首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
利用陕西关中多站气象观测资料和颗粒物浓度监测资料,对2013年12月16—26日关中一次持续多日重霾污染天气过程的颗粒物污染特征及气象条件进行统计分析。结果表明,此次重霾污染事件主要是由细粒子PM_(2.5)造成。关中各站颗粒物浓度在污染过程中的变化具有区域同步性特征,各站PM_(2.5)浓度日均值的相关系数达0.71~0.96,且严重超标,区域最高小时浓度均值达508μg·m~(-3),污染非常严重。关中盆地特殊的喇叭口地形以及关中东部持续的强东风使得区域污染传输叠加本地污染循环累积,是17日关中各站PM_(2.5)浓度剧增的主要原因。污染严重阶段,西安和渭南持续的弱风和静风使得局地排放的污染物聚集,引起PM_(2.5)浓度振荡上扬;宝鸡21日PM_(2.5)浓度的爆发式增长则是由上游西安和渭南储备的高浓度PM_(2.5)在持续偏东风作用下远程传输所致;而铜川受山谷风影响,PM_(2.5)浓度具有显著日变化特征。长时间贴地、悬浮的多层逆温和低混合层高度的存在,抑制了污染物的垂直扩散,也造成低空水汽聚集在近地层,是PM_(2.5)浓度持续累积增长的重要原因。关中此次重霾污染的快速有效清除最终依赖于冷高压加强南下。  相似文献   

2.
通过对广州南沙2016年颗粒物PM_(10)和PM_(2.5)的质量浓度、能见度和气象要素等资料的分析,发现细颗粒物PM_(2.5)是影响能见度变化的重要因素。PM_(2.5)质量浓度和相对湿度(RH)增加,能见度下降,低能见度对应较高的相对湿度和较高PM_(2.5)质量浓度,高能见度的出现则对应较低的相对湿度和较低的PM_(2.5)质量浓度。随着相对湿度的增加,颗粒物质量浓度对能见度的影响越来越小,此时颗粒物对能见度的影响主要是通过吸湿作用,吸湿作用最为明显的是雾和霾的混合区间80%≤RH≤90%。PM_(2.5)质量浓度对能见度的影响随着RH的增加阈值减小,当相对湿度低于90%时,颗粒物质量浓度值减小时,能见度随相对湿度的增加反而降低,尤其是60%RH≤90%的区间,能见度下降明显。  相似文献   

3.
利用2014年本溪市大气颗粒物质量浓度监测资料和风速、气温、相对湿度、气压等常规地面气象要素观测资料,分析了本溪地区大气颗粒物质量浓度的月、季变化特征及其与气象要素的相关性。结果表明:2014年7月和10月本溪市大气颗粒物质量浓度较高,5月和9月大气颗粒物质量浓度较低,6月和11月大气颗粒物质量浓度比值较高。夏季PM10质量浓度较低,平均浓度为115.1μg·m~(-3);冬季PM_(2.5)和PM_(1.0)质量浓度较高,平均浓度分别为99.5μg·m~(-3)和86.1μg·m~(-3)。春季和冬季平均风速与大气颗粒物质量浓度的相关性最好,夏季和冬季相对湿度与大气颗粒物质量浓度的相关性最好。当ρ(PM_(2.5))≥200.0μg·m~(-3)时,ρ(PM_(2.5))与平均气温呈显著的正相关关系,相关系数为0.5288,ρ(PM_(2.5))与相对湿度的相关系数也高达0.6981,高温、高湿和小风等气象条件是本溪地区大气颗粒物高质量浓度事件发生的有利气象条件。  相似文献   

4.
为了解成都市PM_(2.5)污染特征及其与地面气象要素的关系,利用环境空气质量监测资料和地面气象观测资料,分析了PM_(2.5)质量浓度的季节、月和日变化特征,并分不同空气质量等级分析空气质量与地面气象要素的关系。结果表明:PM_(2.5)质量浓度具有明显的季节、月和日变化特征,且成都市区6个监测站的变化趋势比较一致;成都市相对湿度较大,地面风速较小,约62%的样本分布在相对湿度80%~100%,约85%的样本分布在地面风速0~2 m·s~(-1),地面风速对成都市PM_(2.5)的水平输送、扩散、稀释不利;降水对PM_(2.5)的清除量随PM_(2.5)初始浓度、降雨持续时间和累积降雨量增加而增大。  相似文献   

