首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Initial errors and model errors are the source of prediction errors. In this study, the authors compute the conditional nonlinear optimal perturbation (CNOP)-type initial errors and nonlinear forcing singular vector (NFSV)- type tendency errors of the Zebiak-Cane model with respect to El Nifio events and analyze their combined effect on the prediction errors for E1 Nino events. The CNOP- type initial error (NFSV-type tendency error) represents the initial errors (model errors) that have the largest effect on prediction uncertainties for E1 Nifio events under the perfect model (perfect initial conditions) scenario. How- ever, when the CNOP-type initial errors and the NFSV- type tendency errors are simultaneously considered in the model, the prediction errors caused by them are not am- plified as the authors expected. Specifically, the predic- tion errors caused by the combined mode of CNOP-type initial errors and NFSV-type tendency errors are a little larger than those caused by the NFSV-type tendency er- rors. This fact emphasizes a need to investigate the opti- mal combined mode of initial errors and tendency errors that cause the largest prediction error for E1 Nifio events.  相似文献   

2.
Optimal precursor perturbations of El Nino in the Zebiak-Cane model were explored for three different cost functions. For the different characteristics of the eastern-Pacific (EP) El Nino and the central-Pacific (CP) El Nino, three cost functions were defined as the sea surface temperature anomaly (SSTA) evolutions at prediction time in the whole tropical Pacific, the Nino3 area, and the Nino4 area. For all three cost functions, there were two optimal precursors that developed into El Nino events, called Precursor Ⅰ and Precursor Ⅱ. For Precursor Ⅰ, the SSTA component consisted of an east-west (positive-negative) dipole spanning the entire tropical Pacific basin and the thermocline depth anomaly pattern exhibited a tendency of deepening for the whole of the equatorial Pacific. Precursor Ⅰ can develop into an EP-El Nino event, with the warmest SSTA occurring in the eastern tropical Pacific or into a mixed El Nino event that has features between EP-El Nino and CP-El Nino events. For Precursor Ⅱ, the thermocline deepened anomalously in the eastern equatorial Pacific and the amplitude of deepening was obviously larger than that of shoaling in the central and western equatorial Pacific. Precursor Ⅱ developed into a mixed El Nino event. Both the thermocline depth and wind anomaly played important roles in the development of Precursor Ⅰ and Precursor Ⅱ.  相似文献   

3.
The microphysical "three-layer" model for stratiform clouds over a midlatitude location in Northwest China is investigated by combining in situ airborne Particle Measuring Systems, Inc. (PMS), radar measurements, and the NCAR/Penn State Mesoscale Model Version 5 (MM5) simulation with a two-moment microphysics scheme. The coexistence of measured supercooled liquid water and small ice particles produces snow particles below the cloud top in the second layer. Peak number concentration and mean diameter of cloud water and raindrop appear in the third warm layer. A thin dry layer just below the melting layer is also observed. The predicted precipitation is tested by equitable threat score. The melting layer is clearly defined in the radar image and model radar reflectivity output is agreement with the observations. The model results provide features of the microphysical structure for every layer of "three-layer" model at Yan'an station. For both observation and model simulation, the "three-layer" model explains the stratiform precipitation formation completely and comprehensively.  相似文献   

4.
Measurements of gaseous pollutants (03, NOx, SO2, and CO) were conducted at Dinghushan background station in southern China from January to December 2013. The levels and variations of O3, NOx, SO2, and CO were analyzed and their possible causes discussed. The annual average concentrations of 03, NOx, SO2, and CO were 24.6 ± 23.9, 12.8 ± 10.2, 4.0 ± 4.8, and 348 ± 185 ppbv, respectively. The observed levels of the gaseous pollutants are comparable to those at other background sites in China. The most obvious diurnal variation of 03 was observed in autumn, with minima in the early morning and maxima in the afternoon. The diurnal variations of SO2 showed high values during the day. The diurnal cycles of NOx showed higher values in the morning and lower values during the night. Higher CO concentrations were observed in spring followed by winter, autumn, and summer. Biomass burning, in combination with the transport of regional pollution, is an important source of CO, SO2, and NOx in spring and winter. Backward trajectories were calculated and analyzed together with corresponding pollutant concentrations. The results indicate that air masses passing over polluted areas are responsible for the high concentrations of gaseous pollutants at the Dinghushan background station.  相似文献   

