首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
中国气候变化的检测及预估   总被引:44,自引:4,他引:44  
对近5a来中国科学家在气候变化的检测及预估等方面的研究工作及主要成果进行了总结:采用最新的器测时期资料和代用温度资料对中国地区近50a、100a的温度和降水变化规律进行再分析,初步重建了中国过去1000a的地表温度序列;对20世纪中国气候变化进行了检测,分析了中国气候变化的原因;预估了中国21世纪气候变化。结果表明:近百年中国气候变化的主要特征与全球气候变化的趋势一致。中国近百年增暖的幅度为0.5~0.8℃,比全球同期增温略高。近50a中国平均气温升高以北方为主,升温速率达0.8℃/10a,远大于北半球平均的升温速率。中国雨型的年代际变化明显,西北西部从20世纪80年代中降水明显增多,以新疆最为显著。中国东部则由70年代末以前的北涝南旱型转为以后的南涝北旱型。气候变暖后,中国的极端天气和气候事件的发生频率和强度也出现了变化。  相似文献   

2.
祁连山区的气候变化   总被引:23,自引:4,他引:23  
通过对近500年来不同资料的对比分析,发现祁连山区气候变化的位相比我国东部地区要超前,平均超前15年。从近50年的气象资料也证实了此种“位相超前”现象。同时还发现山区不同部位的气候变化並非趋势一致,如东段和西段的降水年际变化往往反向;60年代在大范围降温的背景上,流向朝东的河流中游一段反而升温。70年代气候变化的基本特征,可从高高原夏季风在高原东北侧的增强而得到解释。山内部夏季降水和温度的变率均比山外明显偏小,而环绕山区外围一带的变率比其更外面的平地还要大。这一现象可从直接影响山区气候的高原季风垂直环流圈具有年际变化而得到解释:在干、暖年份,高原季风环流图增强;湿冷年份反之。  相似文献   

3.
《气象科技》1976,(8):3-3
南京大学地理系编印的《地理科技资料》1975年第2期包浩生总结。文内从海温、海冰、冰川、雪线与积雪等方面分析近百年气温的变化、近百年降水的变化和近百年气候变化与大气环流的关系。认为我国气候从二十世纪初期开始不断增暖,四十年代前半时期气温增高到顶点,最暖五年平均温度超过气象记录年代平均值0.5—1.0℃;随后气温迅速下降,六十年代以后下降速度变缓,1963—65年还出现有短期回升现  相似文献   

4.
近50年青藏高原东部降水的时空变化特征   总被引:2,自引:0,他引:2  
选用1967~2012年青藏高原东部60个站点的降水资料,分析了该地区降水的时空演变特征,结果表明:高原东部降水呈由东南向西北递减的态势,高值区位于西藏东部和川西高原,低值区位于柴达木盆地;降水场可以划分为八个小区,分别是西藏东部和川西高原西部区、藏南谷地区、青南高原区、柴达木盆地区、藏北高原区、川西高原北部区、青藏高原东南缘区以及青海东北部区。年降水表现出强增加趋势,20世纪60年代后期到90年代后期相对偏少,20世纪末以来相对偏多;除川西高原北部区外,其余各区不同程度的表现出增加趋势。春季降水表现出“偏少~偏多”的年代际变化特征,在1995年附近发生由少到多的突变,20世纪60年代后期到90年代中期相对偏少,90年代后期以来相对偏多;八个分区均不同程度的表现出增加趋势。夏季降水呈增加趋势,20世纪60年代后期到90年代后期相对偏少,20世纪末以来相对偏多;八个分区均不同程度的表现出增加趋势。秋季降水的线性趋势趋近于零且没有表现出年代际变化特征;除川西高原北部区呈减少趋势外,各区均不同程度的表现出增加趋势。冬季降水表现出“偏少~偏多~偏少”的年代际变化特征,分别在1986和1996年附近发生由少到多和由多到少的突变,20世纪60年代后期到80年代中期相对偏少,80年代后期到90年代中期相对偏多,90年代后期以来相对偏少;除西藏东部和川西高原西部区及青海东北部区外,各区均不同程度的表现出“偏少~偏多~偏少”的年代际变化特征。   相似文献   

