首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
使用近10a以来登陆台风对庐山暴雨影响的历史资料进行分析,结果表明:(1)影响庐山的台风移动路径主要为中路,细分为中路Ⅰ型和中路Ⅱ型,其中对庐山影响最大的是中路Ⅰ型,其它登陆台风,中心位置<25 °N或>30°N,对庐山的影响都很小.(2)中、低层以及地面合成场存在一定的共性,即(32 ~42 °N,100 ~ 110°E)一带形成高压阻挡坝,长江以南地区、南海以及台湾处于闭合低压区内.这种配置是庐山台风暴雨常见的天气系统配置类型.(3)庐山地形对台风降水的增幅作用十分明显.(4)庐山台风暴雨主要有3种云型:①台风外围环流云型;②台风螺旋雨带云型;(③台风低压(槽)云型.这3种云型表明了台风3个不同阶段的特征,庐山台风暴雨主要与西风带系统和副热带高压阻隔作用、涡旋Rossby波激发的螺旋雨带、中尺度对流云团发展以及低层西南暖湿低空急流等因素有关.  相似文献   

2.
分析1981—2014年7—9月影响皖北东部地区的台风特征,统计不同台风路径和降雨量之间的关系,研究不同路径下皖北东部出现暴雨的环流场特征,结果表明:(1)西北行、陆面转向、海面转向和其他类路径的台风都可以影响皖北东部,并产生降水。其中产生降水个例最多的台风路径为陆面转向类,次多为西北行类。(2)台风影响时无降水、非暴雨和暴雨3类降水个例的500 hPa平均环流场对比分析表明:当有台风影响皖北东部时,配合西风槽或副高阻挡更有利于产生强降水。(3)西北行类台风暴雨的环流场特征是华北到河套存在西南-东北走向高压带阻挡使台风停滞少动;海面转向类台风暴雨环流场特征是河套东部存在低槽与台风相互作用;陆面转向类台风暴雨环流场可以分为3类:贝湖两槽一脊型、贝湖单槽型和副热带高压阻挡型。  相似文献   

3.
根据1971-2010年的台风路径资料,对影响东莞的台风进行统计分析,结果表明影响台风具有明显的年际变化和月际变化,年均个数为2个,从年际变化中看,2008年最多,从月际变化得出,影响台风主要集中在7到9月,影响频数4-8月呈逐月递增,8-12月呈逐月递减;按照生成地分类,在西北太平洋生成的台风的移动路径主要有西北(西北偏西)路径和转向路径,在南海生成的台风的路径主要有偏北(西北)路径和转向路径,剩余的复杂路径则较少.对近40年东莞出现100 mm以上或接近100 mm过程雨量的台风大暴雨过程进行分析,总结出3类环流特征:①台风环流内部引起的大暴雨;②台风倒槽引起的大暴雨;③季风槽北上引起的大暴雨.  相似文献   

4.
张可  方娟 《气象科学》2021,41(5):584-596
利用台风最佳路径资料和全球再分析数据集分析了1979—2018年6—10月西北太平洋地区台风群发事件的统计特征。期间所有台风个例根据群发性质被分为三类:第一类为单独生成的非群发台风;第二类为群发事件中生成,但事件中仅有2个台风成员的"MTC2"台风;第三类为群发事件中生成,且事件中有3个或3个以上台风成员的"MTC3"台风。结果表明,相对于MTC2台风,MTC3台风生成时位置偏北,环境场季风槽辐合更强、高温海区范围更大、中低层大气更湿润。而MTC3台风在1990s末的突变减少导致了西太台风群发事件和台风总数减少。1996年之后,尽管洋面上空仍有较多的热带涡旋扰动,但群发台风活跃的大部分地区垂直风切变增强、高空辐散和季风槽辐合减弱以及西太平洋热带季节内振荡事件(Madden-Julian Oscillation,MJO)的对流活跃位相维持日数减少,它们共同导致了MTC3事件的年代际变化。  相似文献   

