首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
利用昆明、北京两座城市内建筑物为研究对象, 对其不同朝向外墙壁面、屋顶面表面温度及壁面近旁气温进行了观测, 分析了建筑物外墙壁面表面温度及其近旁气温的垂直分布以及壁面、屋顶对周围大气的热力效应特征, 并对两座城市内建筑物的热力状况进行了比较分析。研究表明:建筑物表面温度受太阳辐射的影响要比近旁气温大得多, 一般说来, 壁面昼间是热源, 夜间是热汇; 受研究对象所在的大区域气候、人类活动等影响, 建筑物外表面的热力效应有许多异同; 建筑物屋顶面与近旁空气间的平均热通量基本为正值, 呈现较强的热源效应, 其热力效应强度与太阳辐射呈现正相关; 城市建筑物的外表面 (壁面、屋顶面) 已成为城市区域内有别于城市地面, 且对城市立体气候的形成具有不可忽视影响的热力作用面。  相似文献   

2.
低纬高原城市冬季南北朝向室内温湿特征的初步分析   总被引:8,自引:1,他引:8  
通过对低纬城市-昆明冬季室内、外气温观测资料的分析,探讨了不同天气下南北朝室内的气温、湿度特征。得出昆明地区冬季各种天气状况下室内最低气温和日均气温的增温效应均十分显著,与庭院相比,南向室内的增温幅度为7.7-10.0℃和4.6-5.8℃;北向室内为4.6-7.0℃和1.3-4.4℃;最高气温南向室内高于室外,而北向室内一般低于室外。另外,建筑物不但可维持较高的室同温度,而且减缓了室内气温的变化幅度,不论南向室内还是北向室内,气温日较差均小于室外,变幅仅为室外的40%-48%(南向)和20%-30%(北向),且最高气温出现时间比室外约迟2小时,显示了建筑物内温度变化的惰性。研究还得出南向室内相对湿度均小于北向,南北差异以晴天最大,阴天最小。室内相对湿度的日变化特征为夜间湿度大,变化小,昼间湿度小,变化大。以上结果可为低纬城市气候的深入研究,建筑的合理设计提供科学基础。  相似文献   

3.
以低纬度高原城市昆明市为对象,利用城市庭院内1月(冬季)和7月(夏季)不同高度气温实测资料和不同下垫面(球场、草地和屋顶)气温的实测资料,分析了城市庭院气温垂直分布特征及不同下垫面对其的影响。得出:城市庭院气温垂直分布在不同时间(季节、昼夜)具有不同特征;在后半夜和下午,庭院气温垂直变化程度大于时间变化;而上午和前半夜时间变化程度大于垂直变化;在冬季屋顶面对屋顶高度附近的庭院气温具有较强的加热作用,使得庭院气温在屋顶高度附近形成逆温,导致垂直分布曲线发生改变;混凝土结构的下垫面,对庭院近地层大气具有加热作用,而草地则具有冷却作用,其效应在冬季明显。  相似文献   

4.
昆明城市热岛效应立体分布特征   总被引:17,自引:10,他引:17  
利用低纬高原城市昆明城内外垂直观测资料,探讨了低纬高原城市的城市气候立体分布特征,通过比较分析,得出如下初步结果:昆明城市热岛效应不仅在地面附近存在,而且在城市上空也存在;其城市热岛效应为夜间强,影响高度高(>50m);昼间弱,影响高度低(<50m);近地面强,上空弱;昆明城市区域的气温垂直分布昼间为随高度增高温度递减,而夜间为逆温分布;受昆明城市周边环境影响,昆明城市热岛效应最大值中心呈现随高度增高而偏多现象。如此的气温立体空间分布,将对城市污染扩散、建筑物的设计、城市节能等产生影响。  相似文献   

5.
应用城市冠层模式研究建筑物形态对城市边界层的影响   总被引:5,自引:1,他引:4  
文中将城市冠层模式耦合到南京大学城市尺度边界层模式中,通过模拟对比发现,耦合模式对城市地区气温模拟结果更接近于观测值,尤其是对城市地区夜间气温模拟的改进.运用改进耦合模式通过多个敏感性试验的模拟,从城市面积扩张、建筑物高度增加、建筑物分布密度变化等角度研究城市建筑物三维几何形态变化对城市边界层及城市气象环境的影响,试验结果表明:(1)城市面积扩张使得城市下垫面的热通量增大,热力湍流活动增强,动量通量输送增强,城市湍能增大,湍流扩散系数变大,城市气温升高,且对不同时刻城市区域大气层结稳定度均有不同程度的影响.(2)建筑物高度增加增大了城市下垫面的粗糙度和零平面位移.同时也增大了城市街渠高宽比.城市建筑物越高,白天城市地区地表热通量越小,城市上空大气温度越低,平均风速减小,湍能减小;夜间由于高大建筑物释放储热比低矮建筑物要多,其热力湍流相对活跃,地表热通量增大,使得城市区域气温较高.(3)建筑物密度增大,会减小城市下垫面的粗糙度同时增强街渠对辐射的影响.建筑物密度增大在白天会减小地表热通量和动量通量,使城市气温降低,平均风速增大,城市湍流活动能力减弱;夜间城市释放较多储热使得气温较高.  相似文献   

