首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
雷电灾害风险评估可为区域规划及防雷减灾提供可靠依据.雷电定位数据资料在风险评估中的应用提高了风险评估的准确性和可靠性.基于雷电定位数据的分析,采用定位误差圆覆盖法配合环境因素定性提取区域雷击风险因子,依据地形地貌及政治经济特点进行地理空间区划,分析雷暴活动时空频率分布特性,从雷电本身的特征分布规律研究限定区域内不同时域、不同雷电流强度造成的影响,建立区域雷击灾害风险评估模型.以珠三角地区雷电定位数据资料为例的评估结果表明,该方法在区域雷电灾害风险评估分析中具有较好的针对性、准确性和实用性.  相似文献   

2.
在分析国内雷电灾害风险区划发展现状进行的基础上,从区域雷电灾害事前风险评估的角度出发,采用灾害评估的承灾体、致灾体模式,引入雷电风险、地域风险和承灾体风险作为评估指标,针对每个指标选取与其发生紧密度较高的参数作为2级评价标准,对区域雷电灾害风险进行基于事前致灾因子的区域雷电灾害风险评估研究,并以福建省为例,应用该模型进行了计算。结果表明,基于承灾体、致灾体模式的区域雷电灾害风险评估模型能较好地反应出区域雷电灾害发生的损失程度,对于行政区域范围的雷电灾害风险度区域与政府决策支持具有积极的指导意义。  相似文献   

3.
文章论述了雷电灾害风险评估的相关规定,分析了雷电灾害风险评估过程中存在的问题,提出了建立雷电灾害风险评估的管理办法,为今后雷电灾害风险评估工作的顺利开展提供了参考。  相似文献   

4.
根据雷电灾害风险评估工作的经验,以及对雷电灾害风险评估技术的深入研究,开发出了雷电灾害风险评估计算软件。该软件根据不同的条件参数,可以自动计算并输出项目雷电灾害风险评估计算过程和参数表格等,给雷电灾害风险评估工作带来了便利,提高了工作效率和准确度。  相似文献   

5.
焦作某炸药仓库的雷电灾害风险评估   总被引:2,自引:0,他引:2  
通过分析某炸药仓库所处环境、基本情况及当地的雷暴天气时间分布,确定了该炸药仓库所处区域的雷电灾害风险级别及进行雷电灾害风险评估的必要性。介绍了对炸药仓库雷电灾害风险评估的内容、评估的程序和方法,列出相应的风险评估分量及计算方法,并通过一个仓库举例对评估所需的相关风险参数分量进行计算,最后对评估结果进行对比分析,得出该炸药仓库存在的一些防雷问题,提出了相应的整改措施和建议。  相似文献   

6.
通过分析某炸药仓库所处环境、基本情况及当地的雷暴天气时间分布,确定了该炸药仓库所处区域的雷电灾害风险级别及进行雷电灾害风险评估的必要性。介绍了对炸药仓库雷电灾害风险评估的内容、评估的程序和方法,列出相应的风险评估分量及计算方法,并通过一个仓库举例对评估所需的相关风险参数分量进行计算,最后对评估结果进行对比分析,得出该炸药仓库存在的一些防雷问题,提出了相应的整改措施和建议。  相似文献   

7.
电子信息系统雷灾风险评估方法   总被引:3,自引:5,他引:3  
灾害是一种风险,防治灾害就是管理并降低或者消除风险。需要正确认识和评估风险,对于雷电灾害来说就是开展雷电灾害风险评估,进而实施合理的雷电防护。因此,雷击风险评估是防雷设计工作之前的最重要的环节,为了全面、具体实施全方位的雷电防护提供客观、准确、科学的依据,本文针对电子信息系统雷电灾害的特点,在详细分析各种灾害成因的基础上,通过理论计算,提出了对雷电灾害进行风险评估的方法。  相似文献   

8.
张楠  曾诚  侯涛 《陕西气象》2015,(Z1):17-19
采用宏观与微观相结合的方法,对大型危险化工项目雷电灾害风险评估进行探索。以中煤榆林甲醇醋酸系列深加工及综合利用项目一期I工程为例,根据雷闪次数、地理环境、建筑物的特性及雷电灾害防护能力和需求、人员密集情况、雷电灾害影响程度等因素将其划分为17个区域进行分析,分别计算各区域气象指标、地理环境指标、承灾体的风险指标等数据,得出17个区域雷电灾害风险等级。  相似文献   

9.
本文通过实战案例建立了雷电灾害风险评估操作流程,理论联系实际分析了本地区雷电灾害风险评估要点,针对诸多的风险因素预先估算,从而提出科学合理的雷电防护措施和指导意见,达到防御和减轻雷电灾害损失,保护人民生命财产和公共安全。  相似文献   

10.
利用四川省雷电监测网监测近11年雷电资料统计分析,全省雷电活动变化存在的特征以及变化规律,对研究雷电的发生、发展有着重要的指导意义,为雷电预警预报、区域风险评估和雷电灾害分析,打下坚实的基础。  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

13.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

14.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

17.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

18.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography. Contributions from all over the world are welcome.SUBMISSIONAll submitted  相似文献   

19.
20.
《大气和海洋科学快报》2014,(5):F0003-F0003
AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) pub- lishes short research letters on all disciplines of the atmos- phere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号