首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
全球植被与大气之间碳通量的模式估计(英文)   总被引:1,自引:0,他引:1  
用大气植被相互作用模式(AVIM)模拟了全球陆地植被的净初级生产力(NPP)。AVIM由相互耦合的两部分组成:物理过程,包括陆地表面水分和能量在土壤、植被与大气之间的传输;以及生理生态过程,如:光合、呼吸、干物质分配、凋落和物候等。全球的植被分为13类,土壤按质地分为6类。用EMDI提供的全球1637个包括不同植被类型的NPP观测点数据对模型进行了检验。NPP模拟的结果表明:全球陆地植被的平均NPP为405.13gCm-2yr-1,不同植被类型的平均 NPP变化范围在99.58 g Cm-2yr-1(苔原)到996.2 g Cm-2yr-1(热带雨林)之间。全球年总NPP为60.72GtCyr-1,其中最大的部分为热带雨林,15.84GtCyr-1,占全球的26.09%。最大的碳汇是在北半球的温带。模式模拟的NPP在全球的空间和季节分布是合理的。  相似文献   

2.
全球植被与大气之间碳通量的模式估计   总被引:15,自引:0,他引:15  
用大气植被相互作用模式(AⅥM)模拟了全球陆地植被的净初级生产力(NPP)。AⅥM由相互耦合的两部分组成:物理过程,包括陆地表面水分和能量在土壤、植被与大气之间的传输;以及生理生态过程,如:光合、呼吸、干物质分配、凋落和物候等。全球的植被分为13类,土壤按质地分为6类。用EMDI提供的全球1637个包括不同植被类型的NPP观测点数据对模型进行了检验。NPP模拟的结果表明:全球陆地植被的平均NPP为405.13 g C m-2yr-1,不同植被类型的平均NPP变化范围在99.58 g C m-2yr-l(苔原)到996.2 g C m-2yr-l(热带雨林)之间。全球年总NPP为60.72 Gt C yr-l,其中最大的部分为热带雨林,15.84 Gt C yr-1,占全球的26.09%。最大的碳汇是在北半球的温带。模式模拟的NPP在全球的空间和季节分布是合理的。  相似文献   

3.
The carbon dioxide (CO2) concentrations and fluxes measured at a height of 17.5 m above the ground by a sonic anemometer and an open-path gas analyzer at an urban residential site in Seoul, Korea from February 2011 to January 2012 were analyzed. The annual mean CO2 concentration was found to be 750 mg m-3, with a maximum monthly mean concentration of 827 mg m-3 in January and a minimum value of 679 mg m-3 in August. Meanwhile, the annual mean CO2 flux was found to be 0.45 mg m-2 s-1, with a maximum monthly mean flux of 0.91 mg m-2 s-1 in January and a minimum value of 0.19 mg m-2 s-1 in June. The hourly mean CO2 concentration was found to show a significant diurnal variation; a maximum at 0700-0900 LST and a minimum at 1400-1600 LST, with a large diurnal range in winter and a small one in summer, mainly caused by diurnal changes in mixing height, CO2 flux, and surface complexity. The hourly mean CO2 flux was also found to show a significant diurnal variation, but it showed two maxima at 0700-0900 LST and 2100-2400 LST, and two minima at 1100-1500 LST and 0300-0500 LST, mainly caused by a diurnal pattern in CO2 emissions and sinks from road traffic, domestic heating and cooking by liquefied natural gas use, and the different horizontal distribution of CO2 sources and sinks near the site. Differential advection with respect to wind direction was also found to be a cause of diurnal variations in both the CO2 concentration and flux.  相似文献   

4.
Based on 3 years (2003-05) of the eddy covariance (EC) observations on degraded grassland and cropland surfaces in a semi-arid area of Tongyu (44°25′N, 122°52′E, 184 m a.s.1.), Northeast China, seasonal and annual variations of water, energy and CO2 fluxes have been investigated. The soil moisture in the thin soil layer (at 0.05, 0.10 and 0.20 m) clearly indicates the pronounced annual wet-dry cycle; the annual cycle is divided into the wet (growing season) and dry seasons (non-growing season). During the growing season (from May to September), the sensible and latent heat fluxes showed a linear dependence on the global solar radiation. However, in the non-growing season, the latent heat flux was always less than 50 W m^-2, while the available energy was dissipated as sensible, rather than latent heat flux. During the growing season in 2003-05, the daily average sensible and latent heat fluxes were larger on the cropland surface than on the degraded grassland surface. The cropland ecosystem absorbed more CO2 than the degraded grassland ecosystem in the growing season in 2003-05. The total evapotranspiration on the cropland was more than the total precipitation, while the total evapotranspiration on the degraded grassland was almost the same as the total annual precipitation in the growing season. The soil moisture had a good correlation with the rainfall in the growing season. Precipitation in the growing season is an important factor on the water and carbon budget in the semi-arid area.  相似文献   

