首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
近55年来云南区域性干旱事件的分布特征和变化趋势研究   总被引:1,自引:0,他引:1  
金燕  况雪源  晏红明  万云霞  王鹏 《气象》2018,44(9):1169-1178
本文利用一种简化的区域性干旱事件识别方法,对近55年来云南区域性干旱事件进行了识别,在此基础上,选取区域性干旱事件的持续天数、影响站点数、平均强度、累积强度和极端最大强度这5个单一事件评价指标,构建了云南区域性干旱的综合评估模型,确定干旱等级划分标准。进一步分析表明,云南区域性干旱的发生频次、累积强度和累积影响站次均呈现上升趋势;云南在12、1和3月干旱发生最多,7、8月干旱发生最少;干旱持续天数集中在15~45 d,最长的可达222d;云南多发全省性的干旱且旱情偏重。云南中部区域干旱偏多、偏重发生;在严重的干旱事件中,中部型发生频次最多。  相似文献   

2.
气候变化对淮河蒙洼蓄滞洪区启用风险影响评估   总被引:1,自引:0,他引:1  
基于RCP情景下47个IPCC CMIP5气候模式模拟数据和大尺度水文模型VIC,预估了未来(2021-2050年)气候变化对淮河蒙洼蓄滞洪区启用的可能影响。结果表明:与基准期(1971-2000年)相比,多模式预估淮河上游未来多年平均气温一致呈增加趋势,平均增幅范围0.2~1.7℃。不同模式对降水预估差异较大,但有超过70%的模式预估降水呈增加趋势,平均增幅为3.4%~4.1%。未来气候情景下,王家坝断面洪水总体呈增加趋势,20年一遇的洪水强度平均增幅19%,洪水频率将增大,蒙洼蓄滞洪区启用可能更加频繁,启用的风险加大。  相似文献   

3.
RegCM4模式对云南及周边地区干旱化趋势的预估   总被引:1,自引:0,他引:1  
利用50 km×50 km水平分辨率区域气候模式Reg CM4.0,嵌套全球气候模式输出结果 BCC_CSM1.1,模拟了新的温室气体排放情景RCP(Representative Concentration Pathw ay)下21世纪东亚地区的气候变化,针对模拟结果中云南及周边地区进行分析。对模拟的当代(1986 2005年)气候进行了检验,结果表明,模式能够模拟出该区域平均气温和降水的季节分布,但气温模拟存在一定冷偏差,冷季降水模拟偏多。在RCP8.5情景下,研究区域未来干季(11月至翌年4月)、湿季(5 10月)气温将逐渐升高,同时降水量将减少,干、湿季气温和降水变化存在一定的空间差异。以连续干旱日数CDD、降水与蒸发之差(P-E)、植物根区土壤贮水量RSW 3个指标进行的干旱性分析表明,全球变暖背景下未来云南及周边地区的干旱化趋势将持续并加重,其中干季更明显。  相似文献   

4.
该文利用红河州12个气象观测站1963-2012年逐月降水资料,应用标准化降水指数(SPI)分析全州气象干旱变化特征,结果表明:北部多年平均气象干旱强度最强、干旱发生频率最高,中部和西部次之,南部干旱强度相对较弱但夏季出现干旱的频率较中部和北部高;轻旱出现的次数增加时中旱和重旱出现的频率就会降低,反之中旱和重旱出现的频率就会升高;局域性干旱多发时区域性干旱和全州性干旱出现的频率就会降低,反之区域性干旱和全州性干旱出现的次数就会增多;2000年以后干旱发生次数和干旱强度迅速增加、增强,每10 a中春、夏、秋、冬四季之内轻旱约出现19~20次、中旱约出现5~6次、重旱出现约1~2次、特旱极少出现,局域性干旱出现12~13次、区域性干旱出现8~9次,全州性干旱出现5~6次.  相似文献   

