首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 214 毫秒
1.
利用贵阳市国家地面气象观测站1963—2018年逐日降水资料,分析近56 a贵阳市暴雨气候特征。结果表明:贵阳市暴雨以一般性暴雨最为频繁(占86.7%),区域暴雨与局地暴雨发生频次相当;该市暴雨开始于3月,结束于11月,集中于6月中旬—7月中旬;暴雨贡献率及暴雨日数整体呈现出增多趋势,年降水量中暴雨平均贡献率为17.7%;年暴雨日数与年降水量的年际变化趋势较为密切,即暴雨日数较多年,年降水量较多,暴雨日数较少年,年降水量较少;近56 a贵阳暴雨日数序列存在准2~4 a的振荡周期;暴雨频次时间序列在世纪60年代初到80年代中后期、21世纪00年代初到10年代初为较少期,20世纪80年代末期到90年代初、21世纪10年代中期至今为较多期。  相似文献   

2.
西南地区东部区域性暴雨事件的客观识别及其变化特征   总被引:1,自引:0,他引:1  
《高原气象》2021,40(4):789-800
利用区域性极端事件客观识别方法(OITREE)和1961-2018年西南地区东部118站逐日降水资料对该区域近58年的区域性暴雨事件进行了识别,确定了相应的OITREE方法的参数组,共识别得出246次区域性暴雨事件,其中25次达到极端强度,2004年9月3-6日发生的区域性暴雨事件是西南地区东部近58年来综合强度最强的一次区域性暴雨事件。进一步分析表明:西南地区东部区域性暴雨事件的持续时间主要为2天,最长为5天;事件的累积强度集中在500~1000 mm之间,累积面积集中在10×10~4~20×10~4km~2。西南地区东部区域性暴雨事件多发于5-9月,其中7月最多,占总发生频次的31.7%。四川东部和重庆西部的平原区是暴雨事件的频发和强度中心地区。近58年西南地区东部持续性区域暴雨事件增多[0.57次·(10a)~(-1)],持续时间延长[1.2 d·(10a)~(-1)],最大影响范围扩大[5.7×104km2·(10a)~(-1)],极端强度也增强[73.4 mm·(10a)~(-1)]。  相似文献   

3.
利用全国2287个气象观测站1961—2016年逐日降水资料,基于对暴雨区进行连续追踪的思路,采用暴雨相邻站点数和暴雨区中心距离确定了中国区域性暴雨过程的客观识别方法;根据区域性暴雨过程的平均强度、持续时间和平均范围构建了区域性暴雨过程的综合强度评估模型。利用该客观方法对1961—2016年中国的区域性暴雨过程进行识别,并分析其气候和气候变化特征。结果显示:我国区域性暴雨过程年均38.5次;区域性暴雨过程一年各月均可出现,但主要出现在4—9月,其中7、8月发生最为频繁,6月区域性暴雨过程持续时间长、范围广、综合强度强,这与长江中下游地区梅雨现象有关。一年中,区域性暴雨过程首次出现日期平均为3月6日,末次出现日期平均为11月14日;1961—2016年,我国年区域性暴雨过程首次出现日期呈明显提前、末次日期呈显著推后、暴雨期呈显著延长的变化趋势;年发生总频次呈微弱增多,较强区域性暴雨过程次数呈明显增加趋势;区域性暴雨过程的覆盖范围和综合强度均呈显著增大趋势。南方型区域暴雨过程变化趋势与全国的基本一致;北方型首次日期呈提前、末次日期呈推后趋势,发生频次有微弱减少趋势,覆盖范围、持续时间、综合强度均无明显变化趋势。  相似文献   