5.
Monitoring atmospheric carbon dioxide(CO_2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of climate projection. Here, we introduce a carbon flux inversion system for estimating carbon flux with satellite measurements under the support of "The Strategic Priority Research Program of the Chinese Academy of Sciences—Climate Change: Carbon Budget and Relevant Issues". The carbon flux inversion system is composed of two separate parts: the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing(IAPCAS), and Carbon Tracker-China(CT-China), developed at the Chinese Academy of Sciences. The Greenhouse gases Observing SATellite(GOSAT) measurements are used in the carbon flux inversion experiment. To improve the quality of the IAPCAS-GOSAT retrieval, we have developed a post-screening and bias correction method, resulting in 25%–30% of the data remaining after quality control. Based on these data, the seasonal variation of XCO_2(column-averaged CO_2dry-air mole fraction) is studied, and a strong relation with vegetation cover and population is identified. Then, the IAPCAS-GOSAT XCO_2 product is used in carbon flux estimation by CT-China. The net ecosystem CO_2 exchange is-0.34 Pg C yr~(-1)(±0.08 Pg C yr~(-1)), with a large error reduction of 84%, which is a significant improvement on the error reduction when compared with in situ-only inversion.  相似文献   

6.
Heat flux data collected from the Baiyangdian Heterogeneous Field Experiment were analyzed using the footprint method. High resolution (25 m) Landsat-5 satellite imaging was used to determine the land cover as one of four surface types: farmland, lake, wetland, or village. Data from two observation sites in September 2005 were used. One site (Wangjiazhai) was characterized by highly heterogeneous surfaces in the central area of the Baiyangdian: lake/wetland. The other site (Xiongxian) was on land with more uniform surface cover. An improved Eulerian analytical flux footprint model was used to determine "source areas" of the heat fluxes measured at towers located at each site from surrounding landscapes of mixed surface types.In relative terms results show that wetland and lake areas generally contributed most to the observed heat flux at Wangjiazhai, while farmland contributed most at Xiongxian. Given the areal distribution of surface type contributions, calculations were made to obtain the magnitudes of the heat flux from lake, wetland and farmland to the total observed flux and apportioned contributions of each surface type to the sensible and latent heat fluxes. Results show that on average the sensible heat flux from wetland and farmland were comparable over the diurnal cycle, while the latent heat flux from farmland was somewhat larger by about 30-50 W m-2 during daytime. The latent and sensible fluxes from the lake source in daytime were about 50 W m-2 and 100 W m-2 less, respectively, than from wetland and farmland. The results are judged reasonable and serve to demonstrate the potential for flux apportionment over heterogeneous surfaces.  相似文献   

7.
In this study, the diurnal and seasonal variations of CO2 fluxes in a subtropical mixed evergreen forest in Ningxiang of Hunan Province, part of the East Asian monsoon region, were quantified for the first time. The fluxes were based on eddy covariance measurements from a newly initiated flux tower. The relationship between the CO2 fluxes and climate factors was also analyzed. The results showed that the target ecosystem appeared to be a clear carbon sink in 2013, with integrated net ecosystem CO2exchange(NEE), ecosystem respiration(RE), and gross ecosystem productivity(GEP) of-428.8, 1534.8 and1963.6 g C m-2yr-1, respectively. The net carbon uptake(i.e. the-NEE), RE and GEP showed obvious seasonal variability,and were lower in winter and under drought conditions and higher in the growing season. The minimum NEE occurred on12 June(-7.4 g C m-2d-1), due mainly to strong radiation, adequate moisture, and moderate temperature; while a very low net CO2 uptake occurred in August(9 g C m-2month-1), attributable to extreme summer drought. In addition, the NEE and GEP showed obvious diurnal variability that changed with the seasons. In winter, solar radiation and temperature were the main controlling factors for GEP, while the soil water content and vapor pressure deficit were the controlling factors in summer. Furthermore, the daytime NEE was mainly limited by the water-stress effect under dry and warm atmospheric conditions, rather than by the direct temperature-stress effect.  相似文献   

