首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Recent Progress in Studies of Climate Change in China   总被引:7,自引:0,他引:7  
An overview of basic research on climate change in recent years in China is presented. In the past 100 years in China, average annual mean surface air temperature (SAT) has increased at a rate ranging from 0.03℃ (10 yr)-1 to 0.12℃ (10 yr)-1 . This warming is more evident in northern China and is more significant in winter and spring. In the past 50 years in China, at least 27% of the average annual warming has been caused by urbanization. Overall, no significant trends have been detected in annual and/or summer precipitation in China on a whole for the past 100 years or 50 years. Both increases and decreases in frequencies of major extreme climate events have been observed for the past 50 years. The frequencies of extreme temperature events have generally displayed a consistent pattern of change across the country, while the frequencies of extreme precipitation events have shown only regionally and seasonally significant trends. The frequency of tropical cyclone landfall decreased slightly, but the frequency of sand/dust storms decreased significantly. Proxy records indicate that the annual mean SAT in the past a few decades is the highest in the past 400-500 years in China, but it may not have exceeded the highest level of the Medieval Warm Period (1000-1300 AD). Proxy records also indicate that droughts and floods in eastern China have been characterized by continuously abnormal rainfall periods, with the frequencies of extreme droughts and floods in the 20th century most likely being near the average levels of the past 2000 years. The attribution studies suggest that increasing greenhouse gas (GHG) concentrations in the atmosphere are likely to be a main factor for the observed surface warming nationwide. The Yangtze River and Huaihe River basins underwent a cooling trend in summer over the past 50 years, which might have been caused by increased aerosol concentrations and cloud cover. However, natural climate variability might have been a main driver for the mean and extreme precipitation variations observed over the past century. Climate models generally perform well in simulating the variations of annual mean SAT in China. They have also been used to project future changes in SAT under varied GHG emission scenarios. Large uncertainties have remained in these model-based projections, however, especially for the projected trends of regional precipitation and extreme climate events.  相似文献   

2.
Monthly mean surface air temperatures and precipitation at 20 meteorological stations in the Jinsha River Valley(JRV) of southwest China were analyzed for temporal-spatial variation patterns during the period 1961-2010.The magnitude of a trend was estimated using Sen's Nonparametric Estimator of Slope approach.The statistical significance of a trend was assessed by the MK test.The results showed that mean annual air temperature has been increasing by 0.08℃/decade during the past 50 years as a whole.The climate change trend in air temperature was more significant in the winter(0.13℃/decade) than in the summer(0.03℃/decade).Annual precipitation tended to increase slightly thereafter and the increasing was mainly during the crop-growing season.Both the greatest variation of the annual mean temperature and annual precipitation were observed at the dry-hot valley area of middle reaches.Significant warming rates were found in the upper reaches whereas the dry-hot basins of middle reaches experienced a cooling trend during the past decades.Despite of the overall increasing in precipitation,more obvious upward-trends were found in the dry-hot basins of middle reaches whereas the upper reaches had a drought trend during the past decades.  相似文献   