4.
采用2009—2021年陕西省内国家气象站以及区域气象观测站逐日降水资料,以某日出现暴雨站数至少占总站数的4%为识别条件,以降水强度、暴雨范围和持续时间建立综合强度评估指标,此区域暴雨过程识别方法与传统方法相比更加客观,基于此方法的识别结果分析陕西区域性暴雨过程的变化特征。结果表明:陕西区域性暴雨过程出现在4—10月,59.4%出现在夏季,最多发生在7月,33%出现在秋季,最多发生在9月。近13 a首次区域性暴雨出现日期呈提前趋势,平均每年提前1.5 d;末次日期呈缓慢推后趋势,平均每年推后0.7 d。暴雨过程频次平均每年8.2次,其中夏季4.8次,秋季2.7次;暴雨过程频次呈增加趋势,平均每年增加0.3次,夏季增加明显,秋季不显著。覆盖范围呈减小趋势,暴雨站数占比平均每年减少0.1%,局地性增强。76.4%的区域性暴雨过程持续1 d。区域性暴雨频次与陕西特色气候事件密切相关,夏季区域性暴雨多对应初夏汛雨强、伏旱弱,秋季区域性暴雨多对应秋淋强。  相似文献   

5.
利用1961—2017年广西91个气象观测站逐日降水量资料,通过定义广西区域性暴雨,采用线性趋势计算、低通滤波等方法,统计分析了广西区域性暴雨过程的变化特征。结果表明:广西区域性暴雨过程发生频率较高,全年各月均可有区域性暴雨过程出现,5—8月为多发期,出现次数占全年总数的74.2%;持续天数在5 d以上的区域性暴雨过程主要出现在6—8月,以6月最多。近57 a,广西年及秋季区域性暴雨过程频次呈显著增加趋势,20世纪90年代以来区域性暴雨过程总体偏多、强度偏强,暴雨范围在30站以上的过程明显增多;近10 a秋季过程频次偏多、强度偏强特征尤为明显。  相似文献   

6.
近45年长江中下游地区汛期极端强降水事件分析   总被引:5,自引:1,他引:5  
张天宇  程炳岩  刘晓冉 《气象》2007,33(10):80-87
利用长江中下游地区1960—2004年78个台站汛期(4—9月)逐日降水资料,首先定义了不同台站的极端强降水阈值,然后统计出了不同台站近45年逐年汛期极端强降水事件的发生频次,并进行了时空分布特征分析。结果表明:长江中下游汛期极端强降水事件发生频次的多寡很大程度上影响着汛期总降水量的多少。一致性异常分布特征是长江中下游地区汛期极端强降水事件发生频次的最主要空间模态;长江中下游地区汛期极端强降水事件发生频次的空间分布可分为5个主要区域。通过最大熵谱估计分析表明,Ⅰ区显著周期为2~4年;Ⅱ区和Ⅳ区的主要显著周期是基本一致的,显著周期为2~3年和6.3年;Ⅲ区显著周期为14.7年的年代际变化;Ⅴ区显著周期为22年的年代际变化和4~5年的年际变化。各分区代表站中岳阳(Ⅰ区)表现为很显著的增长趋势,10年增长率为1.0次;南岳(Ⅱ区)和南京(Ⅳ区)增长趋势相对较弱;衢州(Ⅴ区)增长趋势相对最弱;而洪家(Ⅲ区)近45年来汛期极端强降水事件发生频次则表现为很弱的减少趋势。  相似文献   

7.
邹瑾  李君  高理  孔祥宁 《气象科技》2022,50(6):802-811
基于区域性高温天气过程等级划分标准,利用逐日最高气温资料,客观识别山东省区域性高温事件,并分析其时空分布和变化特征及其对气候增暖的响应。结果表明:1961—2020年山东省共发生了区域性高温154次,平均每年约2.6次,主要出现在6—7月;西部地区多,山区和沿海地区少;年际和年代际变化明显,发生了减少到增多的趋势变化,20世纪60年代至80年代显著减少,90年代中期之后开始增多,21世纪明显增多,持续时间、影响范围和过程强度明显增加增强。区域性高温对气候增暖响应显著,随着增暖加剧,年最晚出现时间明显推迟,频次也更多,持续时间更长,影响范围更大,强度更强,且更长更强的区域性高温事件也更容易发生。  相似文献   