6.
人为热对城市边界层结构影响研究   总被引:17,自引:8,他引:17       下载免费PDF全文
蒋维楣  陈燕 《大气科学》2007,31(1):37-47
为研究不同人为热源引入方案对城市边界层结构模拟性能的影响,以杭州地区为例,在区域边界层模式(RBLM)中引入一种新人为热源处理方案,即对城市中的人为热排放分层考虑,将低层的人为热源加入地表能量平衡方程,将高层人为热源分布与建筑物高度和密度联系起来,加入热量方程中,同时考虑了人为热源强度的日变化。数值试验结果表明,这是一种比较合理的处理方案。人为热源引入方案对城市边界层结构的影响表现在:气温、湍流动能增加,并通过湍流交换输送到较高层大气;大气不稳定度增加,混合层高度最高抬升了400 m;城市地区上升速度增加,热岛环流加强;白天人为热源一般为太阳辐射的10%~20%,对地气交换的影响较小。夜间没有了太阳辐射能量,对地气交换的影响比日间更明显;冬季低层湍流活动加强,湍能约增加40%,大气层结稳定度降低。  相似文献   

7.
何晓凤  蒋维楣  刘红年 《大气科学》2008,32(6):1445-1457
用南京大学区域边界层模式NJU-RBLM, 通过对一组理想试验的模拟, 研究了TEB方案 (town energy balance) 和SVAT方案 (soil-vegetation-atmosphere transfer) 模拟城市热岛现象的差异及本质原因, 发现TEB方案对城市热岛 (UHI) 尤其是夜间UHI模拟效果更优, 这是由于TEB方案具备较强模拟城市储热项的能力形成的。此外, 深入探讨UHI对大气边界层热力结构的影响, 发现UHI现象使城市和郊区的近地层位温廓线在清晨和傍晚都存在明显差异, 同时使城市区域气温全天高于郊区, 且日间城乡温差能达到的高度明显高于夜间。分析人为热源和建筑物冠层对UHI的影响时发现: 人为热源对UHI的影响在夜间强于白天, 而建筑物对白天城市湍能的影响强于人为热源的作用。  相似文献   

8.
亚洲季风区大气热源汇的气候特征   总被引:7,自引:4,他引:3  
陈玉英  巩远发  魏娜 《气象科学》2008,28(3):251-257
用1950-2005 a共56年NCEP/NCAR再分析资料和倒算法计算了全球的大气热源、热汇,分析了亚洲季风区的大气热源、热汇的基本气候特征和年变化气候特征,主要结论包括:(1)从气候平均看,亚洲季风区的南亚-热带印度洋-热带西太平洋地区是全球范围最大的大气热源区,西太平洋暖池区是最强的热源中心.(2)在亚洲季风区,大气热源、热汇的季节差异明显.从青藏高原南侧和孟加拉湾北部到中国东部和南海地区,冬季是较强的热汇区,夏季则是强的热源区;而在北太平洋中纬度和澳大利亚北部洋面上,冬季是强热源区,夏季是弱的热源或热汇.(3)亚洲季风区中,青藏高原、东亚大陆、西太平洋地区三个经度带内热源、热汇的年变化明显不同.  相似文献   

9.
利用1948-2013年NCEP/NCAR逐日和逐月再分析资料分析了青藏高原(下称高原)大气冷热源转换日期与高原季风爆发日期及二者强度的关系。结果表明:近66年来高原Q1呈现明显的季节变化,热汇最强在1月,热源最强在7月;高原由热汇转变为热源的日期大致在15候,而热源转变为热汇则大致在58候;高原热力作用与高原夏季风强度呈正相关关系,即当大气热源强(弱)时,高原夏季风强(弱);热源强(弱)年高原主体气流辐合较强(弱),而高原四周辐散较强(弱);高原主体与四周大气热力差异也呈明显的季节转变,7月高原主体与其四周大气的热力差和高原季风呈正相关,即当高原主体热源较四周大气强(弱)时,高原夏季风就越强(弱)。  相似文献   

10.
1961—2001年青藏高原大气热源的气候特征   总被引:3,自引:1,他引:2  
文中利用ECMWF逐日再分析资料,用"倒算法"计算了1961-2001年青藏高原上空热量源汇,并分析了高原上空大气热量分布的气候状况.结果表明:(1)3-9月,高原上空为热源,热源最强在6月;10-2月是热汇,热汇最强在12月.整个高原上空,全年大气热鼋状况主要表现为热源持续时间长,且热源强度较热汇要大得多.对整层热源贡献最大的因子是垂直输送项.(2)从大气加热的垂直廓线来看,热源最大值层出现的高度随季节基本没有变化,集中在600-500 hPa,但加热的强度和厚度却随季节是变化的;而热汇最大值层和强度随季节是变化的.(3)高原整层(Q1)的水平分布复杂,表现出强的区域性特征:高原热源西部变化比东部迅速,4-8月西部热源强度明显强于东部.春季,高原西部热源增强迅速,在5月出现200 W/m2中心,比东部提前1个月.7月整个高原热源开始向南减弱,西部热源至10月转为热汇,比东部又提前了1个月.(4)自1979年后,各季节高原热源变化均表现出1990年前后的气候转变信号.夏季,高原热源变率表现为南北反位相型,其他季节为高原的中部-东北部与高原东南部反位相型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号