8.
不同土壤类型的热通量变化特征   总被引:3,自引:0,他引:3  
利用2004—2007年中国科学院中国生态系统研究网络(CERN)生态站实测土壤热通量、辐射等资料,分析了不同土壤类型表层热通量的日变化和季节变化,以及不同土壤类型的热通量与总辐射、净辐射的关系。结果表明,由于导热率越大,热量传输就越快;热容量越小,热量传输也越快,造成土壤热通量的日较差和年较差较大,所以黄绵土和紫色土的表层热通量日较差最大(220~280 W.m-2),高寒草甸土和水稻土最小(55W.m-2);季节变化中土壤表层热通量的年较差变化范围在12~28W.m-2之间,灰漠土最大,为28W.m-2,热通量年较差从大到小依次为灰漠土、黄绵土、盐碱潮土、红壤土、紫色土、沼泽土、水稻土和高寒潮土,高寒潮土最小,为12W.m-2。不同土壤类型的热通量与总辐射、净辐射呈正相关关系,但不同土壤类型的土壤热通量在12:00(地方时)所占净辐射的比例各不相同,高寒草甸土最小,约为8%;黄绵土最大,为38%,多数土壤的热通量占净辐射的比例在15%~20%之间,这充分表明不同土壤类型表层热通量的传输存在很大差异。  相似文献   

9.
Long-Term Trends in Photosynthetically Active Radiation in Beijing   总被引:1,自引:0,他引:1  
A long-term dataset of photosynthetically active radiation (Qp) is reconstructed from a broadband global solar radiation (Rs) dataset through an all-weather reconstruction model. This method is based on four years' worth of data collected in Beijing. Observation data of Rs and Qp from 2005--2008 are used to investigate the temporal variability of Qp and its dependence on the clearness index and solar zenith angle. A simple and efficient all-weather empirically derived reconstruction model is proposed to reconstruct Qp from Rs. This reconstruction method is found to estimate instantaneous Qp with high accuracy. The annual mean of the daily values of Qp during the period 1958--2005 period is 25.06 mol m-2 d-1. The magnitude of the long-term trend for the annual averaged Qp is presented (-0.19 mol m-2 yr-1 from 1958--1997 and -0.12 mol m-2 yr-1 from 1958--2005). The trend in Qp exhibits sharp decreases in the spring and summer and more gentle decreases in the autumn and winter.  相似文献   

10.
城市近地层湍流特征分析   总被引:3,自引:3,他引:0  
邹钧  孙鉴泞  刘罡 《气象科学》2011,31(4):525-533
利用中国科学院大气物理研究所在北京的325 m铁塔观测资料,本文分析了47、140和280 m三个高度的湍流统计特征.结果表明,城市近地层的湍流速度方差和湍流温度方差都较好地满足局地相似关系,140 m和280 m的湍流特征非常接近,而47 m的湍流特征与之相比表现出明显的差异,说明由于城市冠层动力和热力非均匀性的影响...  相似文献   

11.
利用1971—2006年环杭州湾地区25个气象站的降水、温度和云量资料及全球CO2年平均体积分数资料,采用LPJ全球动态植被模式(Lund-Potsdam-Jena Dynamic Global Vegetation Model),通过模拟环杭州湾地区的植被年净初级生产力(Annual Net Primary Productivity,ANPP),分析了该地区ANPP的变化特征,并探讨了植被ANPP变化的可能原因。结果表明:1)就环杭州湾地区,36a间植被ANPP均表现出不同程度的增加,尤其以嘉兴市北部、绍兴市东部较明显;全区平均增加速率为1.5243g·m-2·a-2;2)通过多元线性回归分析发现,环杭州湾地区平均云量与植被ANPP的关系最为密切,偏相关系数为-0.5175,而温度、降水与植被ANPP的关系不明显;同时,植被ANPP对气候变化的响应存在一定的地域性差异;3)在全区平均情况下,36a间由温度下降、降水增加、云量减小、CO2体积分数升高引起的植被ANPP变化趋势分别为-0.0813、-0.0171、0.7601、0.8673g·m-2·a-2,其对应的贡献率分别为-5.18%、-1.09%、48.38%、55.21%。由此可见,该地区植被ANPP变化的主要强迫因子是CO2体积分数和云量,而降水变化对植被ANNP的变化作用不大。  相似文献   

