首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 210 毫秒
1.
根据陕西省99个气象台站自建站至1990年的气象资料记载,近40年,极端最高气温达到或超过40℃的有44个县(市),极端最低气温达到或低于-20℃的有40个县(市).其中,极端最高气温最高值为43.4℃(1966年,长安),极端最低气温最低值为-32.7℃  相似文献   

2.
长沙市夏季百叶箱内外温度特征   总被引:1,自引:0,他引:1  
陈朝晖  范昱 《气象科技》2014,42(5):742-747
对长沙市2011、2012年夏季(6—9月)百叶箱内外温度同步观测资料进行统计分析,结果表明:百叶箱内外温度呈现白天箱外温度高于箱内,晚上低于箱内的日变化特征,但不同类型天气交替时间存在早晚不一。箱内外夏季平均温度、极端最高温度的变化趋势一致,但箱外温度高于箱内,且不同类型天气百叶箱内外温度存在差异,阴雨天平均相差1.2℃,多云差2.8℃,晴天差3.1℃,极端最高温差达6.4℃。特别是日最高温度大于等于35℃的高温日数,2年箱内共出现61天,而箱外多达125天;箱内极端最高温度为38.9℃,而箱外极端最高温度高达42.0℃。因此,在高温预报和公共气象服务工作中,应当要考虑外界温度(百叶箱外温度)与百叶箱内温度之间存在的差异。  相似文献   

3.
该文利用贵州省1960—2019年82个地面观测站逐日最高温度资料,计算1981—2010年极端高温阈值。极端高温阈值分布由东向西递减,赤水最高41.8 ℃,威宁最低30.0 ℃,2019年极端高温主要出现在贵阳、黔东南、黔南等地。1960—2019年贵州省极端高温仅在3—9月出现,其中8月最多,3月最少,8月的贡献占全年的48.5%,且2019年8月的极端高温站次数为63次,占2019年的88.7%,比8月的60 a平均高7.5倍。21世纪10年代是极端高温的频发时段,其中2019年8月的极端高温站次数和站次比分别是60 a同期的第3和第2高。2019年8月,贵州上空100 hPa受青藏高压异常北抬东伸控制,500 hPa受大陆副高外围及槽后偏北气流控制,地面有热低压的活动及北上超强台风“利奇马”等影响,导致了极端高温,其中有11个测站最高气温突破历史极值。  相似文献   

4.
选用1958—2009年聊城市3个国家气象站逐月极端最高气温和极端最低气温资料,采用累积距平、趋势系数方法,分析了聊城地区极端最高、最低气温变化的特征,得出:52a来聊城年极端最高气温变化趋势分为一个升温阶段和一个降温阶段,总体呈下降趋势,趋势系数为-0.3383。年极端最低气温变化趋势分为3个降温阶段和2个升温阶段,总体呈上升趋势,趋势系数为0.1849。极值年较差在减小;各季极端最高、极端最低气温呈非对称性变化。秋季各地极端最高气温增温幅度超过极端最低气温。春、夏、冬季极端最低气温增温而极端最高气温降温,且该特点在夏季表现得更突出;月极端气温变化范围在减小,极端温度变化趋于缓和,特别是进入21世纪,月极端最低和最高气温较20世纪90年代平均分别上升了1.6℃,1.1℃。  相似文献   

5.
地面温度观测包括地面温度,地面最高(低)温度等三项内容。在实际工作中,时有遇到这样的问题:地面最高温度明显低于或高于地面温度的情况(指在极值出现前升温过程中的对比观测)。前一种情况在挑选当天地面极端最高温度时很容易遇见,并且已引起了重视,后一种情况却往往被人们  相似文献   