5.
利用云南省2325个国家级台站和区域自动观测站逐小时降水数据,分析了2014~2018年云南雨季和干季的降水量、降水频次和降水强度的空间分布特征以及关键区域的降水日变化演变特征。结果表明:受复杂地形影响,云南不同区域降水特征差异显著,且与我国东部地区显著不同。年均降水量大体呈西南高、西北低的分布特征。对于云南西北部的怒江河谷地区,干、雨季降水均为夜间峰值,降水频次高,但强度较弱。对于云南最西部(99°E以西)的保山德宏地区,该地区累计降水量为云南最大,这一区域各台站日变化峰值均较为一致地出现在上午,在陆地地区较为少见。相邻的普洱和元江河谷位于云南南部(23°N以南),雨季两区域降水相当,但元江河谷在干季与雨季均为突出的夜间至清晨降水峰值,普洱地区雨季则是明显的午后降水峰值。云南中部地区降水量较周边地区明显偏小,该地区降水频次在雨季主要表现为清晨峰值,而在干季却是午后峰值更为突出,这也与我国东部地区降水日变化特征差异明显。   相似文献   

6.
基于CMIP5中的5个全球气候模式统计降尺度的降水、最高和最低气温等数据,利用标准降水蒸发指数(SPEI)和强度-面积-持续时间(IAD)方法识别全球升温1.5℃与2.0℃情景下中亚地区干旱事件,结合30 m分辨率土地利用数据,探讨中亚干旱事件的演变及耕地暴露度变化。结果表明:相比基准期(1986—2005年),中亚地区的降水和潜在蒸发量均有所增加;全球升温1.5℃与2.0℃情景下,中亚地区的干旱事件频次、强度和面积均将增加,其中重旱和极旱事件的频次和影响面积大幅上升,而中旱事件的频次和影响面积持续下降;1986—2005年中亚地区年均干旱耕地暴露度约11.5万km2,全球升温1.5℃和2.0℃情景下,干旱耕地暴露度将分别上升到17.9万km2和28.6万km2,且暴露在极旱下的耕地面积增加最明显。全球升温1.5℃与2.0℃情景下,增加的干旱事件将会严重威胁当地农业生产和粮食安全,中亚地区需对干旱事件采取长期的减缓与适应措施。  相似文献   

7.
1961—2019年长江中下游区域性干旱过程及其变化   总被引:1,自引:0,他引:1  
客观识别区域性干旱过程,评估其强度是开展精准监测、评估干旱影响业务的基础。基于长江中下游地区502个国家级气象站1961—2019年逐日气温、降水资料以及1971—2019年干旱受灾面积,运用气象干旱综合指数(MCI)及区域性干旱过程识别方法,识别出长江中下游地区126次区域性干旱过程,干旱过程的次数随着持续天数增多呈明显减少趋势,决定系数达0.89。1961—2019年长江中下游地区共发生6次特强区域性干旱过程、19次强区域性干旱过程、38次较强区域性干旱过程,其余63次为一般区域性干旱过程,区域性干旱过程的持续天数、平均强度、平均影响面积以及综合强度指数的变化趋势形态各异。长江中下游地区年干旱日数总体呈现“北部多于南部、平原多于山区”的分布特征,且总体呈现“西北部增多、东南部减少”的变化趋势,干旱日数与干旱受灾面积变化趋势较为一致,相关系数达0.66。由典型区域性干旱过程监测评估可知,干旱综合强度指数与干旱站数存在明显的正相关,干旱综合强度指数越强,各等级干旱站数越多;各地干旱日数的多少与干旱受灾面积的大小也较为一致,干旱日数越多的地区,干旱受灾面积越大。总体来看,区域性干旱过程识别方法及评估结果与干旱灾情较为吻合,能较好地识别出区域性干旱过程,并可从持续天数、平均强度、平均影响面积以及干旱综合强度等多角度对干旱过程进行监测评估。   相似文献   

8.
张芯瑜  张琪  韩佳昊 《气象科学》2021,41(1):136-142
基于降水量历史观测数据和气候模式预估数据,采用标准化降水量指数(Standandized Precipitation Index, SPI)识别干旱事件,从干旱发生的频率和强度特征分析其危险性,研究东北地区当前及未来不同气候变化情景下干旱时空变化特征。结果显示:(1)bcc-csm1-1对东北地区降水的模拟效果较好;(2)东北地区年降水量东南多西部少,未来远期较近期降水增幅更为明显,中、西部地区降水增幅略高于其他地区;(3)仅在RCP8.5情景下未来近期研究区中部地区干旱有加重的趋势,主要源于该时段夏季降水的变化,其余时段皆呈干旱危险性减弱。  相似文献   

