首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
利用2000~2007年8年的逐日08时和20时的700 hPa高空资料,对西南低涡进行普查分析,获得了2000~2007年期间西南低涡活动的一些统计事实:揭示了西南低涡年、季、月、日变化特征;得到了西南低涡源地分布的主要区域;获得了移动类西南低涡东移发展的主要路径及其统计特征,从而加深了对西南低涡的认识,有助于深入研究西南低涡。  相似文献   

2.
西南低涡是形成于我国青藏高原东南侧的一种α中尺度涡旋,是导致中国夏半年暴雨的主要天气系统之一。文中简要回顾了2000年以来有关西南低涡的最新研究成果,主要包括西南低涡的人工智能识别、西南低涡频数的长期变化及其气候学特征、西南低涡的集合预报、双核西南低涡的首次发现等。在此基础上,归纳出该研究领域需要深入探讨的若干问题,包括西南低涡频数变化的外强迫因素,青藏高原特殊地形导致的地形Rossby波、重力波与西南低涡之间的相互关系,双核西南低涡的形成机制以及双核西南低涡与经典西南低涡形成机制的差异等。  相似文献   

3.
高正旭  王晓玲  李维京 《湖北气象》2009,28(4):302-305,312
在较长时间序列的基础上,利用客观分析统计的结果,阐述了西南低涡的气候特征.对近60年西南低涡个例的分析表明:利用再分析资料进行西南低涡的历史统计是可行的,能够反映出西南低涡的气候态特征,并且与实际观测事实相符,当西南低涡发生异常时,高空西风急流的位置会发生明显变化,两南低涡偏多时所对应的西风急流偏南明显,偏少时则北偏明显;通过其与降水的分析表明,西南低涡与湖北省降水相关较好,全省大部地区相关系数达到了0.35以上,尤其对极端降水的指示意义较为明显.此外,西南低涡与海温场也具有较好的相关性.  相似文献   

4.
夏季长江流域两类中尺度涡旋的统计与合成研究   总被引:4,自引:0,他引:4  
利用2000~2013年夏季6 h一次、水平分辨率为0.5°(纬度)×0.5°(经度)的CFSR(Climate Forecast System Reanalysis)再分析资料,对产生于四川盆地的西南涡和产生于大别山地区的大别山低涡进行了识别,统计出西南涡和大别山低涡的发生频数、初生时段、移动路径、三维结构等气候特征;在此基础上根据涡旋生成前的地面气压场和降水特征,对西南涡和大别山低涡分别进行了分类与合成研究,并细致对比了两类涡旋的异同点,主要结论如下:(1)西南涡在7月上旬最活跃,而大别山低涡则在6月上旬发生频数最高。凌晨时段是两类涡旋的高发期;西南涡日间的生成数目多于夜间,而大别山低涡则与之相反。(2)绝大多数西南涡和大别山低涡维持时间少于12 h;绝大多数西南涡维持准静止,而大别山低涡则主要向东北方向和偏东方向移动。(3)两类涡旋均为对流层中低层的低压系统,其中大别山低涡的垂直伸展层次较西南涡更低。相比于西南涡,由于水汽条件更优,大别山低涡所引发的降水更强,强降水的凝结潜热释放使得大别山低涡的平均生命史比西南涡更长。(4)产生前有降水的西南涡/大别山低涡相比于产生前无降水的西南涡/大别山低涡而言,对流层高层南亚高压的强度更强、辐散更显著;对流层中层与500 h Pa西风带短波槽的配置条件更好;对流层低层涡旋中心附近的辐合更显著、切变更强;并且对流层中低层的上升运动更强。这些都是有利于降水发生与维持的有利条件,而与降水凝结潜热密切相关的热力强迫使得产生前有降水的西南涡/大别山低涡相比于产生前无降水的西南涡/大别山低涡拥有更长的生命史长度,更大的水平半径和更大的涡旋生命史内降水量。  相似文献   