5.
本世纪青藏高原气候的三次突变及与天文因素的相关   总被引:39,自引:9,他引:30  
汤懋苍  白重瑗 《高原气象》1998,17(3):250-257
用给出了的划分气候阶段的标准对本世纪高原的气温,降水和季风的阶段性变化进行了分析,发现本世纪高原气候在20年代初,50-60年代和80年代初发生了三次突变,与北半球的气候变化一致。高原气温突长数年后我国和北半球温度突升,接着高原季节增强,高原“季风多雨区”变温,“季风少雨区”变干,反之则相反,进一步分析表明,地球自转速度和太阳黑子周期长度的变化对高原及北半球本世纪气候的突变和阶段性变化起着重要的作  相似文献   

6.
近50年青藏高原东部降水的时空变化特征   总被引:1,自引:0,他引:1  
胡豪然  梁玲 《四川气象》2013,(4):1-7,15
选用1967~2012年青藏高原东部60个站点的降水资料,分析了该地区降水的时空演变特征,结果表明:高原东部降水呈由东南向西北递减的态势,高值区位于西藏东部和川西高原,低值区位于柴达木盆地;降水场可以划分为八个小区,分别是西藏东部和川西高原西部区、藏南谷地区、青南高原区、柴达木盆地区、藏北高原区、川西高原北部区、青藏高原东南缘区以及青海东北部区.年降水表现出强增加趋势,20世纪60年代后期到90年代后期相对偏少,20世纪末以来相对偏多;除川西高原北部区外,其余各区不同程度的表现出增加趋势.春季降水表现出“偏少~偏多”的年代际变化特征,在1995年附近发生由少到多的突变,20世纪60年代后期到90年代中期相对偏少,90年代后期以来相对偏多;八个分区均不同程度的表现出增加趋势.夏季降水呈增加趋势,20世纪60年代后期到90年代后期相对偏少,20世纪末以来相对偏多;八个分区均不同程度的表现出增加趋势.秋季降水的线性趋势趋近于零且没有表现出年代际变化特征;除川西高原北部区呈减少趋势外,各区均不同程度的表现出增加趋势.冬季降水表现出“偏少~偏多~偏少”的年代际变化特征,分别在1986和1996年附近发生由少到多和由多到少的突变,20世纪60年代后期到80年代中期相对偏少,80年代后期到90年代中期相对偏多,90年代后期以来相对偏少;除西藏东部和川西高原西部区及青海东北部区外,各区均不同程度的表现出“偏少~偏多~偏少”的年代际变化特征.  相似文献   

7.
西北地区夏季降水异常的时空特征分析   总被引:11,自引:5,他引:11       下载免费PDF全文
王秀荣  庞昕等 《气象科学》2002,22(4):402-409
本文使用西北地区95个测站,时间序列为1960-2000年共41年的加密测站资料,运用旋转经验正交函数分解(REOF)以及功率谱分析等方法,对西北地区夏季降水的时空特征及其演变规律进行了诊断分析,结果表明:西北地区夏季降水区域性较强,存在多时空尺度特征,且平均具有准3年和4.8年的周期变化。将西北地区夏季水异常区域划分为4个区后可见,北疆地区夏季降水的周期振荡最接近平均状况,南疆降水异常区次之,相比之下青海异常降水区解释方差最小,同时发现,在近41年来,西北地区夏季降水的平均状况是80年代以前多数年份降水偏少,干旱性强,80年代以后整个西北地区夏季降水则有增多的趋势;分区分析后表现为:北疆区和南疆区从80年代后期开始降水增多,内蒙古西部地区90年代以后降水增多,而东北高原区夏季除70年代到80年代中期降水偏多外,其前和其后降水都偏少。  相似文献   