3.
This article summarizes the main results and findings of studies conducted by Chinese scientists in the past five years.It is shown that observed climate change in China bears a strong similarity with the global average.The country-averaged annual mean surface air temperature has increased by 1.1℃over the past 50 years and 0.5-0.8℃over the past 100 years,slightly higher than the global temperature increase for the same periods.Northern China and winter have experienced the greatest increases in surface air temperature.Although no significant trend has been found in country-averaged annual precipitation, interdecadal variability and obvious trends on regional scales are detectable,with northwestern China and the mid and lower Yangtze River basin having undergone an obvious increase,and North China a severe drought.Some analyses show that frequency and magnitude of extreme weather and climate events have also undergone significant changes in the past 50 years or so. Studies of the causes of regional climate change through the use of climate models and consideration of various forcings,show that the warming of the last 50 years could possibly be attributed to an increased atmospheric concentration of greenhouse gases,while the temperature change of the first half of the 20th century may be due to solar activity,volcanic eruptions and sea surface temperature change.A significant decline in sunshine duration and solar radiation at the surface in eastern China has been attributed to the increased emission of pollutants. Projections of future climate by models of the NCC(National Climate Center,China Meteorological Administration)and the IAP(Institute of Atmospheric Physics,Chinese Academy of Sciences),as well as 40 models developed overseas,indicate a potential significant warming in China in the 21st century,with the largest warming set to occur in winter months and in northern China.Under varied emission scenarios,the country-averaged annual mean temperature is projected to increase by 1.5-2.1℃by 2020,2.3-3.3℃by 2050, and by 3.9-6.0℃by 2100,in comparison to the 30-year average of 1961 1990.Most models project a 10% 12% increase in annual precipitation in China by 2100,with the trend being particularly evident in Northeast and Northwest China,but with parts of central China probably undergoing a drying trend.Large uncertainty exists in the projection of precipitation,and further studies are needed.Furthermore,anthropogenic climate change will probably lead to a weaker winter monsoon and a stronger summer monsoon in eastern Asia.  相似文献   

4.
Based on an in-homogeneity adjusted dataset of the monthly mean temperature, minimum and maximum temperature, this paper analyzes the temporal characteristics of Urban Heat Island (UHI) intensity at Wuhan Station, and its impact on the long-term trend of surface air temperature change recorded during 1961–2015 by using an urban-rural method. Results show that UHI effect is obvious near Wuhan Station in the past 55 years, especially for minimum temperature. The strongest UHI intensity occurs in summer and the weakest in winter. For the period 1961–2004, UHI intensity undergoes a significant increase near the urban station, with the increase especially large for the period 1988–2004, but the last 10 years witness a significant decrease, with the decrease in minimum temperature being more significant than that of maximum temperature. The annual mean urban warming and its contribution to overall warming are 0.18?C/10yr and 48.8% respectively for the period 1961–2015, with a more significant and larger urbanization effect seen in Tmin than Tmax. Thus, a large proportion warming, about half of the overall increase in annual mean temperature, as observed at the urban station, can be attributed to the rapid urbanization in the past half a century.  相似文献   

5.
Climate change has substantially impacted crop growth and development in the northern agro-pastoral transitional zone. Examination of the response of crop water consumption to climate change may provide a guide for adapting local agricultural production and ecological construction to new realities. The water consumption of three local crops (wheat, naked oats, and potatoes) is examined for Wuchuan County in the northern agro-pastoral transitional zone of China using meteorological data from 1960 to 2007 and soil moisture data from 1983 to 2007. The relationships between climate change and the crop water consumption are discussed. The results show that Wuchuan experienced both a warming trend and a reduction of precipitation between 1960 and 2007. The annual mean surface air temperature increased at a rate of 0.04℃ yr-1 and the annual precipitation decreased at a rate of 0.7 mm yr-1 . Both trends are particularly pronounced between 1983 and 2007, with an increase in annual mean temperature of 0.09℃ yr-1 and a decrease in annual mean precipitation of 2.1 mm yr-1 . Crop water consumption decreased between 1983 and 2007 for wheat (1.65 mm yr-1 ), naked oats (2.04 mm yr-1 ), and potatoes (3.85 mm yr-1 ). Potatoes and naked oats consume more water than wheat. Climate change has significantly impacted crop water consumption. Water consumption and rainfall during the growing season are positively correlated, while water consumption and active accumulated temperature are negatively correlated. Compared to precipitation, accumulated temperature has little impact on crop water consumption. Recent climate change has been detrimental for crop production in Wuchuan County. Adaptation to climate change should include efforts to breed drought-resistant crops and to develop drought-resistant cultivation techniques.  相似文献   