9.
基于CMIP5资料的云南及周边地区未来50年气候预估   总被引:6,自引:1,他引:5  
利用CRU(Climatic Research Unit)高分辨率观测数据及云南省124站资料,检验了参与IPCC AR5(政府间气候变化专门委员会第5次评估报告)的7个全球海气耦合模式(Coupled Model Intercomparison Program 5,CMIP5)及模式集合平均对云南及周边地区气温和降水的模拟性能,同时进行该区域不同温室气体排放量情景下2006~2055年的气候预估。结果表明:全球海气耦合模式对该区域气温和降水气候场空间分布、气温的线性趋势和春、夏季降水的年代际振荡特征具有一定的模拟能力,且模式集合能力优于单一模式,气温模拟优于降水模拟,但春、夏季的降水好于其他季节,使得全年的总降水好于秋、冬两季。对未来情景预估表明,研究区域未来50年气温呈现显著的线性上升趋势,降水量保持年代际振荡特征并有所增加,2020年之前我国云南及其南部区域将经历相对的干旱时期。  相似文献   

10.
CMIP5模式对我国西南地区干湿季降水的模拟和预估   总被引:6,自引:1,他引:5  
利用降水观测资料, 评估了参加国际耦合模式比较计划第五阶段(CMIP5)的34个全球模式对1986~2005年我国西南地区干湿季降水的模拟能力。结果表明, 34个CMIP5模式中分别有30和25个模式模拟的干季和湿季降水偏多。34个模式对我国西南地区干湿季降水的模拟能力差异较大, 大约半数模式的模拟值与观测值的空间相关系数通过了99%的信度检验, 且标准差之比小于2。利用两个技巧评分标准, 分别挑选出了对干湿季降水模拟最优的9个模式。最优模式集合平均结果要优于34个模式的集合平均, 更要优于大多数单个模式。进一步利用最优的9个模式的集合平均对RCP4.5和RCP8.5两种典型浓度路径下我国西南地区干湿季降水的变化进行了预估。相对于1986~2005年气候平均态, 在21世纪初期(2016~2035年), 我国西南地区干季降水变化表现为川西高原降水增多, 而四川盆地及攀西地区、重庆、贵州和云南的大部分地区降水减少;湿季降水变化表现为川西高原、贵州和广西大部分地区降水增多, 而四川盆地及攀西地区和云南降水减少。在21世纪中期(2046~2065年)和末期(2080~2099年), 西南地区干湿季降水普遍增多。在RCP8.5情景下, 降水的变化幅度要强于RCP4.5情景。  相似文献   

11.
气候变化影响了水循环与地区的水量平衡过程,一定程度上改变了干旱的形成与演变条件。以标准化降水量与蒸散发量差值表征水分偏离正常程度的标准化降水蒸散发指数(SPEI)为基础,从多时间尺度联合的视角建立联合干旱指数(JDI),并以广东韶关为例分析修正的新指数JDI在干旱监测中的准确性和有效性。结果表明,综合了不同时间尺度干旱特征信息的JDI能够较全面地反映干旱的形成与演进过程。通过对干旱监测的评价以及与实际旱情的对比分析,验证了联合干旱指数JDI在实际干旱监测中的准确性和有效性,其可作为未来干旱监测的新理想指标。  相似文献   

12.
1960—2010年中国西南地区区域性气象干旱事件的特征分析   总被引:4,自引:1,他引:3  
利用区域性极端事件客观识别法(Objective Identification Technique for Regional Extreme Events,OITREE)和1960—2010年中国西南地区(四川、云南、贵州省和重庆市)101个站综合气象干旱指数(CI)进行区域性气象干旱事件识别研究,确定了相应的OITREE方法参数组,并识别得出87次中国西南地区区域性气象干旱事件,其中9次达到极端强度,而2009年9月—2010年4月发生的特大干旱是中国西南地区近50年最严重的区域性气象干旱事件。进一步分析表明,中国西南地区区域性气象干旱事件的持续时间一般为10—80 d,最长可达231 d;11—4月是西南地区的旱季。云南和四川南部是西南干旱的频发和强度中心地区;强的(极端及重度)干旱事件可分为5种分布类型,其中南部型出现机会最多。过去50年西南地区区域性气象干旱事件频次显著增多,强度有所增强,其主要原因可能是该地区降水量显著减少所致,而气温升高也起到了推波助澜的作用。  相似文献   