8.
华北地区未来30年气候变化趋势模拟研究   总被引:6,自引:0,他引:6       下载免费PDF全文
利用中国科学院大气物理研究所LASG研发的全球海洋-大气-陆面系统模式(GOALS 4.0),引入了大气中真实的温室气体浓度变化,对华北地区的气候变化进行了模拟研究。为了检验GOALS 4.0模式对于未来30年华北地区气候变化趋势模拟结果的可信度,分析评估了GOALS 4.0模式对当代气候变化的模拟能力。模拟结果基本再现了20世纪60—70年代末的全球和北半球温度偏低以及80年代开始的增温现象,也较好地模拟了华北地区近50年来的两个重要气候冷(1950—1976年)、暖(1977—2000年)时期,模拟结果与实际观测相关为0.34(达到了0.05信度),华北地区的冬季温度变化幅度介于中国大陆东、西部之间。模式对华北地区夏季降水在20世纪80年代前后经历的丰枯时期转变模拟也比较理想。在此基础上,根据IPCC提供的大气温室气体未来排放情景,进一步模拟预估了华北地区未来30年的气候变化趋势。结果发现,在未来的30年中,中国大陆冬季温度将会呈现出不断上升趋势,华北是中国大陆增温最显著、增温幅度最大的地区,到2030年华北地区冬季的增温幅度相对多年平均(1961—1990年)上升2.5℃左右。未来30年的夏季,由于华北地区处于明显的水汽辐合区,偏南气流较强,大气中的可降水量增加,使得中国大陆的降水格局也会发生相应变化,呈现出南少北多的分布型态,华北地区夏季降水会明显增多,南方地区降水则有所减少。  相似文献   

9.
中国近百年温度序列   总被引:173,自引:4,他引:173       下载免费PDF全文
我们收集了711个站近3×105个数据的温度记录,将全国分成10个区,先计算出每个区的平均温度序列,最后得到近百年的全国温度序列。进而,讨论了全国温度序列的气候变化,结果指出中国近百年温度变化与北半球的变化很相似,都有两个增暖时段即40年代和80年代的增温。北半球平均温度80年代要比40年代高,而中国平均温度80年代要比40年代低。  相似文献   

10.
基于青藏高原低涡和切变线(简称高原低值系统)年鉴、国家气象站地面观测资料及ERA-Interim再分析资料,分析了高原低值系统多、少发年夏季高原地气温差变化的差异及其对我国降水的影响。结果表明:(1)高原夏季地气温差对高原低值系统的发生和移动有明显的影响。在低值系统频发区,多发年的地气温差明显比少发年高。(2)我国西部的青藏高原中部、东北部及西南地区在多发年降水偏多,高原南部和东南部则在少发年降水偏多;我国东部地区,多、少发年降水差异自南至北呈“+”、“?”、“+”、“?”、“+”的差值带分布特征,即华南、江淮流域、华北和东北地区降水在多发年偏多,江南地区和黄淮流域降水则在少发年偏多。(3)高原低值系统多、少发年夏季对流层的环流系统及相应垂直速度、水汽输送变化有明显差异,并影响青藏高原和我国降水的变化。在高原地区,多、少发年之间环流的差异是受高原东部和南部的气流辐合(辐散)场、相应的垂直运动差值上升(下沉)、水汽输送辐合(辐散)区域变化的影响;在东部地区,则是受南海到华南、长江流域、华北到东北为气旋(反气旋)环流系统及其间辐合(辐散)带变化的影响。   相似文献   

11.
Summary Monthly means of air temperature and monthly precipitation data were analyzed for 13 stations in the west part of the arid region of China in recent 43 years (1951–1993). It was obvious that air temperature was increasing in winter, but decreasing or has no trend in summer. However, precipitation in summer has increased 5 to 100 percent since 1977. Therefore, the climate seems becoming better in the west part of arid region of China. Some detailed analysis on the characteristics of rain and on the relationship between rain in basins and discharge in the upper reach of rivers in mountains were carried out. It was suggested that increasing of rainfall mainly occurred in the basins and the change in climate was caused mainly by both the global change and local environment change, such as the expansion of oases.With 9 Figures  相似文献   

12.
近42年西藏高原雅鲁藏布江中游夏季气候趋势和突变分析   总被引:32,自引:10,他引:32  
周顺武  假拉  杜军 《高原气象》2001,20(1):71-75
根据1957-1998年雅鲁藏布江中游拉萨、日喀则、泽当、江孜4个站6-8月的平均气温、降水资料,通过线性趋势估计和多项式函数拟合等方法分析了雅鲁藏布江中游地区夏季气候长期趋势变化和周期变化,并利用滑动T检验等方法讨论了突变的问题。结果表明:在过去42a里,该流域夏季气温有明显的上升趋势,1980年突变增暖非常明显;而夏季降水呈下降趋势,60年代中后期至80年代末降水普遍偏少,90年代降水出现回升势头。气温、降水的主要周期集中在高频波段,显著周期为2.8-3.5a。  相似文献   