6.
In past 50 years, the air temperature fluctuation was raising trend in Tarim River Basin. The annual mean temperature has increased by 0.3℃ in the whole Tarim River Basin, and by 0.6℃ in the mountain areas. With global warming, the frequency of unstable and extreme climatic events increased, glaciers retreating accelerated and snow meltwater increased have resulted in the more frequency of snow-ice disasters such as glacier debrisflow and glacier flash flood etc. Since 1980s, in the process of intense climate warming, glaciers melting intensified, ice temperature rose and glaciers flows accelerated, and lead to more glacial lakes and extending water storage capacity and stronger glacial lake outburst floods occurrence. It is proposed that the monitoring and evaluating of the impact of climate change on water resources and floods should be enhanced.  相似文献   

7.
The trends and features of China’s climatic change in the past and future are analysed by applying station obser-vations and GCM simulation results. Nationally, the country has warmed by 0.3oC in annual mean air temperature and decreased by 5% in annual precipitation over 1951-1990. Regionally, temperature change has varied from a cooling of 0.3oC in Southwest China to a warming of 1.0oC in Northeast China. With the exception of South China, all regions of China have shown a declination in precipitation. Climatic change has the features of increasing remark-ably in winter temperature and decreasing obviously in summer precipitation. Under doubled CO2 concentration, climatic change in China will tend to be warmer and moister, with increases of 4.5oC in annual mean air temperature and 11% in annual precipitation on the national scale. Future climatic change will reduce the temporal and spatial differences of climatic factors.  相似文献   

8.
In recent years,the global warming and its influences on people and social economy have received increasing attention from international communities.Determining the current trend of global temperature variation has become one of the critical issues in climate change research.Obviously,it is rather important to develop new climate change detection technology in order to identify new characteristics of the global warming.This review introduces the latest advances and past achievements on the climate change...  相似文献   

9.
The historical simulation of phase five of the Coupled Model Intercomparison Project(CMIP5) experiments performed by the Beijing Climate Center climate system model(BCC_CSM1.1) is evaluated regarding the time evolutions of the global and China mean surface air temperature(SAT) and surface climate change over China in recent decades.BCC_CSM1.1 has better capability at reproducing the time evolutions of the global and China mean SAT than BCC_CSM1.0.By the year 2005,the BCC_CSM1.1 model simulates a warming amplitude of approximately 1℃ in China over the 1961-1990 mean,which is consistent with observation.The distributions of the warming trend over China in the four seasons during 1958-2004 are basically reproduced by BCC_CSM1.1,with the warmest occurring in winter.Although the cooling signal of Southwest China in spring is partly reproduced by BCC_CSM1.1,the cooling trend over central eastern China in summer is omitted by the model.For the precipitation change,BCC_CSM1.1 has good performance in spring,with drought in Southeast China.After removing the linear trend,the interannual correlation map between the model and the observation shows that the model has better capability at reproducing the summer SAT over China and spring precipitation over Southeast China.  相似文献   

10.
On the basis of the mean air temperature, precipitation, sunshine duration, and pan evaporation from 23 meteorological stations in the upper Yellow River Basin from 1960 to 2001, the feasibility of using hypothesis test techniques to detect the long-term trend for major climate variables has been investigated. Parametric tests are limited by the assumptions such as the normality and constant variance of the error terms. Nonparametric tests have not these additional assumptions and are better adapted to the trend test for hydro-meteorological time series. The possible trends of annual and monthly climatic time series are detected by using a non-parametric method and the abrupt changes have been examined in terms of 5-yr moving averaged seasonal and annual series by using moving T-test (MTT) method, Yamamoto method, and Mann-Kendall method. The results show that the annual mean temperature has increased by 0.8℃in the upper Yellow River Basin during the past 42 years. The warmest center was located in the northern part of the basin. The nonlinear tendency for annual precipitation was negative during the same period. The declining center for annual precipitation was located in the eastern part and the center of the basin. The variation of annual precipitation in the upper Yellow River Basin during the past 42 years exhibited an increasing tendency from 1972 to 1989 and a decreasing tendency from 1990 to 2001. The nonlinear tendencies for annual sunshine duration and pan evaporation were also negative. They have decreased by 125.6 h and 161.3 mm during the past 42 years, respectively. The test for abrupt changes by using MTT method shows that an abrupt wanning occurred in the late 1980s. An abrupt change of the annual mean precipitation occurred in the middle 1980s and an abrupt change of the mean sunshine duration took place in the early 1980s. For the annual mean pan evaporation, two abrupt changes took place in the 1980s and the early 1990s. The test results of the Yamamoto method show that the abrupt changes mostly occurred in the 1980s, and two acute abrupt changes were tested for the spring pan evaporation in 1981 and for the annual mean temperature in 1985. According to the Mann-Kendall method, the abrupt changes of the temperature mainly occurred in the 1990s, the pan evaporation abrupt changes mostly occurred in the 1960s, and the abrupt changes of the sunshine duration primarily took place in the 1980s. Although the results obtained by using three methods are different, it is undoubted that jumps have indeed occurred in the last four decades.  相似文献   