5.
O_3和PM_(2.5)是影响长三角地区空气质量的主要污染物。利用2016年33个城市大气环境监测站6项污染物的小时浓度及4个省会城市的气象数据进行统计分析,研究了该地区O_3和PM_(2.5)浓度的时空分布特征及其影响因素。结果表明:长三角地区O_3年平均浓度为50~73μg·m~(-3),平均为61μg·m~(-3);除芜湖和宣城外,其余31城市均存在不同程度的超标状况,超标率为0.34%~18.86%,平均为5.68%。O_3在5月和9月达到浓度高值;四季O_3日变化均呈单峰型,峰值出现在15∶00,夏季O_3峰值浓度最高值为157μg·m~(-3)。O_3浓度沿海城市整体高于内陆城市;夏季宿迁—淮安—滁州片区O_3污染较重。O_3与NO_2、CO显著负相关,且与NO_2相关性较强;O_3与气温、日照时数显著正相关,与相对湿度、降水呈负相关。PM_(2.5)年平均浓度在25~62μg·m~(-3)范围内,平均为49μg·m~(-3);各城市均出现PM_(2.5)超标,滁州PM_(2.5)超标率最大,为23.91%。PM_(2.5)在3月和12、1月达到浓度峰值;其日变化呈双峰型,09∶00—10∶00和22∶00—23∶00达到峰值。冬季徐州PM_(2.5)浓度最高,为102μg·m~(-3)。PM_(2.5)与NO_2、CO、SO_2、PM_(10)显著正相关,与气温、风速、降水负相关。  相似文献   

6.
利用2014—2016年宁波市镇海地区逐时气象观测资料和大气成分监测资料,对宁波地区霾天气的变化特征进行统计分析。结果表明:2014—2016年宁波地区霾天气小时出现频率为28.8%,湿霾出现频率为61.0%。近3 a宁波地区霾天气小时出现频率呈下降趋势,秋冬季(11月至翌年1月)霾天气小时出现频率较高,夏季(6—8月)霾天气小时出现频率较低;从日变化来看,霾天气小时出现频率峰值集中出现在上午09时和夜间20—23时。宁波地区重度霾的PM_(2.5)、PM_(10)颗粒物浓度为轻微霾的2.13倍和1.92倍,干霾颗粒物浓度高于湿霾,宁波地区霾天气的颗粒物组成较稳定,PM_(2.5)/PM_(10)比重为0.7左右。宁波地区颗粒物浓度与风速和降水量的相关性较好,春季和夏季风速与PM_(2.5)浓度的相关性较高,秋季和冬季风速与PM_(10)浓度的相关性较高;降水与PM_(10)浓度的相关性高于PM_(2.5)浓度。静稳天气时地面风速小易造成细颗粒物浓度的积累增长,冬季西北偏北风和东北风是影响宁波地区PM_(2.5)浓度变化的重要输送路径,当风向为西北风时,冬季和春季PM_(10)浓度增加明显。  相似文献   

7.
本文利用2014年全年北京市12个空气质量监测站的逐小时PM_(2.5)地面观测资料,以及Terra卫星和Aqua卫星的MODIS 3 km气溶胶光学厚度(AOD)产品,分析了地面PM_(2.5)和两颗卫星AOD的时空分布特征,并在时空匹配的基础上,建立了AOD与PM_(2.5)浓度之间的回归模型。结果表明:PM_(2.5)浓度在城区高、郊区低,最低值位于定陵站,城区站和郊区站的逐时PM_(2.5)浓度的日变化分别呈"双峰型"和"单峰型";两颗卫星AOD数值也均是城区高、郊区低,沿山区的边界有明显的AOD梯度,且城区上午Terra卫星的AOD高于下午Aqua卫星的AOD,而郊区上、下午的AOD基本相同;Aqua卫星AOD与PM_(2.5)的确定系数(R2)较Terra卫星AOD与PM_(2.5)的确定系数平均高0.11,且城区站点两颗卫星AOD与PM_(2.5)相关性均较郊区站点AOD与PM_(2.5)相关性偏高;综合来看,Aqua卫星的AOD与城区的PM_(2.5)相关系数最高,即Aqua卫星的AOD更适于监测和反演城区地面的PM_(2.5)。  相似文献   

