首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
赵高祥 《大气科学》1981,5(1):69-77
本文用直接积分的方法计算了CO_215微米带在水平大气路径和垂直大气路径上的透过率,并得出了一个能迅速和精确地计算CO_215微米带垂直路径大气透过率的模式的系数。  相似文献   

2.
本文用直接积分的方法计算了CO_215微米带在水平大气路径和垂直大气路径上的透过率,并得出了一个能迅速和精确地计算CO_215微米带垂直路径大气透过率的模式的系数。  相似文献   

3.
枝状雪晶碰撞攀附与折裂繁生   总被引:2,自引:2,他引:2       下载免费PDF全文
用机载粒子测量系统(PMS)对新疆冬季一次系统降雪进行了探测。结果表明:枝状雪晶间碰撞攀附形成雪团,一方面使直径大于3300微米的雪晶数浓度明显增加,另一方面又使直径700—3300微米的雪晶数浓度明显减小,同时引起了枝状雪晶的折裂繁生,使冰晶(18≤D<3400微米)数浓度平均增加35%,雪晶数浓度平均增加10%。  相似文献   

4.
气溶胶粒子干沉降速度的测量   总被引:12,自引:2,他引:12  
在昆明和太原地区,通过气溶胶与气象要素的同步观测,得到了粒径范围为0.01—10微米的三个自然模态气溶胶干沉降速度,结果表明:气溶胶粒子的干沉降速度与粒子直径有密切关系.直径大于2微米的粗粒子沉降速度随直径增大而迅速增大;直径小于0.1微米的爱根核模态粒子的沉降速度随直径减小而增大;直径为0.1—2微米的积聚模态的粒子沉降速度出现最小值.这种变化规律虽与国外实验室测定结果在趋势上比较一致,但绝对值却要大得多.另外,沉降速度还与大气稳定度和地面粗糙度有关.  相似文献   

5.
孔琴心  任丽新 《大气科学》1983,7(3):341-346
用一台单色计在地面测量太阳0.873微米和0.942微米辐射强度比值。该比值可以有效地消除气溶胶和雷利散射,仅剩下水汽吸收效应,从而能够较好地确定大气垂直路径和斜程路径的水汽总含量。本文还详细讨论了获得校正曲线的方法。  相似文献   

6.
王庚辰 《大气科学》1982,6(3):333-337
根据实测的气溶胶粒子谱对大气气溶胶在8—13微米窗区的衰减效应进行了计算,并和利用太阳光谱得到的某些实测结果进行了比较。对不同大气条件下的气溶胶物理特征及其衰减特性也进行了分析。结果表明,气溶胶在8—13微米窗区的衰减效应不仅依赖于粒子的浓度和谱分布,而且和粒子的化学成份有很大关系。和洁净大气相比,在工业污染大气中,气溶胶对辐射的衰减效应有着明显的差别。  相似文献   

7.
辐射是以电磁波的形式传递能量的一种方式。一切物体,只要它的温度在绝对温度0°K(即-273.16℃)以上,都具有向外辐射能量的能力,同时也吸收其他物体辐射来的能量。物体辐射能力的大小取决于物体本身温度的高低。辐射波长的范围很广,从10~(-10)微米至10~5千米之间,构成一个完整的电磁波谱。由于太阳辐射的主要波长范围是0.12—4微米,地面和大气辐射的主要波长范围是4—100微米,因此,在气象学中,经常根据波长的不同,将太阳辐射称为短波辐射,将  相似文献   

8.
在积云中,大多数云粒子的直径在7到10微米之间,而在层云中,大多数云粒子的直径不超过2微米.云滴有效半径与云中行星边界层(PBL)及PBL上层的气溶胶数浓度(Na)呈负相关.在1500米以上的高液态水含量区域,云滴浓度(Nc)变化不大,Na含量降低.高雷达反射率对应于大的FCDP云粒子浓度和小的气溶胶粒子浓度.积云中的...  相似文献   

9.
云的降水     
胡志晋 《气象》1981,7(1):43-45
雨、雪、霰、雹等各种降水物一般都是在云内形成增长后落到地面的。云本身是大量云滴或冰晶的集合体。它们同降水物一样都是液态或固态的水。但是云滴和冰晶十分微小,典型的云滴半径为10微米,落速为1厘米/秒。它们随着云中气流运动,很难落出云体。即使落出云体也会在很短的时间和距离内蒸发完毕。典型的雨滴半径为1毫米,落速为6米/秒。两者相比,雨滴比云滴的半径大了100倍,质量大了100,000倍,落速大了600倍。从上一讲的图1上,可形象地看到凝结核、云滴、大云滴、毛毛雨和雨滴的大小差别是何等的巨大!从云的微物理学来说,云和降水的差别主要就是粒子的大小。习惯上以半径100微米为界来区别云滴和雨滴(这相当于毛毛雨滴);以半径150微米为界来区分冰晶和雪晶。 云滴的产生和长大主要依靠凝结过程。凝结增长  相似文献   