11.
 Based on the China Rural Statistical Yearbook of 1984-2003 published by State Statistics Bureau, and the annual temperature in the same period, impacts of temperature change, agricultural input, and planting area on grain production were analyzed for different regions of China during the last 20 years. The results show that the main characteristic of climate warming has obviously promoted the increase of grain yield in Northeast China, but to some extent suppressed it in North China, Northwest China and Southwest China, and shown no obvious effect on it in East China and Central-South China. The increase in agricultural input facilitated the grain production obviously in various regions in the early stage of the past 20 years, but showed no obvious effect in the late stage. The continuous reduction in sown area had a significant negative effect on the grain production in East China and Central-South China.  相似文献   

12.
The multiple time scale climate changes are studied and calculated with statistical analysis and wavelet transformation on the basis of daily series of observed data over the period 1901-2007 in Macau.The result shows that statistically significant oscillations with 2 to 5 years of period generally exist in the series of climate variables(e.g.annual mean surface air temperature and precipitation as well as evaporation etc.),but with obvious locality in time domain.The variation of annual mean surface air temperature has a quasi 60-year period.The phases of the 60-year variation approximately and consistently match that of Atlantic Multidecadal Oscillation(AMO).The oscillations of seasonal mean surface air temperature in summer and winter have the periods of quasi 30-year and quasi 60-year,respectively.These two periods of oscillations have statistically significant correlation with Pacific decadal oscillation(PDO) and AMO,individually.The multidecadal variations of the precipitation of the annually first flood period and annual evaporation are dominated by periods of quasi 30-year and quasi 50-year,respectively.  相似文献   

13.
用 IAP/LASG GOALS模式模拟CO2增加引起的东亚地区气候变化   总被引:19,自引:0,他引:19  
Two simulations, one for the control run and another for the perturbation run, with a global coupled ocean-atmosphere-land system model (IAP / LASG GOALS version 4) have been carried out to study the global warming, with much detailed emphasis on East Asia. Results indicate that there is no climate drift in the control run and at the time of CO2 doubling the global temperature increases about 1.65℃. The GOALS model is able to simulate the observed spatial distribution and annual cycles of temperature and precipitation for East Asia quite well. But, in general, the model underestimates temperature and overestimates rainfall amount for regional annual average. For the climate change in East Asia, the temperature and precipitation in East Asia increase 2. l℃ and 5% respectively, and the maximum warming occurs at middle-latitude continent and the maximum precipitation increase occurs around 25°N with reduced precipitation in the tropical western Pacific.  相似文献   