8.
长江中下游地区持续性暴雨年代际变化特征及环流形势   总被引:1,自引:0,他引:1  
利用1965—2016年长江中下游地区逐日降水数据和美国气象环境预报中心/美国国家大气研究中心(National Centers for Environmental Prediction/National Center for Atmospheric Research,NCEP/NCAR)逐日再分析资料,从年代际变化的角度对长江中下游地区持续性暴雨及环流特征差异进行了分析。结果表明:1965—2016年长江中下游地区持续性暴雨主要集中出现在6月下旬至7月上旬,此时段内持续性暴雨发生频次与夏季持续性暴雨的年代际变化一致,均呈现先增多后减少的特征,1989—2003年为长江中下游地区持续性暴雨频发年代。对长江中下游地区持续性暴雨少发、频发年代的环流特征分析发现,1965—1988年高纬度地区气流平直,冷空气不活跃,而低纬副热带高压明显偏弱,导致南海水汽输送较弱,可降水量偏少,对流运动偏弱;2004—2015年500 h Pa位势高度场上高纬度地区呈西高东低的特征,冷空气输送能力较弱,同时孟加拉湾低槽偏弱,副热带高压虽然偏强但位置偏南,水汽无法远距离输送至长江地区,可降水量也异常偏少;1989—2003年虽然为持续性暴雨频发年代,但其中无持续性暴雨年份与持续性暴雨频发年份的环流配置则完全相反,持续性暴雨频发年鄂霍次克海高压明显偏强,冷空气活跃,低纬副热带高压偏强偏西,其西北侧的水汽可以源源不断输送至长江中下游地区,造成可降水量异常偏多,冷暖空气的交汇则使垂直运动旺盛。可见,长江中下游地区持续性暴雨年代际变化与大尺度环流的年代际变化密切相关。  相似文献   

9.
四川盆地区域性暴雨过程的识别及时空变化特征   总被引:1,自引:0,他引:1  
利用四川盆地104个县级气象站逐日降水量资料,建立了新的四川盆地区域性暴雨过程识别方法,并分析了其时空变化特征。研究结果表明:新的区域性暴雨过程识别方法可以排除孤立暴雨站点的影响,快速准确的识别出区域性暴雨过程。1961—2013年四川盆地共计发生区域性暴雨过程216次,与历史灾情资料在发生时间、范围和强度上都有很好的对应关系。1961—2013年四川盆地区域性暴雨过程次数呈逐渐减少的趋势。区域性暴雨过程综合强度在1991—2013年波动幅度有所增大,并出现逐渐增强的趋势,这可能与区域性暴雨过程持续时间变长和累积雨量增加有关。使用旋转正交函数(REOF)方法对区域性暴雨过程频数进行分区研究,发现最常见的是盆西北型,其次是盆东北型,盆南型出现频次相对最少。3种类型的区域性暴雨过程随时间变化差异明显,尤其近20年盆西北型有逐渐减少的趋势,盆东北型有逐渐增多的趋势,而盆南型则无明显的变化趋势。  相似文献   

10.
利用1961—2017年广东86个地面气象观测站逐日降水资料,定义广东区域性暴雨过程的标准,构建了综合考虑区域暴雨过程持续时间、暴雨范围、最大日降水量和最大过程降水量4个指标的广东区域性暴雨过程综合强度评估方法,由此分析近57年广东区域性暴雨过程次数、强度、雨涝年景等特征和变化。结果表明:近57年来,广东共出现1211次区域性暴雨过程,平均每年21.2次,主要出现在4—9月,单次过程平均持续时间是2.3 d;广东区域性暴雨过程的次数和强度存在明显的月际、年际和年代际变化,次数最多出现在5月,强度最大出现在6月;广东雨涝年景指数以0.17/(10 a)的速率显著上升;强和较强等级的广东区域性暴雨过程次数呈显著增加趋势,较弱等级区域性暴雨次数呈显著减少趋势。评估得到广东强雨涝年有5年:2008年、2001年、1973年、1994年、1993年,其中有4年出现在1990年以后。  相似文献   