5.
大气季节内振荡对西北太平洋台风路径的影响研究   总被引:11,自引:0,他引:11  
田华  李崇银  杨辉 《大气科学》2010,34(3):559-579
台风路径一直是天气预报的难点之一。本文研究了大气季节内振荡 (ISO) 对西北太平洋台风路径的影响, 指出大气ISO对台风路径预报有重要参考意义。细化传统台风路径的划分方法, 将台风路径进一步分为5种: 西移型、 西北移型、 日本以西型、 日本登陆型、 日本以东型。分别对不同路径的台风所对应的低频流场进行超前滞后合成分析, 发现台风生成时850 hPa低频气旋的正涡度带走向往往预示着台风的未来走向, 200 hPa低频环流形势, 意味着上层引导气流的方向, 对台风的路径也有一定的指示作用。低频流场演变特征表明, 大气ISO在对流层低层到中层通过低频气旋或低频反气旋的环流形势影响季风槽及副热带高压的位置和强度, 从而影响台风的活动。低频气旋的作用使台风易于沿着低频气旋的正涡度带移动。菲律宾以东热带地区生成的低频气旋的加强有利于季风槽的加强和东伸, 另外, 它的经向北传对副热带高压的位置也有影响。在副热带地区存在大气ISO流型以低频波列的形式向西传播, 对副热带高压的季节内时间尺度东西振荡有重要作用。热带与副热带地区大气ISO的共同作用, 对台风路径有决定性意义。初步认为, 对于西移路径和西北移路径, 热带大气ISO的影响起着更为重要的作用; 对于日本登陆型和日本以东型路径, 副热带大气ISO的影响起着更为重要的作用。大气季节内振荡的环流场可以作为台风路径预报的依据之一。  相似文献   

6.
本文在分析1999年登陆广东台风*的路径、登陆点、强度、移速等特点与广州降水关系的基础上,与历史相似个例进行比较,进一步探讨影响广州台风的路径趋势、强度、移速及其变化特征,归纳出台风降水预报指标。1 影响广州市台风的有关定义1.1 台风路径定义 本文把登陆广东的台风分为三类:登陆饶平~惠来称东路;登陆陆丰~台山称中路;登陆阳江~徐闻称西路。1.2 雨型定义 对广州市区和四郊县市5个气象站的降水量资料进行分型,作为广州市降水强度的表征量(简称雨型),其代码(雨级)见表1。1.3 台风影响程度定义 台风登…  相似文献   

7.
邵春海 《浙江气象》2005,26(3):10-15
统计分析了25~32°N,120~127°E间北上的台风,其中约1/4是加强发展的;这些加强台风主要集中在7~9月(特别是8月)和30°N以南,125°E以东的时空范围内.台风强度变化与西风槽、冷空气附近涡旋、东风波、高空辐散流场,风的垂直切变、岛屿和大陆地形等影响有关.最后得出综合诊断台风发展加强的5条预报着眼点.  相似文献   

8.
本文通过对1965—1993年29年来台风影响杭州的降水资料的分析,确定了影响杭州台风的大、小关键区.根据台风的移动路径,划分了西路、东路和中路三类台风,并对影响杭州造成较大降水的33个台风分三路进行了统计和分析,得出了不同路径台风影响下的杭州地区的降水分布规律.又分析了1949—1993年45年来影响杭州的109个台风的过程最大降水量和日最大降水量,得出了台风影响下杭州各地的降水极大值情况.  相似文献   

9.
台风榴莲(2001)在季风槽中生成的机制探讨   总被引:2,自引:0,他引:2  
利用NCEP 1°×1°分析资料、TMI海温资料、卫星云图资料对季风槽中南海台风榴莲(2001)生成机制进行了分析,揭示了大尺度环境流场、温暖洋面、中尺度对流活动对热带气旋(TC)生成的控制作用.结果表明,水平风速垂直切变的演变在一定程度上指示着TC在暖湿洋面上生成的时间,水平风速垂直切变由强向弱转变,在TC发生前18小时迅速减小到10 m/s,随后在10 m/s以下维持少变,垂直切变的变化主要反映了对流层高层环流形势的演变;在对流层中低层,季风槽的形成和加强对TC的生成有重要作用,由于热带温暖洋面作用,季风槽首先表现出有利于单体对流和带状对流发生发展的条件性对流不稳定特征,随着季风槽的加强,季风槽进一步表现出有利于中尺度扰动发生发展的正压不稳定特征;季风槽槽线南侧的低空急流的经向分布很宽广,由105°E越赤道气流和中南半岛偏西气流(其源头是索马里越赤道低空急流)汇合而成,急流的加强活动具有经向差异,由于边界层高θ_e空气辐合抬升产生两条经向距离约300 km的显著带状对流云系,槽线南侧风速分布的经向差异导致两条带状云系发生追赶,并逐步在季风槽底部槽线附近合并加强为MCC,进而导致中尺度涡旋(MCV)的产生并最终发展成为TC.分析结果还表明,为深对供应丰富对流有效位能的主要是来自台风发生区域本地南海暖洋面的地面热通量,南海暖洋面对TC生成有重要贡献.台风榴莲的生成是一个多尺度相互作用过程,主要包括涡旋对流热塔、与带状对流云系伴随的涡度带的升尺度,涡度带合并成长为MCV,以及大尺度条件对TC在季风槽中生成的时间及地点的控制作用等.  相似文献   