14.
Regional climate change in China under the IPCC A2 Scenario, was simulated for continuous 10-yr period by the MM5V3, using the output of an IPCC A2 run from CISRO Mark 3 climate system model as lateral and surface boundary conditions. The regional climate change of surface air temperature, precipitation, and circulation were analyzed. The results showed that (1) the distribution of mean circulation, surface air temperature, and precipitation was reproduced by the MM5V3. The regional climate model was capable to improve the regional climate simulation driven by GCM. (2) The climate change simulation under the IPCC A2 Scenario indicated that the surface air temperature in China would increase in the future, with a stronger trend in winter and the increasing magnitude from the south to the north. The precipitation distribution would appear a distinct change as well. Annual mean precipitation would remarkably increase in Northeast China, Yangtze and Huaihe River Valley, and the south area of the valley. Meanwhile, rainfall would show a decreasing trend in partial areas of North China, and many regions of Southwest and Northwest China.  相似文献   

15.
Determining whether air temperatures recorded at meteorological stations have been contaminated by the urbanization process is still a controversial issue at the global scale. With support of historical remote sensing data, this study examined the impacts of urban expansion on the trends of air temperature at 69 meteorological stations in Beijing, Tianjin, and Hebei Province over the last three decades. There were significant positive relations between the two factors at all stations. Stronger warming was detected at the meteorological stations that experienced greater urbanization, i.e., those with a higher urbanization rate. While the total urban area affects the absolute temperature values, the change of the urban area (urbanization rate) likely affects the temperature trend. Increases of approximately 10% in urban area around the meteorological stations likely contributed to the 0.13℃ rise in air temperature records in addition to regional climate warming. This study also provides a new approach to selecting reference stations based on remotely sensed urban fractions. Generally, the urbanization-induced warming contributed to approximately 44.1% of the overall warming trends in the plain region of study area during the past 30 years, and the regional climate warming was 0.30℃ (10 yr)-1 in the last three decades.  相似文献   

16.
1 INTRODUCTION The trend of drought and flood variation has been a wide concern among scientists in the background of climate warming in the late 20th century[1]. Both of them are serious natural disasters that regularly take place in China. Relevant studies have shown that there are roughly the same number of stations in China showing increasing rainfall as those showing decreasing rainfall over the past 50 years. There are no obvious trends of variation of annual precipitation averaged…  相似文献   

17.
The South China Sea is a hotspot for regional climate research. Over the past 40 years, considerable im provement has been made in the development and utilization of the islands in the South China Sea, leading to a substantialchange in the land-use of the islands. However, research on the impact of human development on the local climate of theseislands is lacking. This study analyzed the characteristics of local climate changes on the islands in the South China Seabased on data from the Yongxing Island Observation Station and ERA5 re-analysis. Furthermore, the influence of urba nization on the local climate of the South China Sea islands was explored in this study. The findings revealed that the 10-year average temperature in Yongxing Island increased by approximately 1.11 °C from 1961 to 2020, and the contributionof island development and urbanization to the local warming rate over 60 years was approximately 36.2%. The linearincreasing trend of the annual hot days from 1961–2020 was approximately 14.84 days per decade. The diurnal tem perature range exhibited an increasing trend of 0.05 °C per decade, whereas the number of cold days decreased by 1.06days per decade. The rapid increase in construction on Yongxing Island from 2005 to 2021 led to a decrease in observedsurface wind speed by 0.32 m s –1 per decade. Consequently, the number of days with strong winds decreased, whereas thenumber of days with weak winds increased. Additionally, relative humidity exhibited a rapid decline from 2001 to 2016and then rebounded. The study also found substantial differences between the ERA5 re-analysis and observation data,particularly in wind speed and relative humidity, indicating that the use of re-analysis data for climate resource assessmentand climate change evaluation on island areas may not be feasible.  相似文献   