11.
江河源区位于青藏高原腹地,是东亚气候变化的敏感区之一,研究水汽的分布、输送及收支对于理解区域降水特征具有重要意义.本研究基于1980-2019年欧洲中期天气预报中心(ECMWF)的ERA5再分析资料,结合1981-2010年国家气象科学数据中心9个探空站资料,分析了江河源及其毗邻地区水汽分布、输送及各边界水汽收支的时空...  相似文献   

12.
中国东部夏季降水异常与青藏高原冬季积雪的关系   总被引:2,自引:1,他引:1  
杜银  谢志清  肖卉 《气象科学》2014,34(6):647-655
基于中国740站月降水、积雪、地温资料和NCEP/NCAR再分析月资料,采用相关分析、合成分析和最大协方差法,研究了1979—2008年青藏高原冬季积雪异常与长江中下游夏季降水的关系及其可能的影响机制。结果表明:(1)在年际时间尺度上,青藏高原中北部12月—翌年1月积雪指数与长江中下游夏季降水呈显著正相关。在年代际时间尺度上,1990s—2000s的高原积雪指数与长江中下游夏季降水具有较好的同位相变化特征。表明高原中北部12月—翌年1月积雪指数对长江中下游夏季降水异常具有较好的指示意义,可作为预测长江中下游夏季降水年际年代变化的依据。(2)高原12月—翌年1月积雪异常偏多,是长江中下游夏季洪涝的一个强信号,12月—翌年1月积雪指数正异常年与长江中下游夏季降水正异常年有很好的一致性。(3)高原冬季积雪异常影响长江中下游夏季降水的可能途径是:高原冬季积雪异常通过影响同期及其后春季地温,再由春季地温以某种方式把异常信号维持到夏季。之后,地温异常又改变了局地地气热量交换,导致周围大气环流异常,从而影响到其下游的降水过程。  相似文献   

13.
影响长江中下游夏季降水的前期潜在预报因子评估   总被引:8,自引:1,他引:7  
郭玲  何金海  祝从文 《大气科学》2012,36(2):337-349
利用1951~2006年美国NOAA海温资料、NCEP/NCAR再分析资料和青藏高原雪深等资料,根据前期海—陆—气因子对夏季长江流域降水的影响,本文搜集并整理了影响长江中下游夏季降水的40个预报因子,并讨论了前期因子与夏季降水在不同阶段的相关稳定性.通过相关和历史回报方法,讨论了前期关键因子与东亚夏季大气环流之间的关系...  相似文献   

14.
针对目前利用层次分析法对CO2地质封存进行适宜性评价过程中,极少结合研究区域实际计算低层次评价指标权重,对适宜性评价结果又缺少进一步的分析,结合鄂尔多斯盆地的地质特征,通过计算指标组成权重和适宜性得分对盆地开展了CO2地质封存适宜性评价,并以适宜区杏子川油田长4+5盖层为例,开展了盖层封闭性评价实验研究。同时,采用相应的计算方法对鄂尔多斯盆地深部咸水层和油藏的CO2地质封存潜力进行了计算。结果表明:鄂尔多斯盆地在三叠系开展CO2地质封存的适宜性最好,石炭-二叠系和奥陶系则次之;杏子川油田三叠系延长组长4+5盖层对区域开展CO2地质封存具备良好的封闭性;鄂尔多斯盆地深部咸水层和油藏的CO2有效封存量分别为1.33×10 10 t和1.91×10 9 t,且在延长石油吴起、靖边及杏子川油田共有56个CO2地质封存适宜区,其CO2有效封存量可达1.77×10 8 t。  相似文献   