12.
A comparative study was carried out to explore carbon monoxide total columnar amount(CO TC) in background and polluted atmosphere, including the stations of ZSS(Zvenigorod), ZOTTO(Central Siberia), Peterhof, Beijing, and Moscow,during 1998–2014, on the basis of ground-and satellite-based spectroscopic measurements. Interannual variations of CO TC in different regions of Eurasia were obtained from ground-based spectroscopic observations, combined with satellite data from the sensors MOPITT(2001–14), AIRS(2003–14), and IASI Met Op-A(2010–13). A decreasing trend in CO TC(1998–2014) was found at the urban site of Beijing, where CO TC decreased by 1.14% ± 0.87% yr~(-1). Meanwhile, at the Moscow site, CO TC decreased remarkably by 3.73% ± 0.39% yr~(-1). In the background regions(ZSS, ZOTTO, Peterhof), the reduction was 0.9%–1.7% yr~(-1) during the same period. Based on the AIRSv6 satellite data for the period 2003–14, a slight decrease(0.4%–0.6% yr~(-1)) of CO TC was detected over the midlatitudes of Eurasia, while a reduction of 0.9%–1.2% yr~(-1) was found in Southeast Asia. The degree of correlation between the CO TC derived from satellite products(MOPITTv6 Joint, AIRSv6 and IASI Met Op-A) and ground-based measurements was calculated, revealing significant correlation in unpolluted regions.While in polluted areas, IASI Met Op-A and AIRSv6 data underestimated CO TC by a factor of 1.5–2.8. On average, the correlation coefficient between ground-and satellite-based data increased significantly for cases with PBL heights greater than 500 m.  相似文献   

13.
Soil respiration is a key component of the global terrestrial ecosystem carbon cycle. The static opaque chamber method was used to measure the CO2 effluxes from soil of a semiarid Aneurolepidium chinense steppe and a Stipa krylovii steppe in the Xilin River Basin of Inner Mongolia, China from March 2002 to December 2004. The results indicated that the soil respiration rates of the semiarid Aneurolepidium chinense steppe and the Stipa krylovii steppe were both relatively high from mid-May to mid-September of each year and remained low during the rest of the year. The minimum value of soil respiration occurred in December or January and negative effluxes of CO2 appeared for several days during the non-growing season of individual years at the two sampling sites. A high annual variation was found in the two steppes with the coefficients of variance (CV) being over 94%, even high to 131%. The annual sums of soil CO2 efflux of the Aneurolepidium chinense steppe varied between 356.4 gC m?2 yr?1 and 408.8 gC m?2 yr?1, while those of the Stipa krylovii steppe in the three years were in the range of 110.6 gC m?2 yr?1 to 148.6 gC m?2 yr?1. The mean respiration rates of the Aneurolepidium chinense steppe were significantly higher than those of the Stipa krylovii steppe in different statistical periods with the exception of the non-growing season. About 59.9% and 80.6% of the soil respiration variations in both steppes for the whole sampling period were caused by the changes of temperature and soil water content. In the Aneurolepidium chinense steppe, the soil respiration rate has significant or extremely significant positive correlation (r = 0.58 ? 0.85, p < 0.05 or p < 0.01) with air temperature and ground temperature of the topsoil except in 2002; the unique contributions of temperature change to the soil respiration variation of the three years were 53.3%, 81.0% and 58.6%, respectively. But, for the Stipa krylovii steppe in the same time interval, the soil water content (especially that of the 10–20 cm layer) has a greater effect on the change of soil respiration, and the unique contributions of the change of the 10–20 cm soil water content to the variations of soil respiration in 2002 and 2003 were 60.0% and 54.3%, respectively. In 2004, in spite of the higher contribution of temperature than soil water content, the contribution of ground temperature at a depth of 10 cm was only 46.2%, much weaker than that of any single year in the Aneurolepidium chinense steppe.  相似文献   

