首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
舟山是海岛港口城市。位于东径120°31'—123°35',北纬29°32'—31°O4'。所处地理位置易受台风(热带风暴)影响和侵袭,是威胁舟山最严重的灾害性天气。一、影响舟山台风(热带风暴)概况据1951—1990年资料统计,影响舟山的台风(热带风暴)计170次,年平均4.25次,最多的1959年受影响9次  相似文献   

2.
穿越雷州半岛时地形对热带气旋特性的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
通过对1949~1993年共计29个穿越雷州半岛台风及热带风暴特性变化进行的分析,得出:台风及热带风暴强度(Vmax)一般在登陆前6小时开始明显减弱;台风过岛后强度平均下降24%,热带风暴强度平均下降33%。热带风暴8级大风圈范围的缩小亦较台风为大;半岛对台风和热带风暴移向的影响,台风受影响较早;不论对台风或热带风暴,穿岛前、后均未出现路径明显南折现象。  相似文献   

3.
台风倒槽局地性强降雨分析   总被引:5,自引:6,他引:5  
通过分析2002年第20号热带风暴“米克拉”在广西南部沿海登陆后引发远离台风暴雨的台风倒槽暴雨,以及与强降水有关的物理量场的变化、风廓线仪和地面风场的脉动,探讨了在台风倒槽与西风槽相结合处以强降水为主的强对流天气发生发展的环境条件。  相似文献   

4.
1999年西北太平洋和南海热带气旋概况   总被引:2,自引:1,他引:1  
利用天气图、台风年鉴、GMS卫星云图、ECMWF格点资料等分析总结了1999年西北太平洋和南海热带风暴的活动特点,并对这些特点做了天气气候背影的分析。  相似文献   

5.
徐夏囡  杨贵名 《气象》1995,21(7):15-20
通过国家气象中心1994年热带风暴(台风)的预报服务业务中,有关热带气旋监测、预报信息的使用和预警服务的发布状况,反映我国在热带气旋及有关的灾害性天气预警服务的业务技术水平。同时,对所涉及的有关问题进行了讨论。  相似文献   

6.
80年代以来,世界范围内气候变化加剧,灾害增加,引起了全世界的普遍关注。本市近几年来也是气象灾害出现频繁,洪涝、干旱、热带风暴(台风)等灾害严重,对经济发展和人民的生活造成较严重的影响。本文通过对80年代以来,影响绍兴主要灾害性天气暴雨、高温干旱及热带风暴(台风)气候规律的分析得出:  相似文献   

7.
1龙卷风的天气形势1.1概况1994年6月9日07时,强大的龙卷风自南向北袭击了南海市盐步镇、里水镇、和顺镇和广州市石井镇;在南海市境内为12~15分钟,移动距离约18公里,影响宽度约助~100米,风力估计在12级以上。1.2天气形势这次龙卷风天气是在9403号热带风暴外围雨带中产生的。如囹1所示,6月9日02时副高1007.5等压线伸展到珠江口东侧,而珠江口西侧、粤西及广西地区则在热带风暴外围环流和台风糟的控制之下,副高脊端的东南风和台风槽前的西南风在珠江口附近汇合,加上珠江口倒“V”状的地形,更有利于流场的福合。副高和热带风暴外…  相似文献   

8.
许映龙 《气象》1995,21(11):58-61
北方地区暴雨频繁东南沿海登陆台风多-1995年8月-许映龙(中央气象台,北京100081)本月,我国北方大部地区多暴雨过程,东北的局部地区出现了洪涝灾害;江南大部地区多高温晴热天气,降水偏少;华南大部地区多阴雨天气,降水偏多。月内共有6个热带风暴生成...  相似文献   

9.
探讨采用1962—2018年间珠海市日最高气温数据,运用Mann—Kendall检验和小波分析方法,统计珠海市高温天气日数变化,并探讨高温天气的出现与台风位置和强度的关系。结果表明:(1)珠海市高温天气主要集中在7和8月;高温日数在1989年发生突变,高温日数增多,另外高温日数的周期也存在变短的趋势。(2)在珠海市出现的高温天气中,伴随台风的高温天数占43.1%,该比例在1990年之后显著减小。(3)伴随台风的高温天数在1990年之后呈现出增多的趋势,这主要是由于福建省和江西省热带低压至热带风暴级别和台湾海峡至台湾省一带台风级别的台风数量增多造成的。(4)当台风在福建省至台湾省一带活动时,珠海市出现高温天气概率较高。  相似文献   

10.
2001年热带风暴概况   总被引:1,自引:0,他引:1  
刘震坤  薛建军  高拴柱 《气象》2002,28(12):30-32
对2001年西北太平洋和南海热带风暴活动情况特别是影响和登陆我国的热带风暴进行了分析总结,表明:2001年热带风暴总数少于常年,而台风个数却较多年平均偏多;登陆我国的热带风暴有9个,明显多于多年平均数。同时对与之相关的西北太平洋副热带高压、亚洲西风带环流、赤道辐合带等的活动特征进行了气候背景分析。  相似文献   