5.
The structures and characteristics of the marine-atmospheric boundary layer over the South China Sea during the passage of strong Typhoon Hagupit are analyzed in detail in this paper. The typhoon was generated in the western Pacific Ocean, and it passed across the South China Sea, finally landfalling in the west of Guangdong Province. The shortest distance between the typhoon center and the observation station on Zhizi Island(10 m in height) is 8.5 km. The observation data capture the whole of processes that occurred in the regions of the typhoon eye, two squall regions of the eye wall, and weak wind regions,before and after the typhoon's passage. The results show that:(a) during the strong wind(average velocityˉu 10 m s-1) period, in the atmospheric boundary layer below 110 m, ˉu is almost independent of height,and vertical velocity ˉw is greater than 0, increasing with ˉu and reaching 2–4 m s-1in the squall regions;(b) the turbulent fluctuations(frequency 1/60 Hz) and gusty disturbances(frequency between 1/600 and1/60 Hz) are both strong and anisotropic, but the anisotropy of the turbulent fluctuations is less strong;(c) ˉu can be used as the basic parameter to parameterize all the characteristics of fluctuations; and(d) the vertical flux of horizontal momentum contributed by the average flow(ˉu ·ˉw) is one order of magnitude larger than those contributed by fluctuation fluxes(u w and v w), implying that strong wind may have seriously disturbed the sea surface through drag force and downward transport of eddy momentum and generated large breaking waves, leading to formation of a strongly coupled marine-atmospheric boundary layer. This results in ˉw 0 in the atmosphere, and some portion of the momentum in the sea may be fed back again to the atmosphere due to ˉu ·ˉw 0.  相似文献   

6.
1961-200年中国各季降水趋势变化   总被引:1,自引:0,他引:1       下载免费PDF全文
Trends in six indices of precipitation in China for seasons during 1961-2007 were analyzed based on daily observations at 587 stations. The trends were estimated by using Sen's method with Mann-Kendall's test for quantifying the significance. The geographical patterns of trends in the seasonal indices of extremes were similar to those of total precipitation. For winter, both total and extreme precipitation increased over nearly all of China, except for a small part of northern China. Increasing trends in extreme precipitation also occurred at many stations in southwestern China for spring and the midlower reaches of the Yangtze River and southern China for summer. For autumn, precipitation decreased in eastern China, with an increasing length of maximum dry spell, implying a drying tendency for the post-rainy season. Wetting trends have prevailed in most of western China for all seasons. The well-known 'flood in the south and drought in the north' trend exists in eastern China for summer, while a nearly opposite trend pattern exist for spring.  相似文献   

7.
The Brazilian coast is characterized by dif- ferent tidal regimes and distinct meteorological influ- ences. The northern part has larger tidal amplitudes and is permanently affected by trade winds and tropical distur- bances; the southern portion has smaller tidal amplitudes and is frequently influenced by extratropical cyclone ac- tivity. Besides these aspects, many features regarding current structure and behavior are also present, such as the equatorial system of currents, the subtropical gyre and the corresponding western boundary currents, and the Bra- zil-Malvinas confluence region. Within this context, ef- forts were made to develop the BRAZCOAST system, capable of describing the processes that determine the oceanic circulation from large to coastal scales. A cus- tomized version of the Princeton Ocean Model (POM) was implemented in a basin-scale domain covering the whole of the tropical and southern Atlantic Ocean, with 0.5° spatial resolution, as well as three nested grids with (1/12)° resolution covering the different parts of the Bra- zilian shelf, in a one-way procedure. POM was modified to include tidal potential generator terms and a par- tially-clamped boundary condition for tidal elevations. The coarse grid captured large-scale features, while the nested grids detailed local circulations affected by bathymetry and coastal restrictions. An interesting aspect at the coarse grid level was the relevance of the Weddell Sea to the location of the tidal amphidromic systems.  相似文献   