15.
为了掌握重庆市雷电活动规律,采用数理统计方法及ArcGIS软件,对2008—2019年ADTD闪电定位资料进行分析,得到了重庆市地闪频次的时空分布特征,雷电流幅值、陡度的分布特征和累积概率分布函数。结果表明:重庆市平均每年发生地闪2.08×10^(5)次,其中负地闪占95.7%;地闪频次年际变化大,最多年为3.04×10^(5)次,最少年为1.27×10^(5)次,月分布呈单峰型,7—8月为雷电高发期,占全年的57.9%,日变化呈双峰型,负地闪在夜间03时及下午17时到达峰值,正地闪峰值出现时间比负地闪要晚1—2 h,且午后的峰值远小于夜间;地闪密度空间分布与地形关系密切,大值区主要集中在山脉的交汇处及台地—丘陵向山地的过渡地带;江津北部至重庆中心城区、开州南部至万州北部、忠县南部至石柱西部、永川南部—荣昌至大足西部为地闪密度大值区,密度普遍大于3次·km^(-2)·a^(-1),局部大于6次·km^(-2)·a^(-1);总地闪平均幅值为37.9 kA,其中10—50 kA的部分占80.1%,概率峰值则出现在28 kA;总地闪平均陡度为10.1 kA·μs^(-1),其中5—20 kA·μs^(-1)部分占92%,概率峰值出现在8 kA·μs^(-1)。利用最小二乘法回归拟合得到总地闪幅值及陡度的累积概率分布函数,观测值和拟合值基本一致,拟合较好。  相似文献   

16.
基于二维四象限图构建了一个量化大气污染控制和温室气体减排协同效应的评估指标,建立了量化评估协同效应方法;针对《大气污染防治行动计划》评估中能源结构调整和产业结构调整措施进行了协同效应量化实施效果评估。结果显示:所有实施的减排污染物的措施均有正的CO2减排协同效应,应该积极鼓励和推荐。实现CO2和SO2减排最大协同效应的措施是减少煤炭消费总量;此外,电力替代煤炭和油品、天然气替代燃煤等也可以实现较大的SO2减排,但其CO2的减排效果相对较小;淘汰小型燃煤锅炉可以实现较高的NO2和CO2减排;淘汰落后产能和化解过剩产能等也有较高的协同效应;SO2和CO2协同效应评估指数最高的是能源消耗下降措施,其次是燃料替代措施;NO2和CO2协同效应评估指数最高的是淘汰燃煤锅炉措施,其次是天然气替代燃煤措施;烟尘和CO2协同效应评估指数最大的是燃煤替代措施,其次是能源消耗下降措施。2013—2017年《大气污染防治行动计划》能源结构调整和产业结构调整部分措施的实施,实现了SO2减排2264.78万t,NO2减排656.1万t,烟尘减排469.18万t,同时实现了CO2减排14.62亿t,具有显著的正向协同效应。  相似文献   

17.
敦煌莫高窟大气颗粒物中水溶性离子变化及来源解析   总被引:1,自引:0,他引:1  
为探明莫高窟大气颗粒物污染特征,采集了2014年4-12月第16窟及72窟外环境中大气颗粒物PM2.5和PM10~2.5样品,对比分析了样品中水溶性离子变化及影响因素,通过主成分分析法解析了其主要来源。结果表明:(1)窟区主风向为南风,起沙风频率仅为0.01%,不利于污染物的扩散;(2)窟外PM2.5和PM10~2.5、窟内PM2.5和PM10~2.5中水溶性离子总浓度分别为6.1±4.0μg·m-3、12.2±9.1μg·m-3、3.7±0.8μg·m-3和7.5±1.6μg·m-3,SO42-、Ca2+、NO3-、Na+及Cl-是主要组成,SO42-、NO3-和Ca2+之和在窟外和窟内PM2.5和PM10~2.5中占总离子比例分别为79.24%,76.81%,80.61%及77.74%,二次离子主要来自固定污染源;(3)PM2.5与PM10~2.5中各离子浓度的比值在窟外、内分别为0.33~0.88、0.25~0.94,9种水溶性离子在不同粒径粒子中富集程度有所差异,3-5月的沙尘、7-9月的降雨、11月农村农作物秸秆燃烧及冬季取暖燃煤等对水溶性离子都有一定影响,窟内PM2.5中游客数量与NH4+和NO3-有一定的相关性(R2=0.27、0.35)、PM10~2.5中游客数量与NH4+有一定的相关性(R2=0.31);(4)沙尘天气下窟外和窟内的PM2.5与PM10-2.5中Cl-、SO42-、Na+、K+和Ca2+的浓度增加,窟区微环境主要受区域环境气象因素影响,建议极端沙尘天气关闭洞窟;(5)莫高窟大气环境呈碱性;(6)PM2.5和PM10~2.5主要来源于当地秸秆燃烧、二次污染源、土壤沙尘及干涸的大泉河。  相似文献   