18.
The spectral characteristics of precipitation intensity during warm and cold years are compared in six regions of China based on precipitation data at 404 meteorological stations during 1961-2006.In all of the studied regions except North China,with the increasing temperature,a decreasing trend is observed in light precipitation and the number of light precipitation days,while an increasing trend appears in heavy precipitation and the heavy precipitation days.Although changes in precipitation days in North China are similar to the changes in the other five regions,heavy precipitation decreases with the increasing temperature in this region.These results indicate that in most parts of China,the amount of precipitation and number of precipitation days have shifted towards heavy precipitation under the background of a warming climate;however,the responses of precipitation distributions to global warming differ from place to place.The number of light precipitation days decreases in the warm and humid regions of China(Jianghuai region,South China,and Southwest China),while the increasing amplitude of heavy precipitation and the number of heavy precipitation days are greater in the warm and humid regions of China than that in the northern regions(North China,Northwest China,and Northeast China).In addition,changes are much more obvious in winter than in summer,indicating that the changes in the precipitation frequency are more affected by the increasing temperature during winter than summer.The shape and scale parameters of the Γ distribution of daily precipitation at most stations of China have increased under the background of global warming.The scale parameter changes are smaller than the shape parameter changes in all regions except Northwest China.This suggests that daily precipitation shifts toward heavy precipitation in China under the warming climate.The number of extreme precipitation events increases slightly,indicating that changes in the Γ distribution fitting parameters reflect changes in the regional precipitation distribution structure.  相似文献   

19.
A simulation of climate change trends over North China in the past 50 years and future 30 years was performed with the actual greenhouse gas concentration and IPCC SRES B2 scenario concentration by IAP/LASG GOALS 4.0 (Global Ocean-Atmosphere-Land system coupled model), developed by the State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS). In order to validate the model, the modern climate during 1951-2000 was first simulated by the GOALS model with the actual greenhouse gas concentration, and the simulation results were compared with observed data. The simulation results basically reproduce the lower temperature from the 1960s to mid-1970s and the warming from the 1980s for the globe and Northern Hemisphere, and better the important cold (1950 1976) and warm (1977-2000) periods in the past 50 years over North China. The correlation coefficient is 0.34 between simulations and observations (significant at a more than 0.05 confidence level). The range of winter temperature departures for North China is between those for the eastern and western China's Mainland. Meanwhile, the summer precipitation trend turning around the 1980s is also successfully simulated. The climate change trends in the future 30 years were simulated with the CO2 concentration under IPCC SRES-B2 emission scenario. The results show that, in the future 30 years, winter temperature will keep a warming trend in North China and increase by about 2.5~C relative to climate mean (1960-1990). Meanwhile, summer precipitation will obviously increase in North China and decrease in South China, displaying a south-deficit-north-excessive pattern of precipitation.  相似文献   

20.
Four precipitation observational networks with varied station densities are maintained in China. They are: the Global Climate Observation System (GCOS) Surface Network (GSN), the national Reference Climate Network (RCN), the national Basic Meteorological Network (BMN), and the national Ordinary Meteorological Network (OMN). The GSN, RCN, BMN, and the merged network of RCN and BMN (R&B) have been widely used in climatology and climate change studies. In this paper, the impact of the usage of different networks on the precipitation climatology of China is evaluated by using the merged dataset of All Station Network (ASN) as a benchmark. The results show that all networks can capture the main features of the country average precipitation and its changing trends. The differences of average annual precipitation of the various networks from that of the ASN are less than 50 mm ( 10%). All networks can successfully detect the rising trend of the average annual precipitation during 1961-2009, with the R&B exhibiting the best representativeness (only 2.90% relative difference) and the GSN the poorest (39.77%). As to the change trends of country average monthly precipitation, the networks can be ranked in descending order as R&B (1.27%), RCN (2.35%), BMN (4.17%), and GSN (7.46%), and larger relative differences appear from August to November. The networks produce quite consistent spatial patterns of annual precipitation change trends, and all show an increasing trend of precipitation in Northwest and Southeast China, and a decreasing trend in North China, Northeast China, and parts of central China. However, the representativeness of the BMN and R&B are better in annual and seasonal precipitation trends, in spite of the fact that they are still far from satisfactory. The relative differences of trends in some months and regions even reach more than 50%. The results also show that the representativeness of the RCN for country average precipitation is higher than that of the BMN because the RCN has a more homogeneous distribution of stations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号