式,并利用标准大气资料计算了各谱线的吸收值。发现在P支谱线中,P(16)线吸收最大;在R支谱线中,R(16)线为最大。当转动量子数J大于或小于16时,吸收值随J值的增大或减小几乎成指数减小。为了验证计算公式的可靠性,在实验室中进行了模拟大气测量,其测量结果和理论计算结果具有较好的一致性。  相似文献   

12.
The summer of 2003 was an active forest fire season in Siberia. Several events of elevated carbon monoxide (CO) were observed at Rishiri Island in northern Japan during an intensive field campaign in September 2003. A simulation with a global chemistry-transport model is able to reproduce the general features of the baseline levels and variability in the observed CO, and a source attribution for CO in the model suggests that the contribution from North Asia dominated, accounting for approximately 50% on average, with contributions of 7% from North America and 8% from Europe and 30% from oxidation of hydrocarbons. With consideration of recent emission estimates for East Asian fossil fuel and Siberian biomass burning sources, the model captures the timing and magnitude of the CO enhancements in two pollution episodes well (17 and 24 September). However, it significantly underestimates the amplitude during another episode (11–13 September), requiring additional CO emissions for this event. Daily satellite images from AIRS reveal CO plumes transported from western Siberia toward northern Japan. These results suggest that CO emissions from biomass burning in western Siberia in 2003 are likely underestimated in the inventory and further highlight large uncertainties in estimating trace gas emissions from boreal fires.  相似文献   

13.
Production and destruction processes of carbon monoxide (CO) and ozone (O3) are examined in the light of increasing amount of atmospheric carbon dioxide (CO2). It is found that doubling of CO2 will increase the stratospheric concentration of CO and will have positive effect on O3 concentration.  相似文献   

14.
Eddy fluxes of CO2 estimated using a sonic anemometer and a closed-path analyser were, on average, 16% lower than those obtained with the same anemometer and an adjacent open-path CO2 analyser. Covariances between vertical windspeed and CO2 density from the closed-path analyser were calculated using data points for CO2 that were delayed relative to anemometer data by the time required for a parcel of air to travel from the tube inlet to the CO2 sensor. Air flow in the intake tube was laminar. Densities of CO2 that had been corrected for spurious fluctuations arising from fluctuations in temperature and humidity were used in the flux calculations. Corrections for the cross-sensitivity of CO2 analysers to water vapour were also incorporated. Spectral analysis of the corrected CO2 signal from the closed-path analyser showed that damping of fluctuations in the sampling tube at frequencies f > 0.1 Hz caused the apparent loss in flux. The measured losses can be predicted accurately using theory that describes the damping of oscillations in a sampling tube. High-frequency response of the closed-path system can be improved substantially by ensuring turbulent flow in the tube, using a combination of high volumetric flow rate and small tube diameter. The analysis of attenuation of turbulent fluctuations in flow through tubes is applicable to the measurement of fluxes of other minor atmospheric constituents using the eddy covariance method.  相似文献   

15.
This paper formally introduces the concept of mitigation as a stochastic control problem. This is illustrated by applying a digital state variable feedback control approach known as Non-Minimum State Space (NMSS) control to the problem of specifying carbon emissions to control atmospheric CO2 concentrations in the presence of uncertainty. It is shown that the control approach naturally lends itself to integrating both anticipatory and reflexive mitigation strategies within a single unified framework. The framework explicitly considers the closed-loop nature of climate mitigation, and employs a policy orientated optimisation procedure to specify the properties of this closed-loop system. The product of this exercise is a control law that is suitably conditioned to regulate atmospheric CO2 concentrations through assimilating online information within a 25-year review cycle framework. It is shown that the optimal control law is also robust when faced with significant levels of uncertainty about the functioning of the global carbon cycle.  相似文献   