11.
Summary An intriguing picture is emerging of coupled track and intensity links in tropical cyclones. Since recurvature represents a dramatic track shift, recurving tropical storms are isolated in this study and their time of maximum lifetime intensity is compared to their time of recurvature. Thirty-one percent of all western North Pacific tropical storms and 28% of all such storms in North Atlantic recurve. Seventeen years of track and intensity data for recurving tropical cyclones in these basins are examined here.The overwhelming majority (80%) of western North Pacific tropical storms (including typhoons) reach their lifetime maximum intensity prior to recurvature. More than 45% of all recurving storms have coincident recurvature and lifetime maximum intensity, with weaker tropical storms clearly more likely to reach peak intensity at recurvature than strong systems.Inspection of tropical storm intensity and track data for North Atlantic systems reveals few clear patterns. The most robust observation to be made here is that the majority of these systems reach their peak intensity prior to recurvature. Exclusion of landfalling extratropically transforming tropical cyclones from this sample greatly reduces the number of systems, making the significance of any results questionable.With 2 Figures  相似文献   

12.
This study examines the tropical storms simulated in the Modern-Era Retrospective analysis for Research and Applications (MERRA) global atmospheric reanalysis for the recent 12 years (1998–2009), focusing on the tropical storm activity over the Northwestern Pacific. For validation, the International Best Track Archive for Climate Stewardship (IBTrACS) dataset is used as an observational counterpart. Climatological-mean features of the tropical storm genesis, tracks and their maximum intensity are the primary interests in this study. Regarding the genesis location of tropical storms, MERRA is reasonable in resolving major development regions over the South China Sea and the Northwestern Pacific close to the Philippines. The seasonal variation of the number of storms is also reproduced in a realistic way in MERRA, with peak values occurring from July to September. In addition, MERRA tends to reproduce the observed interannual variation of the number of tropical storms during the 12-years, though with a limited accuracy. The simulated paths toward higher latitudes are also reasonable in MERRA, where the reanalysis corresponds well with the observations in resolving frequent paths of westward moving storms and recurving storms toward the northeast. Regarding the intensity, MERRA captures the linear relationship between the minimum center pressure and the maximum wind speed near the surface at the maximum development. Some discrepancies from the observed features are found in the reanalysis, such as less frequent development of storms over the South China Sea and less frequent paths over this region. The reanalysis also does not attain the observed maximum intensity for the resolved tropical storms, particularly underestimating the center pressure. These deficiencies are likely related to limitations in the horizontal resolution and the parameterized physics of the data assimilation system.  相似文献   

13.
广东台风特大暴雨预报   总被引:1,自引:0,他引:1  
李献州  贺忠 《气象》1995,21(8):17-22
使用台风年鉴,天气图,天星云图等气象资料,对1960-1991年影响广东的39例特大暴雨台风进行了对比分析,台风特大暴雨主要是由其云系中的中尺度强降水系统造成,归纳出形成发展的概仿模式和相应环境流场特征,建立预报思路与方法。1994年作15次预报试验,其准确率达73%。  相似文献   

14.
Based on high-resolution reanalysis data of the European Centre for Medium-Range Weather Forecasts, several samples of tropical cyclones (TCs), including tropical storms, severe tropical storms, and typhoons, in the South China Sea (SCS), were selected for composite analysis. The structures of these three types of vortices and their differences with ‘bogus’ vortices were investigated. Results showed that TCs in the SCS have characteristics that are distinctly different from vortices formed by the bogussing scheme used at Guangzhou Institute of Tropical and Marine Meteorology, such as no anticyclone in higher layers, strong convergence concentrated at the bottom of the troposphere, and strong divergence happening in higher layers instead of at 400 hPa. These differences provide clues for constructing a more realistic structure for TCs in the SCS. It was also found that the three types of vortices have some structural features in common. The area with high wind speed is fan-shaped in the north around the TC center, the maximum vorticity appears at 925 hPa, the strongest convergence appears at 1000 hPa, and strong divergence is located from 150 to 100 hPa. On the contrary, significant differences between them were revealed. The warm cores in tropical storms, severe tropical storms, and typhoons are located at 600–400 hPa, 400−300 hPa, and 400−250 hPa, respectively. Among the three types of TCs, the bogus vortex of tropical storms has the largest errors in structure and suffers the largest errors in track forecasts. However, typhoons have the largest errors in the forecast of intensity. This may be related to the great impacts of ocean on TC intensity.  相似文献   