13.
近50年中国干湿气候界线波动及其成因初探   总被引:24,自引:2,他引:24  
文中在 10a际尺度上详细分析了中国干湿气候界线波动与气候的干湿变化 ,得出 :过去 5 0a中国干湿气候界线波动显著 ,区域差异大 ,呈现出整体移动和东西、南北相异波动的特征。 2 0世纪 6 0~ 70年代中国干湿气候存在一次突变 ,由较湿润变为干旱 ,但各地干旱程度不同。干湿气候界线波动与气候的干湿变化具有显著的年代际特征。在此基础上分析了气候界线波动的可能原因 ,中国干湿气候界线的波动与气候的干湿变化是西太平洋副热带高压强度位置导致的东南季风、孟加拉湾暖流所导致的西南季风以及高原季风、中纬度西风环流等综合作用的结果。中国各地区干湿位相变化不一致 ,区域差异大 ,是不同环流以及环流的不同强弱组合所致。东南季风、西南季风、高原季风、中纬度西风环流、西太平洋副热带高压的年代际变化是过去 5 0a中国干湿气候界线波动与气候干湿变化年代际变化的根本原因。 2 0世纪 6 0~ 70年代的干湿突变 ,是整个北半球大气环流异常的结果  相似文献   

14.
Regional climate model (RegCM3) was applied to explore the possible effects of land use changes (e.g., grassland degradation in this study) on local and regional climate over the Sanjiangyuan region in the Qinghai-Tibet Plateau. Two multiyear (1991-1999) numerical simulation experiments were conducted: one was a control experiment with current land use and the other was a desertification experiment with potential grassland degradation. Preliminary analysis indicated that RegCM3 is appropriate for simulating land- climate interactions, as the patterns of the simulated surface air temperature, the summer precipitation, and the geopotential height fields are consistent with the observed values. The desertification over the Sanjiangyuan region will cause different climate effects in different regions depending on the surrounding environment and climate characteristics. The area with obvious change in surface air temperature inducing by grassland degradation over the Sanjiangyuan region is located in the Qinghai-Tibet Plateau. A winter surface air temperature drop and the other seasons' surface air temperature increase will be observed over the Qinghai-Tibet Plateau based on two numerical simulation experiments. Surface air temperature changes in spring are the largest (0.46℃), and in winter are the smallest (smaller than 0.03℃), indicating an increasing mean annual surface air temperature over the Qinghai-Tibet Plateau. Surface air temperature changes will be smaller and more complex over the surrounding region, with minor winter changes for the regions just outside the plateau and notable summer changes over the north of the Yangtze River. The reinforced summer heat source in the plateau will lead to an intensification of heat low, causing the West Pacific subtropical high to retreat eastward. This will be followed by a decrease of precipitation in summer. The plateau's climate tends to become warm and dry due to the grassland degradation over the Sanjiangyuan region.  相似文献   

15.
中国黄土高原区域性暴雨时空变化及碎形特征   总被引:1,自引:3,他引:1  
王毅荣  林纾  张存杰 《高原气象》2007,26(2):373-379
利用黄土高原51个测站40年日降水资料,采用REOF分析、小波分析和分维分析等方法,研究了该地区区域性暴雨的时空特征。结果表明:黄土高原区域性暴雨事件趋于减少,过程雨量加大;区域性暴雨频数演变存在4年和7~8年的振荡,以4年周期为主;在1977年区域性暴雨事件出现突变性减少,相应的短周期减弱、长周期加强。分析表明,区域性暴雨事件骤减与500 hPa高度、副热带高压和青藏高压位置关系密切;与区域性暴雨事件伴随的全区降水量存在6个空间型,各型暴雨雨量异常具有客观碎形(分形)特点,其中黄土高原西北部和东南部暴雨雨量异常偏多的分维数值较小,在黄土高原中部分维数值较大,反映出黄土高原中部暴雨异常偏多的非线性机制最为复杂,而西北部和东南部地区相对简单。  相似文献   