16.
 CO2的地质埋存处理是减缓温室效应的现实选择之一。要保证埋存的有效性、安全性和持久性,需要对钻井(主要包括注入井和废弃井)、CO2地下分布运移状况以及因CO2渗漏所造成的环境影响等方面实施严格的监测管理。通过对以上各方面文献的查阅和综合分析,系统阐述了世界范围内目前CO2地质埋存过程中所采用的各项主要监测技术。  相似文献   

17.
Although an official observatory was established in Toronto in 1839, governmental attempts to organize a national meteorological service were not begun until 1871. Storm warnings and general weather forecasts for Eastern Canada were instituted in 1876, and this service was extended across the West and throughout the settled portions of the country by the early years of the 20th century. Historical climatological data were published annually after 1871, but very little statistical data, delineating the climate of the country, were available prior to 1900. A beginning was made at expanding meteorological activities into the North before World War I, but it was not until the 1920's that a significant number of observing stations were located there. By 1930 the need for extensive aviation meteorological services was becoming apparent, but the economic depression prevented an expansion of both aviation and meteorological services.  相似文献   

18.
19.
Observations of vegetation–atmosphere exchange of carbon dioxide (CO2) by the eddy covariance (EC) technique are limited by difficult conditions such as nighttime and heterogeneous terrain. Thus, advective flux components are included into the net ecosystem exchange (NEE) budget. However, advection measurements are experimentally challenging and do not always help to solve the night flux problem of the EC technique. This study investigates alternative methods for the observation of horizontal advection, in particular horizontal concentration gradients, as well as different approaches to coordinate rotation and vertical advection. Continuous high-frequency measurements of the horizontal CO2 concentration field are employed and compared to the often used discontinuous sequential sampling. Significant differences were found in the case of 30-min mean concentration values between the conventional discontinuous sampling approach and the complete observation of the time series by continuous sampling. Estimates of vertical advection rely on accurate estimates of vertical wind velocity ( $\emph{w}$ ). Therefore, different approaches to the planar fit coordinate rotation have been investigated. Sector-wise rotation was able to eliminate directional dependencies of mean $\emph{w}$ . Furthermore, the effect of the data set length used for rotation (window length) was investigated and was found to have significant impact on estimates of vertical advection, with larger window lengths yielding about 50% larger vertical advection. A sequential planar fit with controlled window length is proposed to give reproducible results. The different approaches to the measurement and calculation of horizontal and vertical advection presented are applied to data obtained during the exchange processes in mountainous region experiment at the FLUXNET site Waldstein–Weidenbrunnen (DE-Bay). Estimates of NEE including advection are compared to NEE from turbulent and storage flux alone without advection. NEE including vertical advection with sector-wise planar fit rotation and controlled window length and including horizontal advection from continuous gradient measurements, which were comprehensively bias corrected by a new approach, did compare well with the expected night flux error, with meteorological drivers of the fluxes and with soil chamber measurements. Unrealistically large and noisy values of horizontal advection from the conventional discontinuous sampling approach, which lead to unrealistic values of NEE, could be eliminated by the alternative approaches presented. We therefore suggest the further testing of those approaches at other sites in order to improve the accuracy of advection measurements and, subsequently, estimates of NEE.  相似文献   

20.
基于生产与消费视角的CO2环境库茨涅兹曲线的实证研究   总被引:3,自引:0,他引:3  
 基于生产和消费视角,对人均GDP和单位GDP的CO2排放之间的内在关系进行了实证分析。对1990-2004年44个国家的人均GDP与生产型和消费型的单位GDP的CO2排放进行面板数据的单位根检验和协整分析,在此基础上,对CO2环境库茨涅兹曲线(EKC)进行模拟。结果显示:无论是从生产视角还是从消费视角,单位GDP的CO2排放量都具有显著的倒"U"形状,符合环境库茨涅兹曲线特征。但对于多数发展中国家,消费型单位GDP的CO2排放量总是低于生产型单位GDP的CO2排放量,表明多数发展中国家在国际贸易中存在着内涵CO2排放的净出口,这对从生产角度核算国家温室气体排放体系提出了挑战。最后,分析了CO2环境库茨涅兹曲线对中国应对气候变化的启示。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号