13.
利用区域气候模式RegCM4的逐日气温和降水资料,预估1.5℃和2.0℃升温情景下,东北地区平均气候和极端气候事件的变化。结果表明:RCP4.5排放情景下,模式预计在2030年和2044年左右稳定达到1.5℃和2.0℃升温;两种升温情景下,东北地区气温、积温、生长季长度均呈增加趋势,且增幅随着升温阈值的升高而增加;1.5℃升温情景下,年平均气温增幅为1.19℃,年平均降水距平百分率增幅为5.78%,积温增加247.1℃·d,生长季长度延长7.0 d;2.0℃升温情景下气温、积温、生长季长度增幅较1.5℃升温情景下显著,但是年和四季降水普遍减少,年降水距平百分率减小1.96%。两种升温情景下,极端高温事件显著增加,极端低温事件显著减少,极端降水事件普遍增加。霜冻日数、结冰日数均呈显著减少趋势,热浪持续指数呈显著增加趋势;未来东北地区降水极端性增强,不仅单次降水过程的量级增大,极端降水过程的量级也明显增大,随着升温阈值的增大,极端降水的强度也逐渐增大。  相似文献   

14.
Zi-An GE  Lin CHEN  Tim LI  Lu WANG 《大气科学进展》2022,39(10):1673-1692
The middle and lower Yangtze River basin (MLYRB) suffered persistent heavy rainfall in summer 2020, with nearly continuous rainfall for about six consecutive weeks. How the likelihood of persistent heavy rainfall resembling that which occurred over the MLYRB in summer 2020 (hereafter 2020PHR-like event) would change under global warming is investigated. An index that reflects maximum accumulated precipitation during a consecutive five-week period in summer (Rx35day) is introduced. This accumulated precipitation index in summer 2020 is 60% stronger than the climatology, and a statistical analysis further shows that the 2020 event is a 1-in-70-year event. The model projection results derived from the 50-member ensemble of CanESM2 and the multimodel ensemble (MME) of the CMIP5 and CMIP6 models show that the occurrence probability of the 2020PHR-like event will dramatically increase under global warming. Based on the Kolmogorov–Smirnoff test, one-third of the CMIP5 and CMIP6 models that have reasonable performance in reproducing the 2020PHR-like event in their historical simulations are selected for the future projection study. The CMIP5 and CMIP6 MME results show that the occurrence probability of the 2020PHR-like event under the present-day climate will be double under lower-emission scenarios (CMIP5 RCP4.5, CMIP6 SSP1-2.6, and SSP2-4.5) and 3–5 times greater under higher-emission scenarios (3.0 times for CMIP5 RCP8.5, 2.9 times for CMIP6 SSP3-7.0, and 4.8 times for CMIP6 SSP5-8.5). The inter-model spread of the probability change is small, lending confidence to the projection results. The results provide a scientific reference for mitigation of and adaptation to future climate change.  相似文献   

15.
Winter wheat is one of China’s most important staple food crops, and its production is strongly influenced by weather, especially droughts. As a result, the impact of drought on the production of winter wheat is associated with the food security of China. Simulations of future climate for scenarios A2 and A1B provided by GFDL-CM2, MPI_ECHAM5, MRI_CGCM2, NCAR_CCSM3, and UKMO_HADCM3 during 2001-2100 are used to project the influence of drought on winter wheat yields in North China. Winter wheat yields are simulated using the crop model WOFOST (WOrld FOod STudies). Future changes in temperature and precipitation are analyzed. Temperature is projected to increase by 3.9-5.5 for scenario A2 and by 2.9-5.1 for scenario A1B, with fairly large interannual variability. Mean precipitation during the growing season is projected to increase by 16.7 and 8.6 mm (10 yr)-1 , with spring precipitation increasing by 9.3 and 4.8 mm (10 yr)-1 from 2012-2100 for scenarios A2 and A1B, respectively. For the next 10-30 years (2012-2040), neither the growing season precipitation nor the spring precipitation over North China is projected to increase by either scenario. Assuming constant winter wheat varieties and agricultural practices, the influence of drought induced by short rain on winter wheat yields in North China is simulated using the WOFOST crop model. The drought index is projected to decrease by 9.7% according to scenario A2 and by 10.3% according to scenario A1B during 2012-2100. This indicates that the drought influence on winter wheat yields may be relieved over that period by projected increases in rain and temperature as well as changes in the growth stage of winter wheat. However, drought may be more severe in the near future, as indicated by the results for the next 10-30 years.  相似文献   