8.
利用2014年1月1日—2016年12月31日荆州城区逐日空气质量数据和同期地面气象要素逐日观测资料,分析了荆州城区空气质量状况、变化特征及其与气象要素的相关性。结果表明,荆州城区优良日数偏少,但2014—2016年荆州城区空气质量略有改善,首要污染物为PM_(2.5);AQI和PM_(10)、PM_(2.5)、SO_2、NO_2、CO的月变化规律一致,呈V型分布,冬季空气污染最严重,夏季空气污染相对较轻,O_3的变化规律则相反,呈反V型分布;除O_3外,AQI和其他污染物浓度与前一日AQI、气压呈正相关关系,与气温、水汽压、湿度、云量、降水、风速呈负相关关系,据此建立了AQI和各污染物浓度的回归预报方程;进一步分析了2014年1月严重污染天气的成因,本地污染物的分布、外地污染物的输入和气象扩散条件是影响空气质量的主要因素。  相似文献   

9.
利用浙江宁波7个县(市)区的能见度、雾、霾、风速、相对湿度等气象资料和细颗粒物PM_(2.5)浓度数据,运用统计分析、后向轨迹模拟及聚类分析等方法研究了宁波地区能见度的时空分布特征及其影响因素。结果表明:1980—2013年,宁波地区能见度总体呈由西北到东南逐渐转好的空间分布特征,且中南部呈逐年下降态势,而北部则呈上升趋势,这与风速和相对湿度减少有关,但不同区域其主要影响因子存在差异。能见度和PM_(2.5)浓度均有明显的季节和日变化特征,且二者呈明显反位相,相关系数为-0.532,其中冬季PM_(2.5)浓度最高,能见度最低,夏季反之;13:00—17:00为PM_(2.5)浓度谷值、能见度峰值,01:00—08:00为PM_(2.5)浓度峰值、能见度谷值。气团输送轨迹分析表明,宁波地区共有来自5个方位的6类轨迹气团,其中西北方向的轨迹4对该区PM_(2.5)浓度影响最大,偏东方向的轨迹6对PM_(2.5)浓度影响最小,能见度最好,而对能见度影响最大的是来自西北方向的轨迹2和偏西方向的轨迹3。  相似文献   

10.
利用2013—2014年银川地区大气颗粒物质量浓度和同期气象要素的观测资料,分析了银川地区大气颗粒物浓度的分布特征及其与气象条件的关系。结果表明:2013—2014年银川地区PM_(10)、PM_(2.5)、PM1年平均浓度分别为167.3μg·m-3、67.2μg·m-3和45.0μg·m-3,年平均PM_(2.5)/PM_(10)、PM1/PM_(10)、PM1/PM_(2.5)分别为45.0%、32.0%和65.0%;PM_(10)浓度3月最高,8月最低,PM_(2.5)和PM1最高浓度均出现在1月,PM_(2.5)最低浓度出现在8月,PM1最低浓度出现5月;3—5月为PM_(2.5)/PM_(10)、PM1/PM_(10)和PM1/PM_(2.5)最低的3个月。不同天气类型PM_(10)浓度由高至低依次为浮尘/扬沙典型天气平均霾晴天雾,不同天气类型PM_(2.5)浓度由高至低依次为扬沙/浮尘霾典型天气平均晴天雾,不同天气类型PM1浓度由高至低依次为霾典型天气平均雾晴天浮尘/扬沙。风速与PM_(10)浓度呈正相关关系,风速与PM_(2.5)和PM1浓度均呈负相关关系;PM_(10)浓度在偏西北风时较高,PM_(2.5)和PM1浓度在偏西南风与偏东北风时较高;气温与PM_(10)、PM_(2.5)、PM1浓度均呈显著的负相关关系;相对湿度与PM_(10)浓度呈显著的负相关关系,相对湿度与PM1浓度呈显著的正相关关系,相对湿度与PM_(2.5)相关性较弱;气压对PM_(10)浓度变化的影响较小,气压与PM_(2.5)、PM1浓度呈正相关关系;降水对PM_(10)的清除作用最强,对PM_(2.5)的清除作用次之,对PM1基本无清除作用。  相似文献   