10.
本文用一维非定常积云模式研究积云中云滴群的凝结增长。比较了几种盐核谱及不同湍流交换强度等情况下凝结形成的云滴谱特征。结果表明半径1.5—2.5微米的巨核在凝结过程形成大云滴中起主要作用,而较大的巨核对平衡态凝结谱影响不大,仅起到提早出现大云滴的作用。凝结核浓度过大不利于大云滴的形成,对半径 1.5—2.5微米的巨核浓度为 10~(-3)个/厘米~3比较有利。凝结平衡谱随湍流交换和夹卷作用的影响较大,在某些条件下可以模拟出双峰谱。  相似文献   

11.
During the 1982 and 1983 Balloon Intercomparison Campaigns, the vertical profile of stratospheric NO2 was measured remotely by nine instruments and that of NO by two. Total overhead columns were measured by two more instruments. Between 30 and 35km, where measurements overlapped, agreement between NO profiles was within ±30%, which is better than the accuracies claimed by the experimenters. Between 35 and 40km there was similarly good agreement between NO2 profiles, but below 30km, differences of greater than a factor three were found. In the second Campaign, NO2 values from most instruments agreed within their quoted errors, except that the Oxford radiometer gave much lower values; but the first Campaign and the column measurements show a more uniform spread of results.These differences below 30km could not be resolved, but new laboratory measurements are planned which should do so.  相似文献   

12.
Field measurements of NO and NO2 emissions from soils have been performed in Finthen near Mainz (F.R.G.) and in Utrera near Seville (Spain). The applied method employed a flow box coupled with a chemiluminescent NO x detector allowing the determination of minimum flux rates of 2 g N m-2 h-1 for NO and 3 g m-2 h-1 for NO2.The NO and NO2 flux rates were found to be strongly dependent on soil surface temperatures and showed strong daily variations with maximum values during the early afternoon and minimum values during the early morning. Between the daily variation patterns of NO and NO2, there was a time lag of about 2 h which seem to be due to the different physico-chemical properties of NO and NO2. The apparent activation energy of NO emission calculated from the Arrhenius equation ranged between 44 and 103 kJ per mole. The NO and NO2 emission rates were positively correlated with soil moisture in the upper soil layer.The measurements carried out in August in Finthen clearly indicate the establishment of NO and NO2 equilibrium mixing ratios which appeared to be on the order of 20 ppbv for NO and 10 ppbv for NO2. The soil acted as a net sink for ambient air NO and NO2 mixing ratios higher than the equilibrium values and a net source for NO and NO2 mixing ratios lower than the equilibrium values. This behaviour as well as the observation of equilibrium mixing ratios clearly indicate that NO and NO2 are formed and destroyed concurrently in the soil.Average flux rates measured on bare unfertilized soils were about 10 g N m-2 h-1 for NO2 and 8 g N m-2 h-1 for NO. The NO and NO2 flux rates were significantly reduced on plant covered soil plots. In some cases, the flux rates of both gases became negative indicating that the vegetation may act as a sink for atmospheric NO and NO2.Application of mineral fertilizers increased the NO and NO2 emission rates. Highest emission rates were observed for urea followed by NH4Cl, NH4NO3 and NaNO3. The fertilizer loss rates ranged from 0.1% for NaNO3 to 5.4% for urea. Vegetation cover substantially reduced the fertilizer loss rate.The total NO x emission from soil is estimated to be 11 Tg N yr-1. This figure is an upper limit and includes the emission of 7 Tg N yr-1 from natural unfertilized soils, 2 Tg N yr-1 from fertilized soils as well as 2 Tg N yr-1 from animal excreta. Despite its speculative character, this estimation indicates that NO x emission by soil is important for tropospheric chemistry especially in remote areas where the NO x production by other sources is comparatively small.  相似文献   