18.
利用郑州市主城区1961—2020年气象观测资料和2014—2018年空气质量监测数据,分析了郑州主城区大气自净能力指数的长期变化趋势与影响因子以及2014—2018年主城区大气自净能力与PM_(2.5)的关系。结果表明:郑州主城区大气自净能力指数30 a气候均值为4.42 t·(d·km^(2))^(-1),春季大气自净能力最强,为5.20 t·(d·km^(2))^(-1);秋季大气自净能力最弱,为3.88 t·(d·km^(2))^(-1),不利于对大气污染物的清除。1961—2020年郑州主城区大气自净能力呈显著的减弱趋势,其中1969年最强为6.85 t·(d·km^(2))^(-1),2020年最弱为3.06 t·(d·km^(2))^(-1)。影响因子中,1961—1980年混合层厚度与大气自净能力指数呈正相关;日平均风速≥2.5 m·s^(-1)的日数和小风日数与大气自净能力分别呈正、负显著相关;大气自净能力指数与降水日数显著相关,2015年后偏强降水日数的增加对大气自净能力在同时期的增强有一定影响。此外,研究还表明主城区大气自净能力和PM_(2.5)浓度存在显著的负相关,说明大气自净能力强时,对应的PM_(2.5)浓度低,环境空气质量趋好。  相似文献   

19.
宁夏春季沙尘暴气候趋势及成因分析   总被引:3,自引:3,他引:3  
对20世纪60年代以来宁夏春季沙尘暴变化趋势进行分析,结果表明:沙尘暴具有明显的年代际变化特征,80年代中期宁夏春季沙尘暴发生突变,在此之前为沙尘暴高发期,其后沙尘暴日数明显减少。为探究形成这一变化趋势原因,从形成沙尘暴的动力因子入手,对大气环流、海温、大风日数、平均气温等的长期变化趋势进行分析,发现北半球极涡强度指数、极涡面积指数、亚洲西风环流指数、Nino3区海温及宁夏春季大风日数、冬季平均气温、冬春季平均气温温差与沙尘暴存在较为一致的年代际变化特征,即决定冷空气活动频次的诸因子在80年代中期也发生了突变。由此可见,在同一生态背景下,冷空气活动次数对形成春季沙尘暴的变化趋势起着至关重要的作用。  相似文献   

20.
In this study, the multifractal detrended fluctuation analysis method is employed to determine the thresholds of extreme events. Subsequently, the characteristics of extreme temperatures have been analyzed over Northeast China during 1961–2009. Approximately 58 % of stations have negative interdecadal trends of ?2.2 days/10 years to 0 days/10 years in extreme low minimum temperature (ELMT) frequency. Notable positive trend of 0–2.5 days/10 years in extreme high maximum temperature (EHMT) frequency of about 94 % stations are found. Approximately 58 % of stations have decreasing trend in ELMT intensity, whereas 69 % of stations have increasing trend of EHMT intensity. The trends are the range of ?0.72 °C/10 years to 0 °C/10 years and 0–0.7 °C/10 years, respectively. We propose the extreme temperatures indices, ELMT index (ELMTI) and EHMT index (EHMTI), which combined the frequency and intensity of extreme temperatures to represent the order of severity of extreme temperatures. According to this approach, serious ELMT mainly occur in the Songliao Plain and the Sanjiang Plain, especially in the Songliao Plain. Serious EHMT distinctly occur in the Sanjing Plain, and the southwestern and northwestern regions of Northeast China in recent five decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号