10.
2020年7月西北太平洋和南海出现了史无前例的“空台”事件。利用NCEP再分析数据集、中国气象局(CMA)台风最佳路径等资料研究了此次“空台”现象的大尺度环流背景及动力和热力学特征。使用台风潜在生成指数(DGPI)分析发现2020年7月大尺度环流背景不利于台风生成,环流系统的异常通过影响对流层垂直风切变和垂直运动限制了台风的活动。2020年7月马斯克林高压较常年明显偏西偏弱,导致索马里急流强度减弱,越赤道气流不活跃,菲律宾以东洋面和南海海域盛行一致的偏东气流,历史同期活跃在该区域的季风槽无法建立,从而不利于热带扰动的生成。北半球极涡主体偏向西半球一侧,影响东半球冷空气势力较弱,副热带高压位置偏西;南亚高压较历史同期偏强且偏东,其东侧强盛的偏东气流将洋中槽截断,在西北太平洋区域出现反气旋性环流,该区域下沉气流增强,导致副热带高压强度增强,对流层中层强烈的下沉气流抑制了台风的生成和发展。此外,受中高层环流系统异常的影响,7月菲律宾吕宋岛以东洋面和南海地区环境垂直风切变较常年偏高2~4 m/s,南海部分海域偏高达4~8 m/s,同时该区域内异常偏强的下沉气流导致对流层低层相对湿度偏低,大气层结处于较为稳定的状态,动力和热力条件均不利于热带扰动的进一步发展。   相似文献   

11.
采用1949-2015年上海台风所提供的热带气旋资料、NCEP/NCAR全球再分析格点资料、国家气候中心提供的74项大气环流指数以及青藏高原积雪等资料,对7-9月登陆华南的热带气旋TC(不含热带低压)和台风TY(含台风及台风以上的热带气旋)的气候变化特征以及大尺度环流特征进行了分析,结果发现:7-9月登陆华南TC及TY频数均有微弱的上升趋势,且年际变化显著,但TC和TY年际变化和准十年波动变化并不总是一致,尤其是近10a来登陆华南的强台风有明显增加的趋势。7-9月登陆华南的TC占登陆中国的一半以上,并且有约3/4是来自西北太平洋生成的台风。从登陆华南TC的区间分布特征来看,以中路最多,西路次之,东路最少。亚洲季风偏弱、西太平洋副高偏西,登陆华南TY偏多,反之亦然。TC偏多(少)年,西太平洋副高偏强偏西(偏强偏东)。TC偏多年110oE以东引导气流出现的反气旋式和气旋式环流对较TC偏少年偏西,反气旋环流南部的东风异常一直延伸到华南地区东部,这样的东风引导气流异常有利于引导热带气旋登陆华南。另外,青藏高原东部和西部积雪偏多、华南气温偏高及西北太平洋海温异常偏暖的情况下也均有利于台风登陆华南。  相似文献   

12.
45年间影响中国东海附近海区热带气旋统计特征   总被引:2,自引:2,他引:0  
根据1961-2005年有编号的热带气旋资料,从时间和空间两个方面统计分析了影响中国东海附近海区(117°-131°E,22°-33°N)的热带气旋特征。结果表明,统计区域内的影响热带气旋具有明显的年际变化特征,年平均频数为8.6个,年频数与厄尔尼诺具有很好的相关性,厄尔尼诺年为影响热带气旋少频年;影响热带气旋主要集中在6-10月,持续时间多在1-4天之间;影响热带气旋大多生成于菲律宾以东洋面和关岛附近洋面,从统计区域的南侧和东侧进入,主要有西北、东北和转向3条移动路径。  相似文献   