16.
An objective identification technique for regional extreme events(OITREE) and the daily compositedrought index(CI) at 101 stations in Southwest China(including Sichuan, Yunnan, Guizhou, and Chongqing)are used to detect regional meteorological drought events between 1960 and 2010. Values of the parameters of the OITREE method are determined. A total of 87 drought events are identified, including 9 extreme events. The 2009–2010 drought is the most serious in Southwest China during the past 50 years. The regional meteorological drought events during 1960–2010 generally last for 10–80 days, with the longest being 231days. Droughts are more common from November to next April, and less common in the remaining months.Droughts occur more often and with greater intensity in Yunnan and southern Sichuan than in other parts of Southwest China. Strong(extreme and severe) regional meteorological drought events can be divided into five types. The southern type has occurred most frequently, and Yunnan is the area most frequently stricken by extreme and severe drought events. The regional meteorological drought events in Southwest China have increased in both frequency and intensity over the study period, and the main reason appears to be a significant decrease in precipitation over this region, but a simultaneous increase in temperature also contributes.  相似文献   

17.
刘永强 《大气科学》2016,40(1):142-156
历史干旱事件的观测和数值研究表明,植被可通过地—气水分、能量和其他通量交换影响和反馈干旱.本研究旨在了解气候变化情形下植被对干旱趋势的影响和机制.应用美国大陆七个动力气候降尺度区域气候变化情景,计算和分析了现在和未来的干旱指数、空间分布和季节变化.通过比较同一气候区两种植被类型区域干旱强度和频率理解植被的影响.集成分析结果表明,未来美国干旱很可能增加,其中大平原中部所有季节都很显著,而东南和西南地区夏秋更为显著.植被对干旱趋势的影响和气候区有关.在温暖和潮湿/干燥气候区,林地(草地)未来干旱强度和频率的增幅大于对应的农田(荒漠)区域,因此植被可以放大未来干旱的风险.相反,在寒冷和潮湿气候区,林地(草地)区域未来干旱强度和频率增幅较小,表明植被放大未来干旱的作用可能只在某些气候情形下出现.这种植被对未来干旱影响的复杂性和对气候区的依赖性对气候模式提供可靠的干旱模拟和预测及森林管理部门制定适应和减缓气候变化的策略提出了新的挑战.  相似文献   

18.
Recent global-scale analyses of the CMIP3 model projections for the twenty-first century indicate a strong, coherent decreased precipitation response over Central America and the Intra-America Seas region. We explore this regional response and examine the models’ skill in representing present-day climate over this region. For much of Central America, the annual cycle of precipitation is characterized by a rainy season that extends from May to October with a period of reduced precipitation in July and August called the mid-summer drought. A comparison of the climate of the twentieth century simulations (20c3m) with observations over the period 1961–1990 shows that nearly all models underestimate precipitation over Central America, due in part to an underestimation of sea surface temperatures over the tropical North Atlantic and an excessively smooth representation of regional topographical features. However, many of the models capture the mid-summer drought. Differences between the A1B scenario (2061–2090) and 20c3m (1961–1990) simulations show decreased precipitation in the future climate scenario, mostly in June and July, just before and during the onset of the mid-summer drought. We thus hypothesize that the simulated twenty-first century drying over Central America represents an early onset and intensification of the mid-summer drought. An analysis of circulation changes indicates that the westward expansion and intensification of the North Atlantic subtropical high associated with the mid-summer drought occurs earlier in the A1B simulations, along with stronger low-level easterlies. The eastern Pacific inter-tropical convergence zone is also located further southward in the scenario simulations. There are some indications that these changes could be forced by ENSO-like warming of the tropical eastern Pacific and increased land–ocean heating contrasts over the North American continent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号