13.
The simultaneous measurements of NO, NO2 and HNOA mixing‐ratio profiles carried out on the Stratoprobe balloon flight of 22 July 1974 have been simulated with a time‐dependent model using the measured temperature and ozone profiles. The calculated ratios of NO/NO2, HNO3/NO2 using currently accepted photochemistry are consistent with the measured ratios within the experimental errors of the measurements. The measured NO2/NO ratio is almost a factor of two smaller than predicted, although the discrepancy is still within the experimental errors. A remarkable proportionality in the NO2 and O3 profiles has been noted and is unexplained. A time‐dependent simulation has been employed to convert the measurements into diurnally‐averaged profiles suitable for intercomparison with two‐dimensional stratospheric models and a comparison with constituent profiles from Prinn et al. (1975) is carried out as an example. The NOV mixing ratio, formed from the sum of the NO, NO2 and HNO2 measurements is similar to the NOV mixing ratio from several one‐ and two‐dimensional models used to predict the effects of SST's on the ozone layer. The odd nitrogen mixing ratio is roughly constant from 20 to 35 km at 11 ppbv.  相似文献   

14.
The absorption properties of NO in 5.2 μm band and NO2 in 6.2 μm band are measured for some definite wavelengths by using line-tunable CO laser and long-path absorption cell. The absorption coefficients for 49 CO laser wavelengths are given and variations of absorption withpartial and total pressures are analysed. Fur-thermore, the experimental errors and the interference of water vapour with the absorption at definite laser lines are also discussed.  相似文献   

15.
The chemical reactivity of NO and NO2 is so rapid that their fluxes and concentrations can be considerably modified from that expected for conserved variables in the atmospheric surface layer, even as low as a meter above the surface. Fitzjarrald and Lenschow (1983) have calculated flux and mean concentration profiles for NO, NO2 and O3 in the surface layer using numerical techniques. However, their solutions do not approach the photostationary state at large heights. Here we solve a simpler set of equations analytically (i.e. we assume a constant O3 concentration and neutral hydrodynamic stability), and are able to show how the flux profiles behave at large heights assuming that the concentrations approach their photostationary values. We find, for example, that at large heights the ratio of the flux of NO to that of NO2 is equal to the ratio of their concentrations. These results are relevant to estimating surface fluxes of NO and NO2, and are most applicable to nonurban environments where NO and NO2 concentrations are usually much less than O3 concentration.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

16.
A low pressure laser-excited-fluorescence technique (FAGE) for the direct determination of atmospheric NO2 has been developed. Using a frequency-doubled Nd-YAG pump laser and a signal collection time of 20 s (10 s each signal and background) a detection limit of 450 pptv is calculated under laboratory conditions. Improved sensitivities will be possible with a higher repetition rate laser and lower fluorescence cell pressures.  相似文献   

17.
18.
Surface NO and NO2 mixing ratios were measured aboard the research vessel Polarstern during the mission ANT VII/1 from 24 September to 5 October 1988. The measurements were taken along the meridian at 30° W in the Atlantic region covering latitudes between 30° N and 30° S. The average mixing ratios were about 12 pptv NO/30 pptv NO2 in the Northern Hemisphere and about 7 pptv NO/22 pptv NO2 in the Southern. Elevated mixing ratios of 20 pptv NO/70 pptv NO2 were found at 12° N (probably due to air masses originating from the surface of West Africa) and in the region of the ITCZ between 8° N and 5° N. Because of probable contamination by the ship, the measured mixing ratios mostly represent upper limits.  相似文献   

19.
Using a coated-insert flow tube reactor coupled to a low-energy electron-impact mass spectrometer with molecular beam sampling, we studied uptake of NO3 by sea salt at room temperature and [NO3]?=?8?1011???4?1013 molecule cm?3. The radical uptake coefficient γ(t) is time dependent: its initial value (γ ini) decreases exponentially with the characteristic time (τ) to its steady-state value (γ ss) at given [NO3]. The parameters γ ini, γ ss and τ depend on [NO3], whereas γ ss is water vapor independent at [H2O]?=?8?1012???1.6?1015 molecule cm?3 and RH ≤ 0.5 %. HCl and NO2 are uptake products detected in the gas phase. We used these findings to estimate γ values under tropospheric conditions for urban coastal and remote marine environments: at high NO3 (~90 ppt), the time dependence becomes important, and the γ value averaged over the aerosol lifetime is 4?10?3; at low NO3 (~1 ppt), the radical uptake is time independent and proceeds faster with γ ini?=?8?10?3  相似文献   

20.
A detector for the chemiluminescent measurement of NO in background air is described. A large reduction of interferences is achieved by using a stabilized ozone generator which allows operation of the instrument at lower O3 concentrations. Purification and humidification of the O3 stream further reduces interferences and shortens the instrumental clean-up time, which is important for aircraft missions. From a series of laboratory tests and from measurements performed aboard an aircraft it is demonstrated that the remaining interferences are acceptable for measurements in the undisturbed troposphere. In particular, no remnant NO signal is observed in clean air at night. During flight, a detection limit (2) of 20 ppt is achieved for a 1 min integration time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号