6.
利用1981—2016年德令哈市国家基本气象站地面温度和气温数据资料,从年、季和月3个方面研究地面温度的变化特征。结果表明:近36a德令哈市年平均地面温度、地面最高温度和地面最低温度分别以0.811℃/10a、0.063℃/10a和1.247℃/10a的气候倾向率呈上升趋势;各季平均地面温度和地面最低温度呈上升趋势,春季平均地面最高温度呈上升趋势而夏秋冬三季呈下降趋势;月平均地面温度和地面最高最低温度的变化呈单峰式特点,各月平均地面温度和地面最低温度呈上升趋势,平均地面最高温度1—6月份呈上升趋势,7—12月份呈下降趋势;年平均地面温度和地面最低温度分别在1997年和2001年出现突变,年平均地面最高温度未出现突变;年、季、月平均地面温度与平均气温呈显著的正相关。  相似文献   

7.
近50a来中国大城市体感温度变化   总被引:3,自引:2,他引:1  
采用全国主要省会城市的地面气象资料,利用MEMI模型计算了1955-2005年的体感温度(PET-physiological equivalent temperature),并分析了年和季节平均体感温度演化的时间和空间特征.结果表明:近50a来平均体感温度增加了1.745 ℃,变化速率约为0.349 ℃/10a,比同期的温度增率高,体感温度的增加主要发生在最近25a里;变化速率的季节差异也很明显,春季高达0.457 ℃/10a,冬季为0.443 ℃/10a,秋季为0.361 ℃/10a,夏季最小仅为0.129 ℃/10a;我国主要省会城市的极端冷日数在逐年将少,极端热日数在逐年增加;从区域分布上看,只有四个城市(贵阳、乌鲁木齐、长沙、重庆)PET均值在减小,其余城市都在增加,以哈尔滨、海口的变化速率最大.  相似文献   

8.
自动气象站与人工观测的数据对比分析   总被引:16,自引:2,他引:14  
王晓默  薛峰  章磊 《气象科技》2007,35(4):602-606
利用2003年1月至2004年12月兖州自动气象站观测资料和人工观测资料,对各气象要素进行了对比分析并探讨了两者差异形成的原因。结果表明:两种观测方式的观测数据虽然有一定差异,但在允许的精度范围内,其中平均地面最低温度、平均地面最高温度、地面极端最低温度和地面极端最高温度总体差值较大。除仪器的性能和工作原理造成的差异外,观测环境的变化、人为操作和特殊的天气现象也是造成差异的重要原因。  相似文献   

9.
文章使用常规气象观测资料及内蒙古119个气象站逐小时自动观测资料对2018年内蒙古出现的日最高气温≥35.0℃的高温天气进行了统计分析。结果表明:全年有78个国家站出现≥35.0℃的高温天气495次,站点主要分布在阿拉善盟、乌海市、巴彦淖尔市西南部、锡林郭勒盟西北部、赤峰市中北部、通辽市中部、兴安盟东南部等地;高温天气集中发生在6、7月,7月最多;日最高气温主要出现在15—17时,呈单峰型,16时最多;分析高温站次超过15次的日期,基本没有全区性的高温天气;极端高温事件比较少,没有一个站高温超过历史极值;高温发生时高空对应高压(脊),低层处于暖区,地面处于低压区,地面风速多在4.0m·s~(-1)以上,高于日平均风速,最高温度出现时风速超过10.0m·s~(-1)的多达8站次。  相似文献   

10.
按照《地面气象观测规范》规定,每天20时正点观测都要进行空气和地面极端温度观测,并随即调整上述温度表:观测时要注意复读,以避免误读。一般说来,即使发生5℃的误读是易发现的。但是由于观测员一时疏忽而造成5℃以下的误读就较难以发现,尤其是地面最高温度。虽然发现了,但温度表已经过调整,也无法挽回损失。  相似文献   