8.
Diurnal temperature range (DTR) is an im- portant measure in studies of climate change and variability. The changes of DTR in different regions are affected by many different factors. In this study, the degree of correlation between the DTR and atmospheric precipitable water (PW) over China is explored using newly homogenized surface weather and sounding observations. The results show that PW changes broadly reflect the geographic patterns of DTR long-term trends over most of China during the period 1970-2012, with significant anticorrelations of trend patterns between the DTR and PW, especially over those regions with higher magnitude DTR trends. PW can largely explain about 40% or more (re 0.40) of the DTR changes, with a d(PW)/d(DTR) slope of -2% to -10% K^-1 over most of northwestern and southeastern China, despite certain seasonal dependencies. For China as whole, the significant anticorrelations between the DTR and PW anomalies range from -0.42 to -0.75, with a d(PW)/d(DTR) slope of-6% to -11% K^-1. This implies that long-term DTR changes are likely to be associated with opposite PW changes, approximately following the Clausius-Clapeyron equation. Furthermore, the relationship is more significant in the warm season than in the cold season. Thus, it is possible that PW can be considered as one potential factor when exploring long-term DTR changes over China. It should be noted that the present study has a largely statistical focus and that the underlying physical processes should therefore be examined in future work.  相似文献   

9.
In May 2008, ScienceWatch.com named Advances in Atmospheric Sciences a Rising Star among Geosciences journals. According to Essential Science IndicatorsSM from Thomson Reuters, the journal's cur-rent citation record includes 764 papers cited a total of 1,658 times between January 1, 1998 and February 29 2008.  相似文献   

10.
The aerosol optical depth (AOD) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Satellite Aqua, along with the altitude-resolved aerosol subtypes product from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP), as well as surface PM 10 measurements, were utilized to investigate the dust activities common in springtime of northern China. Specifically, a dust storm episode that occurred over the North China Plain (NCP) during 17-21 March 2010 was identified. The PM 10 concentration at Beijing (39.8 °N, 116.47 °E) reached the peak value of 283 μgm -3 on 20 March 2010 from the background value of 15 μg m-3 measured on 17 March 2010, then dropped to 176 μgm-3 on 21 March 2010. Analysis of the CALIOP aerosol subtypes product showed that numerous large dust plumes floated over northern China, downwind of main desert source regions, and were lifted to altitudes as high as 3.5 km during this time period. The MODIS AOD data provided spatial distributions of dust load, broadly consistent with ground-level PM 10 , especially in cloud free areas. However, inconsistency between the MODIS AOD and surface PM 10 measurements under cloudy conditions did exist, further highlighting the unique capability of the CALIOP lidar. CALIOP can penetrate the cloud layer to give unambiguous and altitude-resolved dust measurements, albeit a relatively long revisit period (16 days) and narrower swath (90 m). A back trajectory simulation using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model was performed, and it was found that the sand-dust storm originated from the Gobi Desert on 18 March 2010 travelled approxi-mately 1200-1500 km day-1 eastward and passed over the NCP on 19 March 2010, in good agreement with previous findings. In addition, the multi-sensor measurements integrated with the HYSPLIT model output formed a three-dimensional view of the transport pathway for this dust episode, indicating that this episode was largely associated with the desert source regions to the northwest of the NCP. The results imply the importance of integration of multi-sensor measurements for clarifying the overall structure of dust events over northern China.  相似文献   