5.
引发四川盆地东部暴雨的西南低涡结构特征研究   总被引:1,自引:0,他引:1  
江玉华  杜钦  赵大军  何跃  李江 《高原气象》2012,31(6):1562-1573
利用1951-2008年四川盆地(27°-32°N,105°-110°E)54个地面气象观测站网监测的日雨量资料,分析了四川盆地东部暴雨发生的气候特征。结果表明,四川盆地东部暴雨(或伴有雷雨大风、冰雹大风等)多发生在6-9月,川东北和渝东北是单站暴雨的高发区,重庆西部是大范围暴雨的多发区;引发四川盆地东部(宜宾、南充和重庆西部)暴雨的主要天气系统是西南低涡。对2007-2010年6次西南低涡暴雨过程进行了合成分析,分析表明,西南低涡热力结构特征具有200hPa存在明显增暖现象,对流层中低层则由暖转冷;西南低涡初期大气对流性不稳定明显;西南低涡动力结构特征具有200hPa西风急流在36°N附近,500hPa低槽东移,槽前正涡度加强,从对流层底垂直伸展到300hPa以上,正涡度中心随高度向西倾斜,850~500hPa平均正涡度大值区与低涡中心对应,对流层中低层北风大值区与南风大值区在低涡中心附近形成强水平风切变,同时低涡中心附近的垂直风切变也较明显。促使西南低涡发展的水汽主要来自南海,低空急流由南向北输送水汽,将对流层低层到大气边界层内的水汽输送到低涡中心附近。西南低涡发生、发展过程中在红外卫星云图上具有MCC等中-α尺度特征,发展强盛的西南低涡在多普勒天气雷达回波上有"列车效应"和中气旋特征。  相似文献   

6.
利用2012~2016年Micaps天气图资料和《西南低涡年鉴》,对西南低涡及不同涡源西南涡的变化特征、活动期和移动特征以及对降水的影响等进行了统计分析。结果表明:(1)西南低涡平均每年生成95次,但各年差异大。其中,九龙涡最多,盆地涡次之,小金涡最少。西南低涡多发时段在春季与夏初,其中,九龙涡多发时段在春季与夏季,盆地涡多发时段在冬季与春初,小金涡多发时段在冬末与春季。(2)西南低涡活动主要在4~7月,小金涡最长生命史可达168h,在7月;九龙涡最长生命史156h,在5月;盆地涡最长生命史144h,在4月。西南低涡大多数在生成后24h内消失。在12月的西南低涡生命史最短,绝大部分在24h内。(3)西南低涡有三分之一能移出涡源区。其中,九龙涡移出的个数最多,盆地涡其次,小金涡移出的个数最少,但移出几率最高。3~6月是西南低涡移出的主要时段。其中,九龙涡主要移出时段在4~7月;盆地涡主要移出时段在1~5月;小金涡主要移出时段在2~5月。(4)西南低涡主要移动路径是东北、东、东南。其中,九龙涡以东北移为主;盆地涡以东北移、东移为主;小金涡以东移、东南移为主。(5)除冬季、春初外,不同涡源西南涡不论活动时间长短,都会造成降水,九龙涡造成的降水一般比盆地涡大。西南涡造成的很强降水多出现在6~7月。   相似文献   

7.
西南低涡与不同系统相互作用形成暴雨的异同特征分析   总被引:1,自引:0,他引:1  
利用1°×1°NCEP再分析资料和地面加密自动站资料,通过对2007年四川盆地盛夏3次西南低涡与不同系统相互作用时形成四川盆地暴雨过程的环流特征、影响系统以及风暴相对螺旋度、湿位涡、水汽通量等物理量场特征进行对比分析,找出西南低涡与不同系统相互作用形成暴雨过程中各物理量的异同点。分析表明,西南低涡与不同系统相互作用形成暴雨机制的共同点是:暴雨发生在西南低涡中心附近,西南低涡暴雨区内存在着稳定的上升气流和水汽辐合,伴有明显的能量释放特征,西南低涡暴雨都是发生在对流层中层螺旋度大值区,强降水一般出现在对流层低层MPV1<0同时MPV2≧0的范围内,都具有“低层正涡度辐合,高层负涡度辐散”的典型暴雨动力结构。西南低涡与不同系统相互作用形成暴雨机制的不同点是:在西南低涡与高原低涡形成暴雨机制中高空急流的作用十分重要,在西南低涡与切变线形成暴雨机制中低空急流的动力作用十分明显,而深厚的西南低涡暴雨高低空急流作用不是十分重要。在西南低涡与切变线或深厚的西南低涡形成暴雨机制中锋面抬升作用明显,对流层高层MPV1正值区叠加在低层MPV1负值中心上,而与高原低涡相配合形成暴雨机制中锋面抬升作用不明显,不具有MPV1下负上正的结构。深厚的西南低涡暴雨是非移动的,而西南低涡与高原低涡或切变线形成的暴雨是移动性的。   相似文献   