11.
文章利用呼伦贝尔市域内16个国家级气象站气温、降水数据以及MODIS卫星Terra 1000m分辨率数据,运用统计学相关分析方法和温度植被指数法(简称TVDI),对呼伦贝尔市2016年夏季干旱情况进行监测分析。夏季呼伦贝尔市降水偏少,温度偏高。其中7月极端最高温度较历年同期偏高0.3~7.9℃,降水距平百分率值为-17.3%~-81.6%;8月极端最高温度比历年同期偏高3.2~10.8℃,降水距平百分率值约为-36.3%~-92.6%。满洲里市、新巴尔虎左旗、新巴尔虎右旗、陈巴尔虎旗、海拉尔市以及鄂温克旗的高温干旱情况最为严重。从卫星反演的土壤湿度数据可知,呼伦贝尔市西部地区干旱严重,东部地区受灾较轻,其反演结果与降水量分布图基本相同。  相似文献   

12.
石家庄温度预报检验及影响因子分析   总被引:4,自引:0,他引:4       下载免费PDF全文
对石家庄市2004年11月-2008年3月的温度预报进行了质量检验。结果表明:石家庄最低气温和最高气温的平均绝对误差均低于2 ℃,均方根误差低于3 ℃,最低气温预报准确率明显优于最高气温。进而对温度预报误差较大的样本出现原因进行了逐日客观分析,并通过自然正交函数分解(EOF)法,对不同情形下石家庄及周边县站极端最高、最低气温EOF分解特征向量场的变化特征对比,推断出影响气温预报偏差的主要因子大致相同,焚风是导致温度预报出现较大误差的重要原因。  相似文献   

13.
利用黄石市气象台1954年1月1日至2013年12月31日共60a的地面观测资料,选取逐日的平均气温、最高气温和最低气温做为研究对象,采用气候趋势分析、相关分析、Mann-Kendall突变检验分析和小波分析等方法对黄石市极值气温变化特征进行分析,结果表明:(1)1954-2013黄石市年平均气温、平均最高气温和平均最低气温呈波动上升的趋势,其中年平均气温和平均最低气温上升趋势显著,对于近60a黄石市年平均气温的升高,年平均最低气温的贡献是主要的;(2)近60a黄石市极端最高气温和极端最低气温均呈波动上升的趋势,其中极端最低气温上升趋势显著,1984-2013年极端最低气温的升高是造成近60年极端最低气温显著升高的主要原因;(3)近60a黄石市年最大日较差呈波动下降的趋势,但不显著,平均最低气温的上升速度明显大于平均最高气温的上升速度,极端最低气温的上升速度明显大于极端最高气温的上升速度,这造成了气温日较差的不断减小;(4)近60a黄石市气温(年平均气温、年最高\最低气温、极端最高\最低气温)的显著升高,与最高气温出现在20℃以上的天数增加和出现在20℃以下的天数减少有关,与最低气温出现在10℃以上的天数增加和出现在10℃以下的天数减少有关,其中T0℃的高温日数和低温日数的显著减少以及20≤T30℃的低温日数的显著增加贡献最大。  相似文献   

14.
邱泉成 《气象》1991,17(9):65-65
众所周知,一天中的地面最高温度值一般出现在午后13时前后。本站通过多年大量的比较观测表明:14时地面最高温度补测值普遍比20时的地面最高温度观测值高出0.5—1.0℃。例如1988—1990年14时进行地面最高补测的879次中就有507次高于20时观测  相似文献   

15.
洛阳分县温度周滚动预报系统   总被引:1,自引:0,他引:1  
利用洛阳9县(市)2002年11月~2004年9月逐日最高、最低气温资料,应用欧洲中心数值预报产品,建立了洛阳9个县(市)的温度周滚动预报方程。2004~2005年试报结果表明:24~48 h预报准确率在70%左右,绝对误差在2℃以内;24~144 h预报准确率在62%~70%之间,绝对误差在2℃左右;最低气温预报效果要好于最高气温,最低气温的绝对误差与准确率分别为1.98℃和67%,最高气温的绝对误差与准确率分别为2.28℃和61%。  相似文献   