11.
Using a regional climate model MM5 nested to an atmospheric global climate model CCM3, a series of simulations and sensitivity experiments have been performed to investigate the relative LGM climate response to changes of land-sea distribution, vegetation, and large-scale circulation background over China. Model results show that compared with the present climate, the fluctuations of sea-land distribution in eastern Asia during the LGM result in the temperature decrease in winter and increase in summer. It has significant impact on the temperature and precipitation in the east coastal region of China. The impact on precipitation in the east coastal region of China is the most significant one, with 25%-50% decrease in the total precipitation change during the LGM. On the other hand, the changes in sea-land distribution have less influence on the climate of inland and western part of China. During the LGM, significant changes in vegetation result in temperature alternating with winter increase and summer decrease, but differences in the annual mean temperature are minor. During the LGM, the global climate, i.e., the large-scale circulation background has changed significantly. These changes have significant influences on temperature and precipitation over China. They result in considerable temperature decreases in this area, and direct the primary patterns and characteristics of temperature changes. Results display that, northeastern China has the greatest temperature decrease, and the temperature decrease in the Tibetan Plateau is larger than in the eastern part of China located at the same latitude. Moreover, the change of large-scale circulation background also controls the pattern of precipitation change. Results also show that, most of the changes in precipitation over western and northeastern parts of China are the consequences of changing large-scale circulation background, of which 50%-75% of precipitation changes over northern and eastern China are the results of changes in large-scale circulation backgrou  相似文献   

12.
Climatological patterns in wind fluctuations on time scales of 1-10 h are analyzed at a meteorological mast at the Yangmeishan wind farm, Yunnan Province, China, using a 2-yr time series of 10-min wind speed ob- servations. For analyzing the spectral properties of non- stationary wind fluctuations in mountain terrain, the Hil- bert-Huang transform (HHT) is applied to investigate climatological patterns between wind variability and sev- eral variables including time of year, time of day, wind direction, and pressure tendency. Compared with that for offshore sites, the wind variability at Yangmeishan wind farm has a more distinct diurnal cycle, but the seasonal discrepancies and the differences according to directions are not distinct, and the synoptic influences on wind vari- ability are weaker. There is enhanced variability in spring and winter compared with summer and autumn. For flow from the main direction sector, the maximum wind vari- ability is observed in spring. And the severe wind fluctua- tions are more common when the pressure tendency is rising.  相似文献   

13.
In this paper, a coupled model was used to estimate the responses of soil moisture and net primary production of vegetation (NPP) to increasing atmospheric CO2 concentration and climate change. The analysis uses three experiments simulated by the second-generation Earth System Model (CanESM2) of the Canadian Centre for Climate Modelling and Analysis (CCCma), which are part of the phase 5 of the Coupled Model Intercomparison Project (CMIP5). The authors focus on the magnitude and evolution of responses in soil moisture and NPP using simulations modeled by CanESM, in which the individual effects of increasing CO2 concentration and climate change and their combined effect are separately accounted for. When considering only the single effect of climate change, the soil moisture and NPP have a linear trend of 0.03 kg m^-2 yr^-1 and-0.14 gC m^- 2 yr^-2, respec- tively. However, such a reduction in the global NPP results from the decrease of NPP at lower latitudes and in the Southern Hemisphere, although increased NPP has been shown in high northern latitudes. The largest negative trend is located in the Amazon basin at -1.79 gC m^-2 yr^-2. For the individual effect of increasing CO2 concentration, both soil moisture and NPP show increases, with an elevated linear trend of 0.02 kg m^-2 yr^-1 and 0.84 gC m^-2 yr^-2, respectively. Most regions show an increasing NPP, except Alaska. For the combined effect of increasing atmospheric CO2 and climate change, the increased soil moisture and NPP exhibit a linear trend of 0.04 kg m^2 yr^-1 and 0.83 gC m^2 yr^-2 at a global scale. In the Amazon basin, the higher reduction in soil moisture is illustrated by the model, with a linear trend of-0.39 kg m^-2 yr^-1, for the combined effect. Such a change in soil moisture is caused by a weakened Walker circulation simulated by this coupled model, compared with the single effect of increasing CO2 concentration (experiment M2), and a consequence of the reduction in NPP is also shown in this area, with a linear trend of-  相似文献   