11.
不同降水强度对PM2.5的清除作用及影响因素   总被引:1,自引:0,他引:1       下载免费PDF全文
云和降水过程是大气污染物的重要清除途径,但由于降水过程和大气污染颗粒物本身的复杂性,目前降水过程对大气污染物的清除机制及影响因素有待深入研究。该文利用2014年3月—2016年7月在北京地区连续观测的PM2.5和降水数据,研究了不同降水强度对PM2.5的清除率,以及雨滴谱、风速和降水持续时间对PM2.5清除率的影响。研究表明:降水强度越大,对PM2.5清除效率越高。小雨、中雨和大雨对PM2.5清除率平均值分别为5.1%,38.5%和50.6%。小雨不但对PM2.5的清除率最低,而且对PM2.5的清除效果也存在很大差异,约50%的小雨个例中PM2.5质量浓度出现减小情况,而另外50%的小雨个例中,PM2.5质量浓度出现增加情况。在持续时间长或地面风速增大的情况下,小雨也表现出较高的清除率。在中雨和大雨情况下,PM2.5质量浓度均出现明显减小情况。但降水持续时间和风速对中雨和大雨的清除率影响较小,这是由于中雨和大雨一般在较短时间内即可清除大部分PM2.5,因此,对降水的持续时间和风速大小不敏感。  相似文献   

12.
We present mobile vehicle lidar observations in Tianjin, China during the spring, summer, and winter of 2016. Mobile observations were carried out along the city border road of Tianjin to obtain the vertical distribution characteristics of PM2.5. Hygroscopic growth was not considered since relative humidity was less than 60% during the observation experiments. PM2.5 profile was obtained with the linear regression equation between the particle extinction coefficient and PM2.5 mass concentration. In spring, the vertical distribution of PM2.5 exhibited a hierarchical structure. In addition to a layer of particles that gathered near the ground, a portion of particles floated at 0.6–2.5-km height. In summer and winter, the fine particles basically gathered below 1 km near the ground. In spring and summer, the concentration of fine particles in the south was higher than that in the north because of the influence of south wind. In winter, the distribution of fine particles was opposite to that measured during spring and summer. High concentrations of PM2.5 were observed in the rural areas of North Tianjin with a maximum of 350 μg m–3 on 13 December 2016. It is shown that industrial and ship emissions in spring and summer and coal combustion in winter were the major sources of fine particles that polluted Tianjin. The results provide insights into the mechanisms of haze formation and the effects of meteorological conditions during haze–fog pollution episodes in the Tianjin area.  相似文献   

13.
Urbanization has a substantial effect on urban meteorology. It can alter the atmospheric diffusion capability in urban areas and therefore affect pollutant concentrations. To study the effects of Hangzhou’s urban development in most recent decade on its urban meteorological characteristics and pollutant diffusion, 90 weather cases were simulated, covering 9 weather types, with the Nanjing University City Air Quality Prediction System and high-resolution surface-type data and urban construction data for 2000 and 2010. The results show that the most recent decade of urban development in Hangzhou substantially affected its urban meteorology. Specifically, the average urban wind speed decreased by 1.1 m s ?1; the average intensity of the heat island increased by 0.5°C; and the average urban relative humidity decreased by 9.7%. Based on one case for each of the nine weather types, the impact of urbanization on air pollution diffusion was investigated, revealing that the changes in the meteorological environment decreased the urban atmosphere’s diffusion capability, and therefore increased urban pollutant concentrations. For instance, the urban nitrogen oxides concentration increased by 2.1 μg m ?3 on average; the fine particulate matter (diameter of 2.5 μm or less; PM2.5) pollution concentration increased by 2.3 μg m ?3 on average; in highly urbanized areas, the PM2.5 concentration increased by 30 μg m ?3 and average visibility decreased by 0.2 km, with a maximum decrease of 1 km; the average number of daily hours of haze increased by 0.46 h; and the haze height lifted by 100–300 m. The “self-cleaning time” of pollutants increased by an average of 1.5 h.  相似文献   