13.
基于PR和VIRS融合资料的东亚台风和非台风降水结构分析   总被引:1,自引:0,他引:1  
借助JAXA/EORC热带台风数据集资料,实现了台风区和非台风区的分离,在此基础上,利用热带测雨卫星搭载的测雨雷达和可见光/红外扫描仪的融合观测资料,对1998~2007年东亚雨季台风及非台风降水的气候特征和降水云红外信号特征进行了分析。结果表明:1)东亚台风降水强度谱较非台风降水谱更宽,特别是对流降水主要分布在5~20 mm/h之间;强降水更多,主要分布在东亚洋面。2)雨季东亚降水的主要形式是非台风层云降水,但台风降水对局地降水量的贡献也不容忽视,例如台湾以东附近洋面可达20%。3)台风降水云亮温海陆分布差异显著;其雨顶高度在4~9 km(层云)和4.5~12.5 km(对流)之间均有分布,较非台风降水雨顶高度谱更宽。4)不同等级的台风在降水强度、覆盖区域和云顶10.8μm亮温分布上差异大。  相似文献   

14.
利用常规气象观测资料、区域自动站加密观测资料、FY 4卫星云图、新一代天气雷达、ECMWF细网格、GRAPES_MESO及NECP的1°×1°再分析资料,分析2019年8月6日08:00至8日08:00,黑龙江省中部和西南部的强降水过程动力机制,以及引发的降水性质和降水分布特征。结果表明:①强降水过程共分3个阶段2种性质:与冷涡相连的鞍形场的对流云降水;鞍形场和增强暖锋共同作用的混合云和对流云降水;台风“范斯高”残涡作用下,改变云系移动路径形成的对流云降水。②冷涡、副热带高压、台风的相互作用,是该过程产生的根本原因;副热带高压和台风外围暖湿气流配合冷涡冷空气,为强降水提供水汽和不稳定条件;狭窄的水汽输送通道造成了强降水的空间不连续性;低层辐合线为强降水提供触发条件;鞍形场的稳定结构、大小兴安岭南麓强迫抬升、台风系统阻挡延长强降水的持续时间。  相似文献   

15.
2005年台风“海棠”与“泰利”的移动路径和登陆地点不同于“麦莎”与“卡努”,前2次台风自东南偏东往西北偏西移动并登陆于福建中部沿海,后2次自东南往西北移动并登陆浙江中部沿海,都给浙江造成了巨大影响,但影响金华地区的风雨程度不同。经分析台风移动过程,认为西风带低槽或高压影响到副高,副高影响着台风西行或北上,在西风带低槽或副高影响较弱时,台风内力和地形影响作用加强;台风在副高带状时西行为主,块状时北上为主。分析台风路径的预报过程,认为中央气象台预报为“登陆台风”有3~4天的时效;预报较准确的登陆位置,若路径较有规则为30~54个小时,若不规则路径可能仅为3个小时。分析影响金华的台风风雨程度,认为东路台风雨量分布特征是东部大、西部小;南路台风是东南部大、西北部小;最大风力落区基本相同。地形对不同台风路径下的风雨影响分布略有不同。  相似文献   

16.
高晓梅  江静  刘畅  马守强 《气象科学》2018,38(6):749-758
利用1949—2015年台风年鉴资料、NCEP/NCAR再分析资料、NOAA资料等对近67 a影响山东的台风频数特征及其与相关气候因子的关系进行了分析。结果表明:(1)影响山东的6类台风中沿海北上类最多,登陆填塞类最少。8月和8月上旬是主要月份和旬份。台风年代际变化明显,并存在显著的26 a年代际尺度和5 a年际尺度的周期变化。(2)台风频数与同年份的东亚槽位置、亚洲区极涡面积指数分别呈显著的负、正相关关系。Ni1o3. 4区海温对台风频数存在超前的显著负相关,超前影响分别在1、2、3、4月。台风频数与冬季北大西洋涛动(NAO)指数、太平洋年代际振荡(PDO)指数分别存在显著的正、负相关关系。春、夏、秋季和年PDO冷位相时台风频数偏多,PDO暖位相时台风频数偏少,这与西太平洋副热带高压和低层水汽条件关系密切。(3)冷、暖位相年台风频数与太平洋海温分别存在显著的相关区,特别是冬季暖位相时赤道中东太平洋显著负相关区域较大。年PDO冷位相与夏季的显著相关区较相似,暖位相与秋季相似。(4)太平洋海温与台风频数相关性较好的海域主要有3个关键区:赤道中东太平洋、北太平洋中部和西太平洋暖池。其中赤道中东太平洋的的显著性表现在冬季,北太平洋中部的显著性表现在年、春、夏、秋季,西太平洋暖池的显著性表现在夏、秋季。  相似文献   