14.
In this study, the high-accuracy multisource integrated Chinese land cover (MICLCover) dataset was used in version 4 of the Community Land Model (CLM4) to assess how the new land cover information affected land surface simulation over China. Compared to the default land cover dataset in CLM4, the MICL data indicated lower values for bare soil (14.6% reduction), nee- dleleaf tree (3.6%), and broadleaf tree (1.9%); higher values for shrub cover (1.8% increase), grassland (9.9%), cropland (5.0%), glaciers (0.5%), lakes (1.6%), and wetland (1.1%); and unchanged for urban areas. Two comparative CLM4 simulations were conducted for the 33-yr period from 1972 to 2004, one using the MICL dataset and the other using the default dataset. The results revealed that the MICL data produced a 0.3% lower mean annual surface albedo over China than the original data. The largest contributor to the reduced value was semiarid regions (2.1% reduction). The MICL-data albedo value agreed more closely with observations (MODIS broad- band black-sky albedo products) over arid and semiarid regions than for the original data to some extent. The simulated average sensible heat flux over China increased by only 0.1 W m 2 owing to the reduced values in arid and semiarid regions, as opposed to increases in humid and semihumid regions, while an increased latent heat flux of I W m-2 was reflected in almost identical changes over the whole region. In addition, the mean annual runoff simulated by CLM4 using MICL data decreased by 6.8 mm yr-1, primarily due to large simulated decreases in humid regions.  相似文献   

15.
The unprecedented disaster of low temperature and persistent rain, snow, and ice storms, causing widespread freezing in the Yangtze River Basin and southern China in January 2008, is not a local or regional event, but a part of the chain events of large-scale low temperature and snow storms in the same period in Asia. The severity and impacts of the southern China 2008 freezing disaster were the most significant among others. This disastrous event was characterized by three major features: (1) snowfall, freezing rain, and rainfall, the three forms of precipitation, coexisted with freezing rain being the dominant producer responsible for the disaster; (2) low temperature, rain and snow, and freezing rain exhibited extremely great intensity, with record-breaking measurements observed for eight meteorological variables based on the statistics made by China National Climate Center and the provincial meteorological services in the Yangtze River Basin and southern China; (3) the disastrous weathers persisted for an exceptionally long time period, unrecorded before in the meteorological observation history of China.
The southern China 2008 freezing disaster may be resulted from multiple different factors that superimpose on and interlink with one another at the right time and place. Among them, the La Nina situation is a climate background that provided conducive conditions for the intrusions of cold air into southern China; the persistent anomaly of the atmospheric circulation in Eurasia is the direct cause for a succession of cold air incursions into southern China; and the northward transport of warm and moist airflows from the Bay of Bengal and South China Sea finally warranted the formation of the freezing rain and snow storms and their prolonged dominance in the southern areas of China.
A preliminary discussion of a possible association of this disastrous event with the global warming is presented. This event may be viewed as a short-term regional perturbation to the global warming. There is no  相似文献   

16.
Data from the World Wide Lightning Location Network (WWLLN) for the period 2005-2011 and data composite of the Lightning Imaging Sensor/Optical Transient Detector (LIS/OTD) for 1995-2010 are used to analyze the lightning activity and its diurnal variation over land and ocean of the globe. The Congo basin shows a peak mean annual flash density of 160.7 fl km-2 yr-1 according to the LIS/OTD. The annual mean land to ocean flash ratio is 9.6:1, which confirms the result from Christian et al. in 2003 based on only 5-yr OTD data. The lightning density detected by the WWLLN is in general one order of magnitude lower than that of the LIS/OTD. The diurnal cycle of the lightning activity over land shows a single peak, with the maximum activity occurring around 1400-1900 LT (Local Time) and a minimum in the morning from both datasets. The oceanic diurnal variation has two peaks: the early morning peak between 0100 and 0300 LT and the afternoon peak with a stronger intensity between 1100 and 1400 LT over the Pacific Ocean, as revealed from the WWLLN dataset; whereas the diurnal variation over ocean in the LIS/OTD dataset shows a large fluctuation.  相似文献   