14.
北京大气能见度的主要影响因子   总被引:4,自引:3,他引:1       下载免费PDF全文
利用北京市道面自动气象站、国家级自动气象站等多种观测数据分析北京地区2007—2015年能见度及其主要影响因子, 并挑选两次典型低能见度事件过程进行详细分析。从空间分布看, 北京西北地区能见度明显高于中心城区和东南大部地区。从时间分布看, 北京地区平均能见度最大值出现在5月, 最小值出现在7月; 日间的最低值多出现在06:00(北京时, 下同)左右, 冬季略向后推迟; 最高值多出现在16:00前后, 冬季略有提前。整体而言, 2007—2015年北京地区发生低能见度事件的概率为62.14%, 且发生低能见度的事件集中于1~5 km, 霾事件中干霾、湿霾的发生频率分别为86.13%和13.87%。能见度的主要影响因子为相对湿度、风速和PM2.5浓度。其中, 能见度与风速呈正相关, 与相对湿度和PM2.5浓度呈反相关。需要指出的是, 当相对湿度增加至80%, 能见度受PM2.5浓度的影响程度在下降, 而主要受相对湿度的影响。基于所选个例, 当北京地区出现湿霾事件时, 能见度的恶化程度远高于干霾事件, 且PM2.5浓度需比干霾事件时下降得更低才能有效改善能见度。  相似文献   

15.
北京一次持续性雾霾过程的阶段性特征及影响因子分析   总被引:11,自引:1,他引:10  
利用北京地区高时间分辨率观测资料对2009年11月3—8日一次持续性雾霾天气过程中的气象因素和气溶胶演变特征进行了分析。结果表明,该次雾霾过程具有明显的阶段性特征,前期以霾为主,中期发展为雾霾交替,后期随着相对湿度减小再次转换为霾并最终消散。边界层逆温是低能见度过程形成的必要条件,但并不最终决定雾霾低能见度强度。相对湿度和PM2.5浓度是决定能见度大小的两个关键影响因子,对能见度的影响体现出阶段性特征。大部分时段PM2.5浓度是影响能见度的主要因子,当能见度小于1 km时,能见度变化更多受相对湿度影响。不同的情景计算表明,控制PM2.5浓度对于改善本次过程的能见度有重要作用。  相似文献   

16.
依据一种基于建筑用地比例和土地利用信息熵的城乡站点划分方法,将西安市环境与气象站点划分为城区、郊区和两类乡村站,讨论其PM2.5的城乡分布特征及与城市热岛效应强度(Urban Heat Island Intensity,UHII)间的相关关系。结果表明,不同季节西安市呈现不同的PM2.5城乡分布特征和日变化特征,两类乡村站点PM2.5差异明显且下风向乡村站点(乡村D)对应的UHIID对城区和乡村的影响程度大于上风向乡村站点(乡村U)对应的UHIIU。在城区较多本地排放的影响下,乡村PM2.5浓度与 UHIIU(或UHIID)相关系数均大于城区。随着UHIID的增加,城乡PM2.5相对浓度差值(RUPIID)整体呈下降趋势且UHIID与RUPIID在春夏秋季显著负相关。UHIID增大,城区近地面PM2.5的水平扩散能力减弱,但PM2.5的垂直扩散能力较乡村更强,从而UHIID通过影响PM2.5的传输扩散特征,进一步影响西安市RUPIID。  相似文献   