17.
登陆中国不同强度热带气旋的变化特征   总被引:4,自引:3,他引:1  
根据《热带气旋等级》国家标准(2006),将热带气旋(TC)划分为热带低压(TD)、热带风暴(TS)、强热带风暴(STS)、台风(TY)、强台风(STY)、超强台风(SSTY)6个等级,利用中国气象局整编的1949—2006年共58年的《台风年鉴》和《热带气旋年鉴》资料,分析了登陆中国大陆、海南和台湾不同强度TC变化特征。结果表明:(1) 不同强度登陆TC频数存在年际和年代际变化,在长期趋势上,TD、TS登陆频数呈现显著的线性递减趋势,STY登陆频数呈现显著增加趋势。(2) 登陆TD、TS、STS存在6—8年的周期变化,TY具有准16年的周期变化。(3) 登陆TD、TS主要生成于南海东北部海面,登陆TY、STY、SSTY多生成于巴士海峡东南部海面和菲律宾以东洋面。(4) 在年代际变化上,南海生成的登陆TD、TS频数有减少趋势,TY、STY有增多趋势。  相似文献   

18.
利用JMA最佳TC路径资料和NCEP/NCAR再分析资料,普查了1961—2010年宁夏的暴雨个例,并对影响宁夏的热带气旋远距离暴雨进行了统计和合成分析。结果表明:宁夏各测站远距离暴雨日数在暴雨总日数中普遍占比达30%~46%,是宁夏暴雨类型里十分重要的一类。远距离暴雨主要集中发生在8月,较宁夏暴雨气候多发期推迟10~20天。台湾岛及其以东洋面和海南岛附近是宁夏产生远距离暴雨的热带气旋高频影响关键区,在两个TC高频影响区域之间还存在一个少台风甚至无台风影响的海域。进一步诊断分析表明,热带气旋、中纬度槽(涡)、副热带高压、水汽通道及高空急流是产生远距离暴雨的主要影响系统。根据诊断特征将远距离暴雨分为两类,揭示其环流差异主要体现在热带气旋和副高位置、水汽输送通道及海平面气压场,并在此基础上归纳了两类远距离暴雨的预报概念模型。   相似文献   

19.
夏草 《气象知识》2013,(5):63-65
对于经常收听收看天气预报节目的人来说,“贝加尔湖”这个地名可谓耳熟能详。因为寒潮入侵我国的3条路线(西路、中路、东路)中的“中路”,就是强冷空气从西伯利亚的贝加尔湖和蒙古国一带,经过我国内蒙古自治区,进入华北直到东南沿海地区的。  相似文献   

20.
采用NCEP/NCAR资料和常规观测资料,对河南省2008年12月3-6日和19-22日的两次强冷空气过程进行对比分析,结果表明:1)两次过程前期中层均为强盛的西北气流,天气晴好,气温偏高.对河南的影响均以强降温和大风天气为主,最大降温幅度接近,3-6日过程冷空气持续时间更长,强降温范围更广;后一过程持续时间较短,降温主要在豫东北部,大风更为明显.2)前一冷空气过程为"不稳定小槽东移发展型",后一过程为"横槽转竖型".冷空气源地均为新地岛以东洋面;均在贝加尔湖一带形成横槽,横槽北侧的东北气流引导极地冷空气加强,形成异常强的冷高压和冷中心,是造成两次强降温的主要原因.3)第一次冷空气为偏北路径,后一过程为典型的中路路径.4)过程中大风与强的正变压、强冷空气下沉运动引起的动量下传及其到地面时的强度和落区存在紧密联系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号