15.
The objective of this study is to provide evidence of predictability on intraseasonal time scales (10–30 days) for western North Pacific tropical cyclone formation and subsequent tracks using the 51-member ECMWF 32-day forecasts made once a week from 5 June through 25 December 2008. Ensemble storms are defined by grouping ensemble member vortices whose positions are within a specified separation distance that is equal to 180 n mi at the initial forecast time t and increases linearly to 420 n mi at Day 14 and then is constant. The 12-h track segments are calculated with a Weighted-Mean Vector Motion technique in which the weighting factor is inversely proportional to the distance from the endpoint of the previous 12-h motion vector. Seventy-six percent of the ensemble storms had five or fewer member vortices. On average, the ensemble storms begin 2.5 days before the first entry of the Joint Typhoon Warning Center (JTWC) best-track file, tend to translate too slowly in the deep tropics, and persist for longer periods over land. A strict objective matching technique with the JTWC storms is combined with a second subjective procedure that is then applied to identify nearby ensemble storms that would indicate a greater likelihood of a tropical cyclone developing in that region with that track orientation. The ensemble storms identified in the ECMWF 32-day forecasts provided guidance on intraseasonal timescales of the formations and tracks of the three strongest typhoons and two other typhoons, but not for two early season typhoons and the late season Dolphin. Four strong tropical storms were predicted consistently over Week-1 through Week-4, as was one weak tropical storm. Two other weak tropical storms, three tropical cyclones that developed from precursor baroclinic systems, and three other tropical depressions were not predicted on intraseasonal timescales. At least for the strongest tropical cyclones during the peak season, the ECMWF 32-day ensemble provides guidance of formation and tracks on 10–30 day timescales.  相似文献   

16.
本文以8006和8309两个台风为例,分析了近海台风的结构,指出其重要特点是运动场和热力场的显著不对称和只有弱的暖心。本文还着重对它们在近海及登陆后的总动能和涡动动能收支及加热场情况,进行了对比诊断研究。指出近海台风的不对称结构中,隐含着消亡机制,这是由于不对称的暖区和上升区都偏离台风中心且不相一致,使台风区有效位能向动能转换的过程很弱甚至反向。另外,如台风登陆后继续维持热带系统特点,未能迅速将主要能源由潜热释放转变为斜压过程,也易迅速消亡。在加热场方面,登陆后迅速减弱的台风,最大加热强度较大,其所在层次也较高。  相似文献   

17.
Tropical storms are located and tracked in an experiment in which a high-resolution atmosphere only model is forced with observed sea surface temperatures (SSTs) and sea ice. The structure, geographic distribution and seasonal variability of the model tropical storms show some similarities with observations. The simulation of tropical storms is better in this high-resolution experiment than in a parallel standard resolution experiment. In an anomaly experiment, sea ice, SSTs and greenhouse-gas forcing are changed to mimic the changes that occur in a coupled model as greenhouse-gases are increased. There are more tropical storms in this experiment than in the control experiment in the Northeast Pacific and Indian Ocean basins and fewer in the North Atlantic, Northwest Pacific and Southwest Pacific region. The changes in the North Atlantic and Northwest Pacific can be linked to El Niño-like behaviour. A comparison of the tracking results with two empirically derived tropical storm genesis parameters is carried out. The tracking technique and a convective genesis parameter give similar results, both in the global distribution and in the changes in the individual basins. The convective genesis parameter is also applied to parallel coupled model experiments that have a lower horizontal resolution. The changes in the global distribution of tropical storms in the coupled model experiments are consistent with the changes seen at higher resolution. This indicates that the convective genesis parameter may still provide useful information about tropical storm changes in experiments carried out with models that cannot resolve tropical storms.  相似文献   

18.
赤道东太平洋海温与南海热带风暴频数的相关关系   总被引:1,自引:0,他引:1  
根据1949—1987年的赤道东太平洋海温和热带气旋资料,分别分析了在南海形成的热带风暴频数和影响南海的热带风暴频数(包括南海形成和由西太平洋移入南海)与赤道东太平洋海温的时滞相关关系,统计了海温暖期(El Nino)和冷期(反El Nino)与以上两类热带风暴频数的联系。初步结果表明,赤道东太平洋海温与影响南海的热带风暴频数之间,同期为负相关(-0.30)风暴晚于海温17个月时出现正相关极大值(+0.29);赤道东太平洋海温与南海形成的热带风暴频数之间的相关有所不同,最大相关(+0.38)出现在热带风暴   相似文献   

19.
The best track data of tropical cyclones (TCs) provided by Regional Specialized Meteorological Center (RSMC) Tokyo for the South China Sea (SCS) from 1977 to 2007 are employed to study the spatiotemporal variations (for a period of 12 hours) and the rapid (slow) intensification (RI/SI) of TCs with different intensity. The main results are as follows. (1) Over this period, the tropical storms (TSs) and severe tropical storms (STSs) mostly intensify or are steady while the typhoons (TYs) mostly weaken. The stronger a TC is initially, the more observation of its intensification and the less its variability will be; the more observation of its weakening is, the larger its variability will be. (2) The TC intensifies the fastest at 0000 UTC while weakening the fastest at 1200 UTC. (3) In the intensifying state, TSs, STSs, and TYs are mainly active in the northeastern, central-eastern, and central SCS respectively. The weakening cases mainly distribute over waters east off Hainan Island and Vietnam and west off the Philippines. Some cases of TSs and STSs weaken over the central SCS. (4) The RI cases form farther south in contrast to the SI cases. The RI cases are observed in regions where there are weaker vertical shear and easterly components at 200 hPa. The RI cases also have stronger mid-and lower-level warm-core structure and smaller radii of 15.4 m/s winds. The SI cases have slightly higher SST.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号