8.
近61年夏半年西南低涡的统计特征与异常发生的流型分析   总被引:1,自引:0,他引:1  
叶瑶  李国平 《高原气象》2016,(4):946-954
利用NCEP/NCAR再分析资料,统计了1954 2014年间夏半年(5 10月)西南低涡发生次数的年际变化,并着重分析了西南低涡异常发生年份的气候特征。结果表明,西南低涡多发年,低层流场在西南低涡关键区表现为西南风旺盛且辐合异常强,气旋性切变加大,低纬季风环流增强,导致大量正角动量输送至关键区,有利于西南低涡生成;同时印度洋输送至关键区的水汽通量增加,也有利于降水发生。而西南低涡少发年,低纬季风减弱,关键区为异常北风控制,南支绕流偏弱,水平散度场表现为辐散异常强,造成角动量输送减弱,不利于西南低涡生成;且来自于印度洋的季风水汽输送减弱,亦不利于降水发生。因此,除地形和加热作用外,西风带以及季风环流带来的水汽和角动量输送也是影响西南低涡发生的重要因子。  相似文献   

9.
一次西南涡路径预报偏差分析及数值模拟   总被引:2,自引:0,他引:2  
2008年7月21-23日,在川东的西南涡移出后东北上.参考各数值模式对22-23日西南涡路径预报后,河南省气象台于21日发布暴雨预报,出现了落区偏差.为加深对西南涡移动路径机理的认识,利用常规和NCEP资料,从大气环流、热力、动力等方面对这次西南涡移动路径特征进行探讨;对数值预报产品作天气学检验;利用WRF模式对本次过程进行模拟.结果表明:(1)这次西南涡呈现南掉-东北上-东东北再东北上的曲折路径;(2)低涡结构显示了中尺度特征,涡度轴向、K指数等对低涡的移动路径有指示意义;(3)由于过于依赖数值预报,加之对东北南下冷空气影响考虑不足,是造成这次低涡路径预报偏差的主要原因;(4)WRF模式对这次低涡路径有较好的预报能力.  相似文献   

10.
西南低涡是形成于青藏高原东侧的特殊天气系统,国内学者目前对于西南低涡的识别没有统一的标准。通过分析西南低涡的主要特征,结合高度场、涡度场、风场,设计了一种适应于西南低涡的HVW识别方法,将其应用于2014年6—8月GRAPES-MESO高分辨率格点分析资料,对比与西南低涡天气图实况的差异。通过对西南低涡的识别、低涡生成和消亡时间、低涡中心位置以及低涡中心强度这几方面的具体分析,得到以下几点结论:1)HVW识别方法能够有效识别出高精度格点资料中的西南低涡过程,与格点实况的吻合率达到87.5%;对于天气图和格点资料都能够再现的西南低涡个例,HVW识别方法的准确度能够达到90.9%,说明HVW识别方法能够有效捕捉西南低涡。2)以天气图实况资料为西南低涡生命时长检验标准,HVW识别方法能够合理分析低涡的生成和消亡时间。3)对西南低涡中心位置偏差进行分析发现,HVW识别的西南低涡中心位置不仅位于西南低涡气压低值附近,更位于风场辐合中心。4)对西南低涡中心强度的评估发现,格点实况与HVW识别方法分析的西南低涡强度差异几乎可以忽略,充分说明了HVW识别方法包含了格点实况的高度场信息,也说明该识别方法的西南低涡中心强度可以用来代替格点实况结果。通过对2014年6—8月西南低涡过程的具体分析,验证了HVW逐步循环定位方法的可行性、合理性以及准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号