16.
利用1961~1998年青藏高原123个气象台站常规地面观测资料,对近40年青藏高原地区的气候年代际变化特征进行分析。分析结果表明:20世纪80年代中后期青藏高原经历了一次气温、降水量、相对湿度显著增加的气候突变。以突变点为界,可以划分为两个时期,即从20世纪60年代初到80年代中后期,青藏高原为相对暖干时期,从20世纪80年代后期开始,青藏高原进入相对暖湿时期。由此,从气温、降水量、相对湿度的变化特征和突变理论上可以初步判断,20世纪80年代中后期青藏高原气候年代际变化实现了由暖干型向暖湿型的突变。青藏高原气温和降水突变早于相对湿度突变;青藏高原的增温、增湿现象主要发生在冬季;春季亦增温、增湿,但增幅小于冬季;夏季出现增温和略减湿现象;秋季为明显增温,但湿度无明显变化。  相似文献   

17.
青藏高原区域气候变化及其差异性研究   总被引:31,自引:0,他引:31       下载免费PDF全文
利用1961—2007年青藏高原66个气象台站气温和降水量资料,通过典型气候分区,系统研究了近47年来青藏高原气温、降水量等气候因子时空演变规律,揭示了青藏高原不同区域气候变化的差异性。研究表明:近47年来,青藏高原的气候呈现出显著增暖趋势,年平均气温以0.37℃/10a的速率上升,气候变暖在夜间要较日间明显。冬季较其他季节明显,2月气温由冷向暖的转变最为显著,8月最不显著,且在某些区域有变冷迹象;高原边缘地区气候变暖要明显于高原腹地,青海北部区特别是柴达木盆地是青藏高原气候变化的敏感区。降水量总体表现出增多态势,气候倾向率达9.1mm/10a,但区域性差异较为明显,藏东南川西区是青藏高原降水量增多最显著的地区;12月至次年5月即冬春季整个青藏高原降水量随着气候变暖而增多,7月和9月黄河上游区1987年后干旱化趋势明显。  相似文献   

18.
The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly affects the local land ecosystem and could consequently lead to notable vegetation changes. In this paper, the interannual variations of the plateau vegetation are investigated using a 21-year normalized difference vegetation index (NDVI) dataset to quantify the consequences of climate warming for the regional ecosystem and its interactions. The results show that vegetation coverage is best in the eastern and southern plateau regions and deteriorates toward the west and north. On the whole, vegetation activity demonstrates a gradual enhancement in an oscillatory manner during 1982-2002. The temporal variation also exhibits striking regional differences: an increasing trend is most apparent in the west, south, north and southeast, whereas a decreasing trend is present along the southern plateau boundary and in the central-east region. Covariance analysis between the NDVI and surface temperature/precipitation suggests that vegetation change is closely related to climate change. However, the controlling physical processes vary geographically. In the west and east, vegetation variability is found to be driven predominantly by temperature, with the impact of precipitation being of secondary importance. In the central plateau, however, temperature and precipitation factors are equally important in modulating the interannual vegetation variability.  相似文献   

19.
利用NCEP1°×1°再分析资料和地面加密自动站资料及卫星资料,对2012年8月16~18日盆地西北部沿龙门山脉的连续特大暴雨的形成机制进行探讨,此次暴雨过程出现在青藏高原东侧陡峭地形向盆地的过渡带,具有突出的地域特点。重点分析了青藏高原切变线东移期间,副高西北侧暴雨区内的对流触发机制和地形作用。分析表明:副热带高压前期的维持稳定与高原低值系统东移是产生强降雨的环流背景,在强降雨区域低层具有明显的风速风向辐合,东北—西南向的龙门山带即青藏高原东侧陡峭地形引起了盆地低层东南气流强烈的垂直上升运动。青藏高原东侧暴雨区最显著的热力特征是低层具有明显的高温高湿和大气不稳定层结。此次强降雨具有典型的“上干下湿,上冷下暖”的结构,正是强对流天气形成的有利条件。   相似文献   

20.
青藏高原近50年来气温的年代际变化   总被引:93,自引:27,他引:66  
根据青藏高原及周边地区一百多个气象台站的月平均气温资料,利用统计方法,分析了近50年来气温的年代际变化。结果表明:整个高原地区温度变化可分为6个不同的区域。在时间演变上可划分出相对高温时段(1963年以前)、相对低温时段(1963—1987年)和另一个相对高温时段(1987年以后)。还从天文因素、地球系统各圈层及气候系统内各因子相互作用和相互制约出发,探讨了引起高原气候变化的可能原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号