17.
A case of hailstorm process occurring on 24 June 2006 in northwestern China was studied using satellite retrieval methodology. The particle effective radius (re) in the cloud tops was calculated by the reflectance in the 3.7μm channel, and cloud-top microphysical properties were vividly represented using the RGB visual multispectral classification scheme. The microphysical zones of clouds and the processes of hail formation and development are inferred using the relations of cloud-top temperature (T) versus re for the tops of convective clouds. The results show that particle effective radius was smaller near the cloud base of hailstorm. There was a deep zone of diffusional droplet growth at the low level where the particles grew slowly with height, and there existed an evident area of small ice particles in the cloud top, suggesting the existence of a strong updraft in the clouds. The low glaciated temperature indicated a great depth from the cloud base to the glaciation height, which provided a deep layer of supercooled water for hail growth.  相似文献   

18.
Based on monthly mean surface air temperature (SAT) from 71 stations in northern China and NCEP/ NCAR and NOAA-CIRES (Cooperative Institute for Research in Environmental Sciences) twentieth century reanalysis data, the dominant modes of winter SAT over northem China were explored. The results showed that there are two modes that account for a majority of the total variance over northern China. The first mode is unanimously colder (warmer) over the whole of northern China. The second mode is characterized by a dipole structure that is colder (warmer) over Northwest China (NWC) and warmer (colder) over Northeast China (NEC), accounting for a fairly large proportion of the total variance. The two components constituting the second mode, the individual variations of winter SAT over NWC and NEC and their respective preceding factors, were further investigated. It was found that the autumn SAT anomalies are closely linked to persistent snow cover anomalies over Eurasia, showing the delayed effects on winter climate over northern China. Specifically, the previous autumn SAT anomalies over the Lake Baikal (LB; 50-60°N, 85-120°E) and Mongolian Plateau (MP; 42-52°N, 80-120°E) regions play an important role in adjusting the variations of winter SAT over NWC and NEC, respectively. The previous autumn SAT anomaly over the MP region may exert an influence on the winter SAT over NEC through modulating the strength and location of the East Asian major trough. The previous autumn SAT over the LB region may modulate winter westerlies at the middle and high latitudes of Asia and accordingly affects the invasion of cold air and associated winter SAT over NWC.  相似文献   

19.
由国家气象局编定、气象出版社1993年6月出版的《农业气象观测规范》^[1]中没有明确规定水稻拔节(茎基部茎节开始生长,形成有显著茎杆的茎节为拔节)的观测方法,造成观测标准不统一^[2],农气人员在实际操作中惯常用手触摸水稻茎基部,通过手感觉水稻的第一个节是否形成以及拔节的高度,来判断水稻是否进入拔节期。  相似文献   

20.
Airborne measurements were collected during a stepwise ascent within a nimbostratus cloud associated with a cold vortex depression over the Jilin Province on 21 June 2005 to study cloud structure and ice particle spectra. The melting layer of the nimbostratus was clearly defined in the radar images. The microphysical structure of the nimbostratus was elucidated by a King liquid water probe and Particle Measuring Systems (PMS) probes aboard the research aircraft. The PMS 2-D images provided detailed information of ice crystal transformations. A thick layer of supercooled cloud was observed, and the high ice particle concentrations at temperatures ranging from -3℃ to -6℃ were consistent with Hallett-Mossop ice multiplication. The shape of ice crystals from near the cloud top to the melting layer were in the form of columns, needles, aggregations, and plates. In addition, significant horizontal variability was evident on the scale of few hundred meters. Particle spectra in this cloud were adequately described by exponential relationships. Relationship between the intercept (No) and slope (2) parameters of an exponential size distribution was well characterized by a power law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号