14.
An ocean biogeochemistry model was developed and incorporated into a global ocean general circulation model (LICOM) to form an ocean biogeochemistry general circulation model (OBGCM). The model was used to study the natural carbon cycle and the uptake and storage of anthropogenic CO2 in the ocean. A global export production of 12.5 Pg C yr-1 was obtained. The model estimated that in the pre-industrial era the global equatorial region within 15o of the equator released 0.97 Pg C yr-1 to the atmosphere, which was balanced by the gain of CO2 in other regions. The post-industrial air-sea CO2 flux indicated the oceanic uptake of CO2 emitted by human activities. An increase of 20-50 mol kg-1 for surface dissolved inorganic carbon (DIC) concentrations in the 1990s relative to pre-industrial times was obtained in the simulation, which was consistent with data-based estimates. The model generated a total anthropogenic carbon inventory of 105 Pg C as of 1994, which was within the range of estimates by other researchers. Various transports of both natural and anthropogenic DIC as well as labile dissolved organic carbon (LDOC) were estimated from the simulation. It was realized that the Southern Ocean and the high-latitude region of the North Pacific are important export regions where accumulative air-sea CO2 fluxes are larger than the DIC inventory, whereas the subtropical regions are acceptance regions. The interhemispheric transport of total natural carbon (DIC+LDOC) was found to be northward (0.11 Pg C yr-1), which was just balanced by the gain of carbon from the atmosphere in the Southern Hemisphere.  相似文献   

15.
利用1979—2005年OAFlux (Objectively Analyzed air-sea Fluxes) 观测资料以及CMIP5的15个耦合模式的模拟结果,评估了BCC_CSM1.1(m) 模式对热带太平洋年平均潜热通量气候态和变化趋势的模拟能力,并分析造成趋势偏差的可能原因。结果表明:BCC_CSM1.1(m) 模式模拟热带太平洋年平均潜热通量气候态在各纬度上差异较大, 其中在赤道的模拟能力较佳,而在10°N和8°S附近模拟偏差较大;BCC_CSM1.1(m) 模式对热带太平洋年平均潜热通量趋势的模拟能力一般,造成趋势偏差的主要原因是该模式低估了风速对潜热通量的局地贡献以及它对风速的非局地贡献的模拟存在较大偏差。此外,该模式未能较好地模拟出风速对全球变暖响应。因此,BCC_CSM1.1(m) 模式对热带太平洋年平均潜热通量趋势模拟的改进需加强其对风速模拟的改进。  相似文献   

16.
利用北京325 m气象塔上安装的7层CO2涡动相关系统在2014年12月到2015年11月的观测资料,分析了北京城区不同高度上CO2浓度、通量时空分布及湍流谱的特征。结果表明:城市CO2浓度日变化除了冬季都呈现双峰型,冬季由于人为碳源排放的大幅增加,双峰型不明显。每层的CO2浓度、通量都有明显的季节变化:冬季最高,春末、夏季最低。CO2浓度整体随高度的增加而降低。北京城区是CO2源,CO2通量的日变化不如CO2浓度日变化规律明显。CO2通量在47 m以下为负,47 m以上为正。通量在140 m以下随高度的增加而增加;140m以上随高度的增加而减少。根据对CO2时空分布的分析可知:边界层CO2浓度、通量强烈受到碳源、下垫面植被、大气稳定度、环境温度和天气过程等因素的影响。各变量谱与Kaimal等的研究结果接近:归一化速度谱和CO2谱在惯性子区有-2/3的斜率,在低频区与稳定度参数(Z/L)有一定的关系。这说明复杂地形的城市下垫面的湍流谱结构与平坦地形相比没有太大的实质性差异。  相似文献   

17.
农田近地面层CO2和湍流通量特征研究   总被引:11,自引:0,他引:11  
刘树华  麻益民 《气象学报》1997,55(2):187-199
利用1985年5月至6月在北京郊区中国科学院农业生态试验研究站的麦田中实测的小麦不同生长期的CO2浓度梯度、光合有效辐射、净辐射、土壤热通量和温度、湿度及风速梯度等量的数据,采用空气动力学方法,计算了CO2通量、感热通量、潜热通量和动量通量。并对观测场地、仪器设备、校准方法及误差分析进行了描述。结果表明:从5月14日到6月15日,在1m,2m和10m处,CO2浓度振幅的日变化分别为103.4到27.5,87.5到27.3和69.8到11.5ppm;光合型和呼吸型的平均CO2浓度分别为345.3,350.6,357.5ppm和373.9,369.7,362.1ppm。在白天,CO2通量和梯度的输送方向是从大气向植被,在中午(11时到13时)输送达到负的最大值。在夜间,CO2通量和梯度输送的方向与白天相反,并且,在早晨(4时到6时)达到正的最大值。CO2通量与净辐射(Rn)、可利用能(H+LE)、光合有效辐射和动量通量之间有较好的相关关系  相似文献   