16.
数值预报产品在夏季持续高温预报中的释用   总被引:6,自引:0,他引:6  
利用 1999~ 2 0 0 2年 6~ 8月 96~ 192h日本数值预报产品 85 0hPa气温与吉林省的日平均气温、阶段性高温及极端最高气温 (长春市 )资料 ,通过线性分析 ,找出了日本数值预报产品的 85 0hPa气温与吉林省地面日平均气温、阶段性高温及极端最高气温的对应关系 :吉林省 6~ 8月日平均气温在 96~ 192h的 85 0hPa日本数值预报长春站日平均值上加 6 6~ 4 1℃ ,6~ 8月的极端最高气温在相应的日本数值预报产品上加 9 3~ 13 0℃。  相似文献   

17.
选取广东省通过均一性检验的37个代表性测站1961~2008年逐日最高、最低气温资料,采用线性趋势分析、空间插值等方法,分析了广东省年和季极端最高、最低气温的时空变化特征。结果表明:广东省年极端最高、最低气温均呈明显增温趋势并存在非对称性变化,年极端最低气温的线性增温速率(0.044℃/年)明显高于极端最高气温的线性增温速率(0.012℃/年)。极端最高、最低气温的变化存在明显的季节差异和地区差异,增温速率均在冬季最大,春季最小;珠江三角洲、东南沿海地区增温最明显,粤西、粤东北地区增温不明显。  相似文献   

18.
2007年7月的盛夏时节,在地面观测工作中发现每次读取地面最高温度时人工观测与自动观测数据差值多数都达到1.0℃以上。为揭开数据差值背后的秘密,我们对兴安盟索伦观测场2007年7月自动站与人工站地面最高温度数据进行了分析。在正常天气背景下,土壤表面的日最高温度一般出现在1  相似文献   

19.
对嘉兴市2006、2007年夏季(6-9月)生态观测场水泥地面温度与同步观测的百叶箱自动观测空气温度资料进行统计分析,结果表明:夏季水泥地温的平均温度、极端最高温度均与百叶箱温度在日、月、季同步变化,但差异特点明显,最大差异表现在夏季日最高温度上;夏季24 h各时次的温度变化与百叶箱温度比较,水泥地温度具有极端最高温度出现早、高温时间短、差异大、早晨最低温度接近并略偏高的特性;夏季水泥地面最高温度与日照、降水、风向风速、相对湿度等要素密切相关。采用最优子集回归方案和卡尔曼二次滤波预报方案对水泥地面最高温度作定量预报输出,结合不同天气(晴天、多云到阴、降水)类型给予不同的人工修正,能在实际专业预报服务中取得较好的效果,可提高夏季城市专项气象服务水平。  相似文献   

20.
利用黔西南州8个国家气象观测站1961~2020年的极端最高、最低和平均最高、最低气温资料,以年代为周期,分析近60年黔西南州极端最高、最低和平均最高、最低气温的时空演变特征。结果表明:夏季,北亚热带季风湿润气候区及南亚热带季风湿润气候区的平均最高气温、平均极端最高气温在60年代至80年代处于持续上升趋势,在90年代略下滑,进入21世纪后又持续上升。北亚热带季风湿润气候区,近60年平均最高气温升高0.96℃,平均极端最高气温升高0.43℃;南亚热带季风湿润气候区近60年平均最高气温升高0.73℃,平均极端最高气温升高0.62℃。冬季,北亚热带季风湿润气候区平均最低气温及平均极端最低气温在70年代至80年代处于持续上升趋势,90年代略下滑,而进入21世纪又转为上升,近60年平均最低气温升高0.92℃,平均极端最低气温升高1.64℃;南亚热带季风湿润气候区,冬季平均最低气温及平均极端最低气温近60年呈持续上升趋势,平均最低气温升高2.35℃,平均极端最低气温升高3.32℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号