17.
Based on observations of urban mass concentration of fine particulate matter smaller than 2.5 μm in diameter (PM2.5), ground meteorological data, vertical measurements of winds, temperature, and relative humidity (RH), and ECMWF reanalysis data, the major changes in the vertical structures of meteorological factors in the boundary layer (BL) during the heavy aerosol pollution episodes (HPEs) that occurred in winter 2016 in the urban Beijing area were analyzed. The HPEs are divided into two stages: the transport of pollutants under prevailing southerly winds, known as the transport stage (TS), and the PM2.5 explosive growth and pollution accumulation period characterized by a temperature inversion with low winds and high RH in the lower BL, known as the cumulative stage (CS). During the TS, a surface high lies south of Beijing, and pollutants are transported northwards. During the CS, a stable BL forms and is characterized by weak winds, temperature inversion, and moisture accumulation. Stable atmospheric stratification featured with light/calm winds and accumulated moisture (RH > 80%) below 250 m at the beginning of the CS is closely associated with the inversion, which is strengthened by the considerable decrease in near-surface air temperature due to the interaction between aerosols and radiation after the aerosol pollution occurs. A significant increase in the PLAM (Parameter Linking Aerosol Pollution and Meteorological Elements) index is found, which is linearly related to PM mass change. During the first 10 h of the CS, the more stable BL contributes approximately 84% of the explosive growth of PM2.5 mass. Additional accumulated near-surface moisture caused by the ground temperature decrease, weak turbulent diffusion, low BL height, and inhibited vertical mixing of water vapor is conducive to the secondary aerosol formation through chemical reactions, including liquid phase and heterogeneous reactions, which further increases the PM2.5 concentration levels. The contribution of these reaction mechanisms to the explosive growth of PM2.5 mass during the early CS and subsequent pollution accumulation requires further investigation.  相似文献   

18.
通过分析2001—2012年上海市PM_(10)浓度(由API(Air Pollution Index)转化得到)的变化规律,构建了上海市PM_(10)浓度的遥感反演模型。结果表明:1)上海市PM_(10)浓度存在季节性变化,应分别建立遥感反演模型。2)分析MODIS气溶胶光学厚度(Aerosol Optical Depth,AOD)产品与PM_(10)浓度之间的相关性发现,AOD须经过垂直和湿度订正才可与PM_(10)建立较好的关系。3)结合垂直和湿度订正分别建立的上海市PM_(10)浓度春夏秋冬四季的遥感反演模型均通过了拟合度检验,其中春季模型采用指数函数、夏季和秋季模型采用二次多项式函数、冬季采用幂函数、全年采用二次多项式函数,利用此四季模型反演上海市PM_(10)浓度具有较高的可信度。  相似文献   

19.
Spokane, WA is prone to frequent particulate pollution episodes due to dust storms, biomass burning, and periods of stagnant meteorological conditions. Spokane is the location of a long-term study examining the association between health effects and chemical or physical constituents of particulate pollution. Positive matrix factorization (PMF) was used to deduce the sources of PM2.5 (particulate matter ≤2.5 μm in aerodynamic diameter) at a residential site in Spokane from 1995 through 1997. A total of 16 elements in 945 daily PM2.5 samples were measured. The PMF results indicated that seven sources independently contribute to the observed PM2.5 mass: vegetative burning (44%), sulfate aerosol (19%), motor vehicle (11%), nitrate aerosol (9%), airborne soil (9%), chlorine-rich source (6%) and metal processing (3%). Conditional probability functions were computed using surface wind data and the PMF deduced mass contributions from each source and were used to identify local point sources. Concurrently measured carbon monoxide and nitrogen oxides were correlated with the PM2.5 from both motor vehicles and vegetative burning.  相似文献   

20.
The concentrations of air pollutants depend on meteorological conditions and pollutant emission level. From the statistical properties of air pollutants the number of times the daily average concentrations exceed the assigned air quality standard (AQS) can be estimated, as well as the level of reduction of particle matter emission sources required to meet the AQS. In this paper three statistical distributions (lognormal, Weibull and type V Pearson distribution) were used to fit the complete set of PM10 data for the Belgrade urban area during a three-year period (2003–2005). The method of moments and the method of least squares were both used to estimate the parameters of the three theoretical distributions. The type V Pearson distribution represented the PM10 daily average concentration most closely. However, the parent distributions sometimes diverged in predicting a high PM10 concentration and therefore asymptotic distributions of extreme values were used to fit the high PM10 concentration distribution more correctly. This method can successfully predict the return period and exceedances over a critical concentration in succeeding years. The estimated emission source reduction of PM10 to meet the assigned standard varied from 53% to 63% in the Belgrade urban area. The results provide useful information for air quality management and could be used to examine the similarities and differences among air pollution types in diverse areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号