18.
2013年9月国务院颁布了《大气污染防治行动计划》.研究其实施前后呼和浩特市大气污染物浓度变化及及原因;同时,分析了春季沙尘天气对于呼和浩特市大气环境颗粒物浓度的定量影响.结果表明:呼和浩特市大气环境质量持续改善,但大气污染物浓度仍然较高.PM2.5和PM10年均浓度分别超过国家二级标准22.9%和35.7%;2013-2017年春季PM2.5和PM10浓度降幅较大,沙尘天气对呼和浩特市PM2.5,PM10,和TSP浓度的绝对贡献范围分别在0.6-5.2μg m-3,9.0-16.9 μg m-3和 14.7-30.0 μg m-3.  相似文献   

19.
城市近地层湍流通量及CO2通量变化特征   总被引:1,自引:0,他引:1  
利用北京325m气象塔47m高度上2006年全年连续观测获得的湍流资料,分析了北京城市近地层动量通量、感热通量、潜热通量和CO2通量的典型日变化、月平均日变化和季节变化特征。分析结果显示:动量通量具有明显的单波峰日变化特征,在15时(北京时间)左右达到最大,季节变化中春季最大,冬季次之,夏、秋季最小;感热通量和潜热通量全年变化范围分别为-92~389W.m-2和-75~376W.m-2,其日变化也表现为单波峰特征。感热通量的日变化受城市下垫面和人为热源影响,入夜后虽然降为负值,但只略小于0。阴雨天感热通量和潜热通量均很小,降雨前后有明显区别。感热和潜热最大值分别在春季3月和夏季6月,最小值都在冬季1月;城市下垫面CO2通量总表现为正值,即净排放,最大值为3.88mg.m-2.s-1,不稳定情况下最小值小于-2mg.m-2.s-1。受到人类活动的影响,CO2通量的日变化特征在工作日与周末有明显区别;由于冬季采暖,CO2通量明显大于夏季;在夜间,CO2通量受进城车辆的影响也出现高值。  相似文献   

20.
我国北方地区植被总初级生产力的空间分布与季节变化   总被引:3,自引:0,他引:3  
本研究通过集成Terra MODIS卫星影像数据与地面通量台站的观测数据, 改进了基于遥感的VPM光能利用率模型, 模拟了我国北方地区2008年陆地生态系统总初级生产力 (GPP) 的空间分布与季节变化。研究表明: (1) 我国北方地区植被GPP在空间分布上表现为东高西低的特征, 年均值为518.36 g/m2 (C重量, 下同)。 (2) 我国北方地区主要植被类型的GPP有较强的季节动态, 大体上都表现出单峰变化趋势。GPP值按照由大到小顺序依次为: 夏绿阔叶林 (DBF)>针阔混交林 (MF)>农田 (Crop)>落叶针叶林 (DNF)>常绿针叶林 (ENF)>草地 (Grass)>稀疏灌丛 (Oshrub)>裸地或稀疏植被 (BSV)。(3) 整个区域的GPP季相变化表现为: 夏季最高, 达到32.80 g?m-2?(8 d)-1, 为全年最大值; 春季GPP为5.67 g?m-2?(8 d)-1, 与秋季的5.08 g?m-2?(8 d)-1较为接近, 冬季GPP最弱, 仅为0.07 g?m-2?(8 d)-1。与通量台站实测值及前人研究结果的比较表明, 本文所模拟的GPP与观测值之间的相对误差绝对值多小于15%, 表明模拟结果具有较好的可靠性。这说明通过集成遥感观测数据与台站观测数据的方法来模拟GPP, 可以较准确地模拟区域尺度的GPP空间分布与时间变化, 这为深入研究陆气相互作用提供了重要研究手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号